1972
HEWLETT PACKARD
ELECTRONIC INSTRUMENTS
AND SYSTEMS
FOR MEASUREMENT/ANALYSIS/COMPUTATION

Acoustical Instruments
Amplifiers
Automatic Test Systems
Calculators and Peripherals
Communications Test Equipment
Components
Computers and Peripherals
Data Acquisition Systems
Electronic Counters
Electro-optical Instruments

Frequency and Time Standards
Graphic Recorders
Magnetic Recorders
Meters
Microwave Test Equipment
Network Analyzers
Oscilloscopes
Power Supplies
Signal Anälyzers
Signal Sources

What's In This Catalog:

GET ACQUAINTED with the many ways Hewlett-Packard can help solve your measurement problems in the opening pages. They describe the company, give some information about the HP capabilities that are beyond this catalog's scope, list loca! offices, give facts on HP services, and tell you how to order. There is an alphabetical index and an index by model number, to help locate solutions to measurement, analysis, or computation problems. NEW HP products are flagged and noted by the word NEW in bold, blue type throughout.

For More Information:

FURTHER INFORMATION on any HP product is yours for the asking. Use the Information Assistance Request Cards between pages 400 and 401.

Gatalog Prices:

PRICES which appear in this catalog apply only to domestic USA customers; they were current when approved for printing and do not include applicable surcharges on imported products. Where prices are not given, or for latest price information, call your nearest HewlettPackard sales office.

Contents

About Hewlett-Packard 18
Delcon Telephone Cable Maintenance Instruments I
Medical Electronics 2
Analytical Instruments and Systems 4
Sales and Service Offices 6
How To Order 8
Services 9
Training 10
Alphabetical Index of Products 12
Model Number Index of Products 18
Product Sections
Amplifiers 26
Measuring Devices 33
Transducers 82
Displays 83
Oscilloscopes 92
Power Supplies 148
Recorders, Printers and Couplers 172
Electronic Counters 207
Frequency and Time Standards 235
Signal Sources 249
Microwave Test Equipment 315
Communications Test Equipment 345
Network Analyzers 356
Automated Network Analyzers 370
Signal Analyzers 371
Ausomated Spectrum Analyzers 381
Autornated Noise Monitoring Systems 395
Computers and Peripherals 399
Information/Assistance Request Card 401 A
Auromated Test Systems 405
Electronic Calculacors and Peripherals 408
Solid State Components and Circuits 410
Temperature Measuring Instruments 412
Cabinets and Enclosures 414
Information/Assistance Request Card 401A

Hewlett-Packard is a major designer and manufacturer of electronic, medical, analytical, and computing instruments and systems. From its founding in 1939, the company has conscientiously follow'ed its basic philosophy of offering only products representing significant technological advancements. The company's first instrument-an economically priced audio oscillator far more stable and easier to use than any such instrument available at the time-met this demanding criterion, as have the many Hewlett-Packard products that have followed.

The company manufactures more than 2,000 produccs, most of which fall into the caregory of electronic test and measurement equipment. This includes many of the "rork-horse" products such as oscillators, voltmeters, oscilloscopes, counters, and microwave equipment, as well as a variety of instruments and systems for specialized applications.

However, the company has also entered several additional and important new product areas over the course of the years, and today the company name is seen on instruments and sys. rems for medical diagnosis and monitoring, on others for biophysical and chemical measurement and analysis, and on an impressive selection of solid-state devices.

The growth in the amount of data generated within our tech. nically-otiented sociery, and the increasing need to automate resting and control functions, led Hewlett-Packard in recent years into the field of computational equipment. The company now offers an impressive family of general purpose digital com. puters, and electronic calculators and systems. Hewlett-Packard computers easily interface with the company's clectronic test and measuring instruments to form data acquisition and automatic test systems. They are also being used increasingly from the elementary through the university level for problem solv. ing. computer-assisted instruction, computer science education, and complex model simulation. Complementing Hex.lat. Pack. ard's computer and calculator hardrare is an extensive library of softrate for programming purposes. As a result, Hewletr. Packard's desktop calculators, like Hewlett.Packard computers, are versatile instruments that can handle a wide variery of special needs.

To maintain its leadership in instrument technology, Hew. lett-Packard invests beavily in nea product development. Re. search and development expenditures traditionally average abour 10 percent of sales revenue, and some 1,500 engineers and scientists ate assigned the responsibilities of carrying out the company's various R\&D projects. As a resuk of this cffors. about half of the company's current business is represented by products that reere not in existence sjx yoars ago.

The company has aiso shown leadership in manufacturing techniques, developing many innovations that make it possible to offer bigh quality products at moderate cost. Engineering and production of solid-state devices, integrated circuits, and hybrid microcircuitry are prime examples. In many cases, specialized equipment is required for the production of these components as well as other unique parts. Often this equipment is designed and built in-house either because it is not available on the ourside, or because ir allon's Henderr-Packard an extra measure of control in maintaining the guality and performance expected of its products.
Herrlett-Packard is a well-established, multi-national company that has controlied its growth so that expansion is f. nanced generally from income on a pay-as-you go basis. From its modest beginnings in Palo Alto, California, the company now has nine manufacturing plants in California, two in Colorado, two in New Jersey, one in Pennsylvania and one in Mas. sachusetts. Hewlett-Packard's overseas manufacturing facilities are located in Scolland, West Germany, France, Japan, and Singapore.

However, for the customer, Hewlett.Packard is no farther away than the nearest telephone. There are more than so field offices in the Uniked States, and the company's products are marketed in over 100 countries abroad. All of these offices offer immediatc assistance in solving measurement problems and providing advice on equipment selection, or with any help needed to keep equipment already in sesvice in first-class operating condition. The field offices are staffed by trained engineers, each of whom has the primary responsibility of providing tectuical assistance and data to customers. A vast communications network has been established to link each field office with the factories and with corporate offices. No matter what the product or the request, a customer can be accommodated by a single contact with the company.

Hew:lett-Packard is guided by a set of martten objectives. One of these is "to provide products and services of the greatest possible value to our customers." Through application of ad. vanced technology, efficient manufacturing. and imaginative markering, it is the customer that the more than 16,000 Hen'-lett-Packard people strive to serve. Every effort is made 10 anticipate customer's needs, to provide products that will enable him to operate more efficiently, to offer him the kind of service and reliability that will merit his highest confidence, and to provide all of this at a reasonable price.

DELCON TELEPHONE CABLE MAINTENANCE INSTRUMENTS

ABOUT HEWLETT-PACKARD

Hewlett-Packard's Delcon Division is dedicated to the development and manufacture of instruments for telephone cable plant maintenance. Of prime interest is the location of physical damage to the cable.

Fault location has become an especially acute problem in recent years as more cable is placed underground. Although better protected from the environment, the cable is subject to new dangers and the telephone craftsman is faced with locating damage hidden by several feet of earth. In addition, higher traffic density on cables and demands for highen quality transmission have placed more emphasis on cable reliability and quality.

From the standpoint of the cable maintenance supervisor, fault location problems can be divided into five categories:

1. Maintaining the integrity of pressurized cable systems. Since pressuriza. tion is a preventive measure to keep moisture out of the cable, it is essential that leaks be located and repaired quickly before more serious damage results.
2. Locating conductor faults before they become catastrophic. High resistance shorts and grounds are usually indica. tive of water in the cable, which, if not located and repaired quickly, can result in complete cable failure.
3. Locating catastrophic faults. Time and location accuracy are of the essence in these cases in order to return the cable to service quickly with a minimum of excavation.
4. Cable utilization. This problem becomes most apparent when most of the pairs in the cable have been assigned and it is no longer possible to pick up a "spare" pair to replace a faulty pair. Yaults on abandoned pairs must then be located and repaired in order to more fully utilize the cable's capacity.
5. Cable path and depth determination. This information is necessary in conjunction with accurately locating the fault. It is also necessary for accurately marking the cable location to protect it from construction and excavation work being performed in the vicinity of the cable.
Delcon Division strives to solve these problems with instruments that are easily operated by oon-technical personnel and that will withstand the rigors of the ourside plant environment.

Ultrasonic leak detection

As pressurized gas escapes through an aperture it creates considerable noise in the ultrasonic region of 36 to 44 kHz The Delcon Ultrasonic Translator Detector (such as Model 4905A) detects this characteristic sound with a sensitive, directional Baṛium Titanate microphone and translates the signal to audio by mixing it with a 40 kHz local oscillator signal. The audio signal is then amplified and monitored on a speaker and level meter.

To detect leaks in aerial cables, the craftsman merely scans the cable from the ground with the fashlight-size microphone, listening for the characteristic hissing sounds of a leak. By simultaneously observing the level meter, he can "peak in" on the leak and determine its exact location. Pole mounted accessories are also available for closer scanning of the cable.

Leaks in ducted underground systems are located with a unique "Duct Probe" accessory. Consisting of a miniature microphone connected to a systern of alumi. num rods, the Duct Probe can be used to explore up to 500 feet into a cable conduit. The leak is thereby pinpointed precisely, permitting repair of the damage with a minimum of excavation.

Direct reading fault locators

Fault locators that provide a direct distance-to-fault reading in feet (or meters) have the benefit of relieving the craftsman of the drudgery of performing manual calculations. Locating faults becomes faster, requires less training and is less ecror prone than with manual bridge techniques.

The Model 4912F Conductor Fault Locator is a direct reading. automatic calculating bridge operating on the Varley principle. This instrument is designed to locate extremely high resistance shorts, crosses and grounds, such as might occur from minute amounts of moisture in plastic insulated cable (PIC). The 4912F is connected to an access point on the
cable and the farend of the cable is strapped to form a bridge configuration. The distance-to-fault result is obtained by a simple sequence of adjustments of the instrument controls. The 4912 F is battery powered, light and compact. It is housed in a rugged fiberglass case and is designed to withstand the demands of field use.
Similar in construction and operation to the 4912F, the Model 4910F Open Eault Locator is designed to provide direct distance readings to open faults in paited telephone cable. The 4910 F operates on a capacitance charge sampling principle. Since the capacitance per unit length of a pair is known for a particulas type of cable, this capacitance can be related to the length of the pair. The 49105 measures this length by charging the pais capacity, C_{L}, with a known dc voltage; transfering a portion of this charge to a standard capacitor, C_{S}, in the instrument for a given length of time; and measuring the charge across C_{5} with a voitmeter calibrated in feet. This entire sequence is performed automaticaliy by the $4910 F$, providing an answer in just a few thousandths of a second.

Tone type fault locators

The tone type locator, such as the Model 4904 A , places a 990 Hz signal on the faulted circuit which is traced by an inductive pickup coil and a sensitive tuned receiver. At the point of the fault, the signal drops in level, thereby indicating the exact physical location of the fault. The tone locatoc also has the advantage of being able to precisely trace the path of the cable and, by triangula. tion, determine its depth at any point. The tone locator system is designed such that only the transmitted signal is detected, so that interfering signals (such as power line harmonics) do not interfere with the measurement. Output power of the cransmitter is kept low to preveat interference with other working circuits in the cable and to prevent "carry-by" of the signal beyond the fault.

MORE INFORMATION ON DELCON PRODUCTS

U.S.A. Customers: Delcon products are sold directly to the customer from the manufacturing division. Please direct all orders and inquiries to:

Hewlett-Packard Company
 DELCON DIVISION
 333 Logue Avenue
 Mountaln View, Callfornia 94040
 Telephone (415) 969-0880

Customers outside the U.S.A.: Orders should be directed to your local Hewlett. Packard distributor or representätive.

MEDICAL ELECTRONICS

An evolution for an involvement

Hewlett-Packard's service to the medical community is at the Medical Elec. tronics Division (MED) in Waltham, Massachusetts, where more than 250 products for health care including diag. nostic instruments. patient monitoring equipment, medical systems instrumentation, and compurerized medical systems are manufactured.
Sanborn Company's (Hewletr-Packatd's predecessor) first principal products were a water level recorder, a blood pressure gauge, the Benedict Metabolism Tester, the first string galvanometer electrocardiograph, and the first portable ECG. These were followed by the present line of cardiological measurement instrumentation, which includes several models of electrocardiographs, heart sound instrumentation, and a vector-cardiography system.
In 1961, Sanborn became a division of Hewlert-Packard. The combined strengths of Sanborn, with its acknowledged lead. ership in understanding and providing for the needs of the medical community together with its experienced sales and service personnel, and Hewlett-Packard, with its leadership in development and support of electronic instrumentation, resulted in well-conceived, well-designed, and well-supported product lines.

MED's product lines

The product lines, which are listed in the Medical Instrumentation Caralog

(5952.3389), of Hewlett-Packard's Med. ical Electronics Division (MED) currently contains mote than 250 instruments comprising patient monitors, medical systems (for the operating room, cath lab, etc.), diagnostic instruments, and computerized medical systems. Cursent engineering efforts are expanding to telemetry for progressive coronary care monitoring, and monitoring equipment for new born intensive care units.

780 series patlent monitors

Continuous monitoring of cotonary and critically-ill patients is undoubtedly among the most important innovations in patient care in the last decade. In response to this innovation, Hewlett-Pack. ard designed the 780 Series of patient monitors for coronary care units, intensive care units, and recovery room monitoring.
The units of the 780 series electronically monitor various physiological phenomena such as ECG, acterial and venous pressures, temperature, and respiration. Monitoring is done on a round-rhe-clock basis; the patient is effectively never left alone. 780 bedside monitoring units are small, compact, self-contained instruments used to monitor various combinations of patient parameters. Patient data is displayed in analog or digital form on a variety of readout devices for convenient and effortless monitoring by the medical staff.
Because of the building block design of the 780 Series, units can be combined into an almost unlimired variety of sys. tems to meet each hospital's specific monitoring needs. Other advantages of the building block approach are economycost reflects only those monitoring capabilities needed; and expandability-systems are easily enlarged to monitor more patients or more parameters per patient.

The Hewlett-Packard 780 Series also includes resuscitation capability. Defibril. lation can be pecformed asynchronousiy for emergency treatment of ventricular fibrillation or the defibrillator can be used synchronously for the elective card. ioversion of arrhyrbmias such as atrial fibrillation of atrial flutter. Pacing can be done in either the fixed-rate or demand (as-required-by-the-patient) mode.

8800 series medical systems

Late in the ' 60 's the need for monitoring systems for clinical and research applications became apparent. This prompted Hewlett-Packard into develop. ing the 8800 Series of Medical Systems comprising transducers, signal condition. ers, recorders, and other display devices. The versarility of 8800 instrumentation permits customer configuration of systems for research, operating rooms, cath labs, and teaching applications.
The equipment provides substantial fexibility in meeting the requirements of the individual clinician and researcher. By combining standard sub-assemblies in building block fashion, virtually a limitless number of different configurations is possible. These range from two-channel systems in a small mobile cart, to highly sophisticated multichannel systems including chart recorders, oscilloscopes, numerical readouts, analog meters, and magnetic tape recorders.

Dlagnostic Instrumentation

Hewlett-Packard has developed an ex. tensive group of instruments primarily for clinical applications. These instruments monitor and/or display ECGs, VCGs, heart sounds, simultaneous fetal ECGs and labor contractions, nerve conduction and muscle voltages, and internal body structures. This was followed by our present single-channel electrocardiographs which provide all solid state circuitry and the most modern electronic technology a vailable.

Electrocardiography

Hewlett-Packard offers two 3 -channel electrocardiographs. One allows the nurse or physician to obtain a complece 12 -lead electrocardiograph automatically in ten seconds. The second unir includes facilities for obtaining automatic cardiographs and/or provides a 3 -channel display for electrocardiograph. phonocardiograph and pressure signals.

Electromyography

The Hewletr-Packard compact, 2-channel clinical electromyograph provides all of the sophisticated electronic gear necessary to do elecrromyography and nerve conduction studies in one package. It also utilizes a Hewlert-Packard developed variable persistence oscilloscope, which is unique to our inscrument.

Dlagnostic ultrasound

Hewlett-Packard's oscilloscopes were also combined with sophisticated electronics to provide ewo diagnostic ultra. sound units. These instruments utilize the sonar principle and have found wide usage in neurological and radiological diagnostic procedures, while other areas such as cardiology and obsterrics are also beginning to develop procedures where diagnostic ultrasound is useful. These instruments, like the Electromyograph, can be combined with the variable persistence or storage scope, allowing Hew. lett-Packard to provide a unique feature in this type of instrumereation.

Fetal monltoring

Recently, a retal monitoring instru. ment has been developed by our maou. facturing facility in Boblingen, Germany. in conjunction with Dr. Konrad Ham. macher of Dusseldorf. It combines both the phonocardiograph and fetal ECG tochaiques and allows the obstetrician to monitor fetal heart rate during the last trimester of pregnancy, or at the time of labor, and compare it with recorded la. bor contractions. In this way, the number of Caesarean sections can be reduced and the baby can be continually monitored during the most traumatic time of labor. The idea of monitoring the fetus is not new, but instrumentation that will eliminare extransous noises and materaal heart sounds is, and all of this is combined in the new Cardiotocograph, which uses logic circuitry to eliminate heart sounds or other extraneous noises.

Computerized medical systems

One of the goals of Hewlett-Packard's Medical Electronics Division is to provide medical systems and support that allow the computer to be a time-saving, accurate tool of the physician and researcher. To implement this goal, the concept of staellite, or dedicated, consputers has been developed. Separate small computers perform their functions in the various areas of the hospital-in. rensive care, cath lab, operating room, etc.-and, if desired. communicate with a larger machine containing patient files and billing information. Three total system packages (both hardware and software) are currently available for medical systems applications. They are the Computerized Catheterization Laboratory, the ECG Interpretive System and the Computerized ICU/CCU Monitoring System. Additional a vailable sofrware imcludes a set of 52 statistical programs (the "Stat. Pac") writen for biostatistical applica. cions.

Computerlzed cardiac cath lab

This package aids the physician by re. ducing the analog data obtained during the cateterization procedure to a useful set of calculated values such as heart rate, systolic and diastolic pressure values, pressure gradients, cardiac output, etc. Ar the conclusion of the procedure, a report is generated for inclusion with other patient documentation.

ECG Interpretive system

A specialiy-developed operating system controls the user's choice of tro programs for ECG analysis, Mayo or USPHS, each based on different diagnos. tic criteria and both widely field-rested. Designed for operation by an ECG tech. nician, the system merges patient history cards with ECG records and prints history, ECG, and interpretation in less than one minute. Results can be printed at both the computer site and the ECG rerminal location. The system also produces patient billing reports upon request.

ICU/CCU monltoring system

A computerized, integrated, bardwate/ software system for patient monitoring is currently being developed and tested at Perer Bent Brigham Hospital, Boston, Massachusetrs. This system is modular in nature, making it easily adaprable to any monitoring situation. Application tasks include scheduled automatic sampling of signals from bedside monitors (ECGs, pressures, respiration, tempera. ture) ; plotting trends on a scope: logging nurses notes: cardiac output by dye curve; pulse waveform analysis; arrhythmia monitoring in conjunction with a preprocessor; acid-base analysis; and generating patient summary reports at the end of each nursing shift.

Hewlett-Packard's abiding commitments

Responsible concern is nor confined to creating designing and manulacturing medical instruments alone. Since the ultimate value of medical instruments to physicians and hospital personnel must be measured by intrinsic benefits, the ad. ministrative staff of Hewlett-Packard's Medical Electronics Division has spent hundreds of man-years developing a "rotal concept" package, existing from the earliest stages of a medical instrument's definition and continuing through. our the useful life of the product.

Currently the full-time responsibility of more than 100 Hewlet-Packard professionals, the total concept package com. prises regularly scheduled rraining pro. grams, complete publications comple. ments, on-site calibration and checkout procedures, extensive sales and service capabilities, emergeacy service loaner equipment, and systems analyst and field engineering support.

ANALYTICAL INSTRUMENTATION Gas Chromatographs and Spectrometers

For chemical analysis

Widely recognized as the nation's foremost supplier of electronic measuring instruments for the engineer, HewlettPackard is fast developing a similar position in analytical instrumentation for the scientist. Fully described in a separate Hewlett-Packard catalog "Analytical Instruments for Chemistry," these instruments are briefly characterized in these two pages.

Gas chromatographs

Although less than 20 years old, gas chromatography (GC) has taken over from classical and other instrumental methods the bulk of analytical work performed in laboratories around the world. There is an excellent reason for the revolutionary popularity of the gas chromato. graph in analytical chemistry: no other method gets more accurate results, at greater speed, and for less cost.

For the scientist whose interest is the chemical analysis of unknown samples, Hewletr-Packard offers four basic types of gas chromatographs, a more complete line than is available from any other manufacrurer in the world:

Series 7600A Chromatograph System, a fully auromatic $G C$ thar takes over the uraditional work of the chromatographer, from sample measurement and injection to the final report of the analysis. Operating completely unattended, it performs the GC analysis more accurately and reliably than a skilled technician, at a fraction of the operating cost.

Series 7620A and 5750B Research GC's, multiple-derector instruments that permit the highest possible level of performance for a great variety of analyses. They are designed expressly for the research laboratory that requires an extremely versatile instrument.

Serles 5700A Laboratory GC, the most modern instrument on the market, available in a variety of configurations for dedicated applications. Its modular design makes possible the most economical GC at the highest performance level for laboratories that specialize in specific analyses such as drugs, pesticides, natura! gas and air pollution.

Series 7610A and 402B High-Efficiency GC's, whose large oven accommo-
dates glass U-rube columns for the analysis of materials that are difficule to chromatograph. These instruments incorporate other design features that make them especially effective with biological samples and thermally sensitive or polar materials.

Model 57958 Preparative GC Attachment which converts analytical GC's to fully automatic small-scale preparative work. The 5795 B is used to separate and collect pure components for further chemical studies, without interfering in any way with the gas chromatograph's analytical capability.

Model 7670A/7671A Automatlc Sampler, an accessory that automates the measurement and injection of samples into a gas chromatograph. Operating unattended overnight and even over weekends, the $7670 \mathrm{~A} / 7671 \mathrm{~A}$ reduces operating costs so significantiy that even the smallest labs can justify its purchase.

Data handling

Since GC produces both qualitative and quantitative information on large

[^0]numbers of complex samples in a very short time, its data output is so large that automatic methods for handling it are economical if not essential. HewlettPackard manufactures a variety of instruments and systems for automatic data handling to satisfy all budget levels:

3360A GC Dała Processing System. Complete automation of the data han. dling process is achieved with the 3360 A which can handle the output of up to eight GC's simultaneously, without intervention by the chromatographer. It prepares a full analytical report for each sample and is easily operated even by laboratory technicians who have literally no previous computer experience.

3370 Digital Integrator. An electronic integrator, the 3370 B automatically mea. sures the retention time and area of each peak on a chromatogram. It presents the data either on a built-in printer, on punched paper tape for use with timeshare compurers, or directly to a digital computer in real time.

Strip Chart Racorders. Several Hew. lett-Packard recorders are available with special input circuitry for use in GC: Models 7127A, 7128A, 7143A/B, 680. All solid-scate instruments, they offer a choice of one or two recording pens and five or ten-inch calibrated charts.

Hewlett-packard manufactures a broad line of other data handling instruments including digital computers, programmable calculators, magnetic tape recorders and oscillographic recorders which are described elsewhere in this catalog.

Mass spectrometer

It is generally agreed among scientists that the most powerful tool for the qualitative and quantitative identification of unknown materials is the combination of a gas chromatograph and mass spec. trometer. In the Hewlett-Packard system, these two instruments are fully integrated with a computer, further increasing their analytical power and operator convenience. All three components-gas chromarograph, mass spectrometer and com-puter-are manufactured and serviced world-wide by Hewlett-Packard.

The 5930A Mass Spectrometer can be operated either manually or auromatically. In the automatic mode, the computer controls the operation of the spectrometer and accumulates the analytical data while it performs the necessary calculations. It does a complete mass scan
every two seconds, fast enough to analyze every peak separated by the gas chromatograph, and stores all the analytical data for as many as 1000 scans on a single tape cassette. Later, the computer can search the cassette, find the scan of interest and type out a list of every peak. identifying each peak by mass number and relative abundance.

MRR spectrometer

Molecular rotational resonance specrcoscopy (MRR) measures the absorption of microwave energy by molecules in the vapor state at low pressures. The technique has been widely used in fundamental molecular research for a number of years. With the introduction of the 8460A MRR Spectrometer, which is easy to use and more versarile than previous instrumentation, the technique has been extended to the analysis of complex gas mixtures, especially in air pollution studies and quancitative mixture determinations.

Microwave absorption occurs in any molecule that has a permanent dipole moment. The absorption pattern, or MRR spectrum, consists of sharp individual lines which always occur at the same frequencies regardless of sample composition and total pressure. Measurement resolution is so high that molecular conformers and non-radioactive isotopes can be separately identified. Compounds of molecular weight up to 350 can be measured. Impurities do not interfere and no sample preparation is required.

ESCA spectrometer

Electron spectroscopy for chemical analysis (ESCA) is a relatively new technique for measuring the binding energies of core and valence electrons in atoms and molecules. It has great porential in both structural and analytical chemistry, with applicacions in che study of surface chemistry, oxidation states, molecular structure and chemical analysis generally.

The HP 5950A ESCA Spectrometer advances the state-of the-art in some extremely significant ways. It incorporates an X-ray monochromator and dispersion. compensated electron optics, each an entirely unique technological break-through. When combined with the 5950A's posi-tion-sensitive detector, these design features serve to eliminate the line-aridth of the exciting radiation without introducing any slits in the spectrometer. The result is an instrument that can be operated
under optimum conditions of both sensitivity and resolution at all times.

The main performance characteristics of the S950A include freedom from background and freedom from satellites as well as greatly improved resolution and sensitivity.

CHN analyzer

The Model 185B Carbon Hydrogen Nitrogen Analyzer performs a complete elemencal analysis of organic materials simultaneously and automatically in less than 10 minutes. The 185 has gained considerable acceptance among microchemists, because of its ability to perform, even under difficult circumstances, elemental analyses whose accuracy is well within the accepted allowable error of $\pm 0.3 \%$, at a speed advantage of 4 to 8 times over classical methods.

Molecular weight instruments

A polymer solution invariably consists of a number of different molecules of different chain lengths and weights. It is often useful to the polymer chemist ro make different kinds of molecular weight determinations because each gives him a betrer idea of the actual molecular weight of the sample and also tells him some. thing of the distribution of the type of molecules in his sample.

Hewletr-Packard offers the polymer chemist a choice of two instruments to help him make fasi and accurate molecular weight determinations of all sizes of molecules: Model 302B Vapor Pressure Osmometer for number-average molecular weight determinations between 50 and 25,000 ; Series 500 Membrane Osmometers for the same type of determination between 10,000 and 1,000 , 000.

Quartz thermometer

The Model 2801A Quariz Thermometer measures absolute or differential remperature with a resolution of 0.0001° over the range -80 to $+250^{\circ} \mathrm{C}$. It employs a small quartz disc transducer that operates as a piezoelectric resonator for a sensor osciliator. The resonant frequency of the guartz crystal varies as the temperature in such a manner that the frequency of the sensor oscillator output signal is a linear function of temperature. Probe temperature is displayed as a direct digital readout in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. A BCD output is also provided for input to computers and other data handling systems.

SALES \& SERVICE DFFICES

SALES \& SERVICE OFFICES

UNITED STATES

alabama P.0. 10×4207 200 J ayce sping Road 5.w. Hentivill 35802 701 (205) 81.6581 TWX: 010-720-1204	CONNECTICJT
	bod Toiland street
	East tirtiard O\&j08
	Ta, 0.003) $\mathbf{2 6 9 . 9 3 5 4}$
	TWX: $110-426.3116$
	111 Cast Avenue
ARİONA	Norwall 0 ass 5
2336 C. Mannolla 31.	Tere (2003) 853.1251
TWX: 910-951.7330	frotion
s)97 Enst Erodiway	
Tution entus	2Bot W. Ockians Paex Olus,
Tol, (602) 298.2313	FR, Rabstrate 33s7
TWX ${ }^{\text {c }}$ 910-952-1162	Tel: (305) 311-2020
CALIFORNIA 145 E Est Orangathorge Aye. frlicrion 9 afegi	P.O. Oax 20007
	Herndon statlen 92814
	B21 commatwailit avesua
Tild (114) 670.1000	Orlanto
3939 Lankershim 8oulevord Merth trallywaed 91604 141: (213) 87712 B 2	1014 (305) 44)3970
	5WX $910.650-6113$
	[figellue dapll 1. 199\%
T00, 910 -64 2170	Po fox 15910
llit Embleadero Rand	517 Laxe Ellestor Dr.
	Cramuc, 32809
	Tel (365) A59-2900
TWX, $\$ 10.31731280$	
27x Watt Ave Te): (966) 42-1453 JWK 910 -307-2097	ocorala
	P.O. Binl 28234
	\$30 inturaste Norlt
	athanti 30328
9604 atro Oflve $\$ 11$ dero 92323	TWY, 810.788-4884
TII) (714) 279.3200	ILINOIS
1Wx, $910.333-2000$	5500 Howam slreat
	Stava soase
COLORADO	Trir (112) 677.0400
WW1910935-0703	INDAAPL
	3819 Meldows bilvo
	1801mapeli 45205
	Til) (317) 546-4691
	TWK: 810-342.5253

LOUISIANA	1060 N. Mshgs Highuray
P.0. 80×858	charry MUII Osose
1942 Williams Eosleyand	T01. (608) 887-4000
K0019, 70062	TWX. 10-492-4945
T411 (504) 721 -5201	
TWX $010-985.5824$	NEW HEKICO
	P. 0.80×18386
MAGYLAND	sisilon C
6707 Whitesione Rad	6501 Lemat fovlevara N.E.
Bellimere 2120	A/buqurime bldis
Yell (301) 9448400	Tet: (505) 265.3719
TWX. 710 -862.915	
	156 Wyall drive
2 Choka Chetry foad	Lat crater ssoor
90tivilu 20850	TBh, (505) E8E-2485
(11) (301) 948.6370	TWx 510.94 fl .0950
TW1, 710828-96.d	
	HEW YORX
massachusters	1708 CiAtal kyinua
32 Harmell hive.	Ataseny 12208
4 ym [tos 02173	
Telt (617) 861-8960	TW1, 710.441. 31%
TWK: $710 \cdot 38 \mathrm{~F}-5904$	1219 Campyile foar
michione	Lualcert 19760
21640 Weal Nime Mile Roso	Tf) (603) 738.0050
seurmmald 480/s	Tha: 5t0-252-0.8so
Tel, (3)3 $355-5100$	B2 Weinington strest
TWX. $010-2244888$	Pambikiepula 1760)
LINNESDTA	TEL (1914) 484.7330
2438 Unlvaritey hetest	TWX: 510.244-6012
S. 7anl 55114	39 Sughawe Drive
Tolt (612) 545.9481	Racheites 14523
TW6, 10.0 .553 .9734	Tel, (715) 473.9500
	TWX1 510.253.5889
Mssour	
1133) Colorido Ame .	685a cast Molloy mosd
kenew city 86137	Eyracale min
103 (1316) 763.6000	Ted, (3I5) 454-2488
TWX, 910.771-2007	TWX: $110.541-\frac{684}{}$
2812 sould Ermatwoos alvo.	1 Cissthlys Paril Went
52. Levil 83144	Hoodinury 11797
T 111 (314) 982.5600	Tete (516) 981-0300
गwX1 910.960-1670	TWX: 510-23-0811
NEW JERSEY	NORTH CAROLINA
W. 220 Clokuy fosir	P.D. Pox 518 B
Paramas 07652	1823 North Kiln Stuas
7eli 1201) 285-5000	411 Potal 27282
TWX, 710950-6931	Tad (919) elfeelot
	TWX. $510-925.1516$

RHODE ISLAND
Lope Provilicos: 02514

- TENNE8SEE

1all (901) 294.347)
TEXAS
P.O. Bax 1270
201 F.

R10 haidion 78080

CANADA

asberta

11745 Jasper Av4.
dmontor

BRITLSH CDLUMBIA
 Fat (604) 43-18213
TWX, 510.922-5059

MAHITOR
Ha rlitt packild (Cuncal litd.
II Eradford CL .

NOVA SCOTIA
Mowierphkard (Canadi) 116.
234S Dyben Villara Rd.
Mallisu

antario
Howlett-Packard (Canade) Liu.
88D Layl Elen Plics
Fiti (613j $263-6180,235-6530$ $T W X_{1} 610-552-1952$

TRI $(418) 677-5611$
TWX, $610-422.4248$
queare
henlett-Packard (Canasa) Led. 275 Hymux ${ }^{\text {foulevars }}$ ${ }^{5} / 1_{1}(514) 697.4232$ Telt $(514) 697.4232$
Telax: 010.420607
FOR CANADIAN AREAS NOT FOR CAN
LISTEA:
Contic: Howlet-Parkard (CAA. the camplale Polntress lisited

CENTRAL AND SOUTH AMERICA

araEntina	chile
Hewletl-9ackerd kreartiona	
S-A.c.e.t	Eustos, 1932-jel Pis
[Jatie 1171-3'	Casl\|lilils 42
Rumbes 1 Ima	tmilusa
111 35.0436, 35-062), 36.0431	Tell 4388
Talbr 012.1008	CJule: Calcagel santuro
Cathe. HFWgackart	
	colomaia
Bemptapaekara do Blash	instrumenilion
I.e.C L6S.	HesrikA, Langedagk a k\|er
Rua frel caneea 1119	
150 Prus-1, 3 P	Cxpattas atco
	Rparam hereo
Cable. HENPACK sao Paula	
Hewlett-Pbctard De Bisalt Fracs Dom Fsilciaso 16	Cablai Ranis boyeta iplex: 44400 INSTCO
Salas $806 / \mathrm{BOP}$	
Porso tienie	costa rica
	Lla mutredo calligas outbigh
7*11 25.8470	ADAflads 10159
Caile, HEWPACN Poito hlegre	sin lort
Mawbild PaCka'd os braus	
l.1.C. C, Had	cher arlaun sor dost
Rua as Matiz 29	
Hotriaga $20-32$	
ade 0a Mabile, ag	
Tel. 140-441)	
Codite HEWPAGK Rio de laneio	

ECUAOOR	michraola
	Roserio Taring
crina guyzeuli 1248	Aaritudo Portal 689
cosi orfice Eor 3109	Eduthlo Tarín
autio	maniear
Tef: 212.496: 219.785	T41 2451, 2492
cible: HORVITM ©ulto	
EI SALYADOR	Panama
Elactrontc essasisien	Electicalco Ealbos. S. 4
mantegs poital lenz	P.O. \#0x 4989
Centra Comesciat diganio	Ava, Maruet Erpinasa no. 13.50
sam suincor, [1 salyzar	Blat. Allma
Pasee ficalen $4585-4 \mathrm{in} \mathrm{Plso}$	Pmara NH
ret- 23-44-60. 32-32-37	7el: 230033
Csble Etechs	Teler 36ssi003, Curural, Canal 7one
MEXICO	Cables Evectron Panams city
Hewlath-Fachato Mexicana. S.a ax C.V.	paraguay
622 Ruotio Pereto	7.T. Melamed S.f.C
Col. dolvelie	Olvatiosi Aparatas y Equmpos
Mexles 12. D.f.	thedicus
1et-543-d232; 523-1674	Solon da Expostelan y Eecritarios
Telex, Coll. 74607	Crle 482
	Edifitio Viciocts-Planta 6apa
	saunctor, parsizuy
	Tel. 4.5089, 46212

uruouay
Pbilo Ferrenso S.A
Comarelat in indery

Canklat corteo 370
Tolt 403102
Cable, raniuth montavtorso
VENETUELA
Howlalt-Packerd Da Vanadoela
ciA

cusle HEwPACK carscas
Talex- 37531546
for nesas mot listico,
CONTACT:
kewiettpatiksid
IMTPGOMFINENTAL

EUROPE AFRICA, ASIA, AUSTRALIA

EUROPE

hustria
Hewlett.Packard Ges.a.0. $0 . \mathrm{H}$ Inctitima $23 / 2$
Postisch es
a-1204 Yienia
Tol 10272) 33 Et 05.01
Cable: Hfituty vema
fiex' 73923 metroak :
encorum
Hexifit-Packurd Bentlux
S. A / M . V
Anenut du colvert,
8,1170 artath
Tel - 021722240
cablar Paloben
Pelox 23454
oEncark
Dativel 38
DK. Stos Interres
Toli (01) al as 40
cablo NmPact 85
Telex' 16640 hp at
Hewleth.fachard A/S
「orvel 9
T01) (00) - E2-71-60
(6)0x-18540 tots
Cable: niwpackas
FINLAND
Howlenfpackuid Oy
Oulevaret 26
P.O. Box 12185
SF-molis kolatink 12
[el) 12 230
Coble HEwPACKOY-Malsin
folux 12.5383
PRAMCE
Howler -hempa frice
Quirtiof of courthoovl
80lte fastale No. 6
Yel: (1) 6077825
Yel: (1) 9077825
Cander Hewhicx or
7elex: 600448

Nevilott-Patkipd france 4 Qusl oes Etroll fr69 Lyon same Tol, (18) 428349 Cable, HEwpack Lyan Tolse: 31B17
Hewlett-Fackard Fianse 29 rue oe la Gree f-31 alatinat relex- 51897
GERMAN FEOEMAL AEPUBLIC Betinee Stresid 11) Posusch 56s) ma 0.6 Nleder Exhbsek/R价 ss Toic ($\mathbf{0 1 1 2 \text {) 30-04-1 }}$ cablai Kawpicxisa roanklutt Telex: 413249 F8A
Hewlett-Packard VeritiassuCum Herlapernerszasso 110 a. 3030 B6iliner, Huetermoner Tslr 107031$) 687285$ Csblar HEPAK AOBDINREN Telex: 9265739
Mowleti-Pbelars Vertiods.amst Yokelseniar Woi 36 0.4 alesiticor Tel. (211) 63 \&5 $3 \mathrm{IL} / \mathrm{3} 5$
Kewherifichard Virtulabrames Werdenstr. 23 0.2 Kanbure 1 Csble: MEWPAEKSA Rembure Yaleri 213332

UIITED KIHODON
Hewle its Packurd Cts.
Sloum, Sll 4 DS, Buchs
tlo Slough (0)53) 3134
CIBla MEDPIE Slough
8) 81 8441

Howlot. Fackarat 510 .
The Gratesay
Mitiachame Chesibire
rall (061) $07 \mathrm{~A}, \mathrm{~S}_{3} \times 6$
felex- bescose
yugos bavia
3 zianis sic Mamosa
graikls 1150 , jee jum

Colex: 21790
SOCIALIST COUNTRIEA
LEASI CONTACT:
mastrasis 29/2
Posmach 45

Colt (022a) S
ALI OTHEA EUROPEAN
Hullert Packary si
\% se by 6ols.durlen ?
1217 Meyrin 2 ganan

Mowitt paciged Talmon
30 Cheng 5 hido West foed

Yetil $389160,1,2,375121$.
ET1. 240

THAILAKD
me tuta national
P. Onelonar matine Ea., Led.

Tol: 910722 (9 dunes

UCANDA

tein 37279
VIETNAM

Shiken Mivoni

lunkia canteal arr

MEOITEAFANEAN AND MIDOLE RAST COUNTRIE CONTACT:
Hewleth-f maxa
Conarolnallon Diffes ios
Mastiteriarean bns Misole
Eate Opirstions
Vis Macoces,
1-00144 RametEuf, |taly
Tofe (8) 5940 29
CJolla HZWFACKIT Rome
Telaz: 61514
OTHER AREAS NOT
LSTED, CONTACT:

cale: HEWPaCX Palo Alls
Tolar, 0.3L046?

Although Hewlett-packard products are manufactured throughout the United States and other parts of the world, the Hewlett-Packard field office or distributor in your area is best equipped to handle all your needs concerning products described in this catalog, and for parts and service on HewlettPackard products you alceady own. The worldwide listing of field offices, representatives, and distributors, current at the time of publication, is found on pages 6 and 7 .

Order by model number

Technical assistance in selecting equipment and preparing orders is available, without charge, from field engineers at all sales offices. When you place your order, please specify the catalog model number as well as the name of the product desired. Whenever you want special options or features, such as special color or non-standard power line voltage, ask your Hewlett.Packard feld engineer about availability of these options, then, to prevent misunderstanding, include significant specifications and specific instructions in your order.
Many Hewlett-Packard instruments are supplied in cabinets along with easily attached hardware for direct mounting in
standasd 19 -inch equipment racks. Others are available in two configurations: one a cabinet for bench use and the other with a 19 -inch panel for rack mounting. Catalog listings indicate the availability of cabinet or rack mounting arrangements.

Pricing policy and delivery information

Prices appearing in this catalog are net prices prevailing at the time of printing and are FOB USA factory or warehouse. They apply only to domestic USA customers and do not include an import surcharge on applicable products. Such surcharge is to be added to the price shown. Prices prevailing at the time the order is received will apply. Please consult your nearest field sales office to confirm prices at your location and to obtain current delivery information. Customers outside the USA should consult their local Hewlett-Packard sales organization for price information. Although the illustrations and product information in this catalog were current at the time the catalog was approved for printing. Hewlett-Packard, in a continuing effort to offer the finest equipment available, reserves the right to change specifications, designs, models or prices without notice.

FOR CUSTOMERS IN USA

Where to send your order

Your order should be made out to the Hewlett-Packard Company and sent to the Hewlett-Packard office nearest you. Each field office has special communication channels to Hew-lett-Packard manufacturing facilities to assure prompt and effcient handling of your order.

Shipping methods

Shipments to destinations in the USA are made directly from local factories or warehouses. Unless specifically requested otherwise, express or truck transportation is used, whichever is less expensive and most serviceable to you. Small items are sent parcel post. If fast delivery is needed, we gladly ship by air freight, air express, or air parcel post, when specified on your order, at prevailing rates. In many parts of the USA, a
consolidated air freight service provides the speed of air trans. port at surface rates. Ask your field engineer for details.

Terms in the USA

Terms are net 30 days from invoice date. Leasing and extended financial terms are available. Your local Hewlett. Pack. ard sales office will be pleased to discuss your requirements. Unless credit with Hewlett-Packard has already been estab. lished, shipments will be made COD or on receipt of cash in advance.

Quotations
Upon request, quotations including destination prices, will be furnished to you by your local Hewlett-Packard sales office.

FOR CUSTOMERS OUTSIDE THE USA

Pricing

Prices as listed in this catalog, unless otherwise noted, apply only to domestic USA customers; all other customers should consult their local Hewletr-Packard sales organization for price information.

Where to send your order

In many countries, your order can be placed directly with your local Hewlett-Packard distributor or representative. If there is none as yet in your area, your order should be placed directly with the office indicated for your part of the world.

Shipping methods

Shipments to customers outside the USA or Western Europe are made from the appropriate Hewlett-Packard facility by
either surface or air, as requested. Sea shipments usually require commercial export packaging at a nominal extra charge.

Terms

Terms for orders from countries outside the United States of America which are placed with the Hewlett-Packard Company, Hewlett-Packard S.A., or Hewlett-Packard Inter-Americas, are irrevocable letter of credit or cash in advance, unless other rerms have been arranged previously. Terms for orders placed with authorized Hewlett-Packard distributors are mutually determined between customer and distributor.

Quotations and pro forma invoices

FAS, CIF, C\&F, etc. quotations or pro forma invoices, as well as exportation and importation assistance, are available on request from local authorized Hewlett-Packard sales offices or representatives.

WHAT YOU CAN EXPECT WITH YOUR H. P. EQUIPMENT

SERVICES

Abstract

Warranty All Hewleth-Packard produtrs are warranted against defects in materials and workmansbip. The period of coverage is specifed in the Operating and Service Mantrals provided with each product. We will repair or replace, at our option, producss which prove to be defective during the warranty period.

Certification

Products, materials, parts, and sevvices furnished on this order bave been provided in accordance with all applicable Hewlett. Packard specifications. Actual inspection and test dala persaining so this order is on file and avaliable for examination.

Hewlett-Packard's calibration measurements are traceable to the National Burean of Standards to the extent allowed by the Burean's calibration facilities.

The Hewletr-Packard Quality Progyam satisfies the require. mens of MIL-Q-9858, MIL-1.45208, and MIL-C-45662.

Assurance that your equipment will continue to perform as expected for years to come is provided by Hewlett-Packard's world-wide Customer Service organization. There is a HewlettPackafd field office not far from you-you don't have to correspond writh a factory several thousand miles away to ger information, replacement parts, or service assistance when you need it. This customer service program is one of the major factors in Hewlett-Packard's reputation for integrity and responsibility towards its customers.

Customer Service Agreements

Your instrument maintenance needs in many cases may be handled most economically by entering into a Hewlett-Packard Customer Service Agreement. When you have a customer service agreement, Hewltt. Packard assumes your maintenance responsibulities for a basic annual charge, relieving you of the need for hiring your own trained specialist, for maintaining replacement parts inventories, and for doing the paperwork needed for maintenance scheduling.

Contact your nearby Hewletr-Packard feld office for details.

Replacement Parts

Hewlett-Packard makes every effort to shorten spare parts delivery time and as a result, over 90% of the replacement parts orders are filled the same day they are received.
To sustain equipment operation in remote areas, or where equipment downtime is extremely critical, spare parts kirs are available.

When ordering a replacement part, please specify the Hew-lett-Packard part number listed in the table and give the complete name.

If circumstances require your ordering a part without specifying the part number, please include in your order the instrument model number, its sesial number, a complete description of the part, its function, and its location in the equipment.

Repair Service

Help in maintaining your Hewlett-Packard equipment in first-rate operating condition is as close as a phone call to the nearest Hewlett-Packard field office. Whether you want to repair an instrument yourself, or send it to a Hewlett-Packard facility for repair, recalibration, or overhaul, your local Hew-lett-Packard field office can offer a complete range of technical assistance.
Local repair facilities are backed up by Regional Repair Centers, located in major industrial areas around the world. The Regional Repair Centers have more sophisticated test equipment, factory-trained specialists, and a full line of replacement parts.

If your equipment installation is fixed, and if justified by the rype of service required, Hewlett-Packard will perform service at your facility.

You have access to all of Hewlett-Packard's extensive service network through your local Hewletr-Packard field office.

Service Publications

The Operating and Service Manual supplied with each Hewletr-Packard product contains maintenance, calibration, diagnostic and repair procedures, with trouble-shooting chacts and complete circuit diagrams. All replaceable parts are listed. Extra manuals are available at reasonable cost from your nearby Hewlett-Packard field office. Most operating and service manuals with changes and service notes are now available on COSATI standard, positive microfiche.
New or special calibration procedures, instrument modifications, and special repsir procedures are described in detail in the Hewlett-Packard Service Notes. This series of publications serves as a convenient means for updating Operating and Service Manuals.

Bench Briefs, a periodic newsletter, has servicing tips, new modifications and other suggestions to help repair and maintenance personnel get maximum performance from HewlettPackard instruments. It describes new Service Notes and other company publications as they become available. To become a regular subscriber, merely ask your local Hewlett.Packard field office to place your name on the mailing list.

TECHNICAL TRAINING

Hewlett-Packard Technical Training Seminars ace held at your local Hewlett-Packard sales office or at the HewlettPackard Corporate Training Department in Palo Alto, California.
These seminars are instructed by Hewlett-Packard engineers, each a specialist in his field.

Purpose of seminars

To offer you the skill and knowledge necessary to assure the correct use and maintenance of your Hewlett-Packard instruments.

Facilities

Hewlett-Packard has modern facilities available. These include separate labs for various instrument groups, lecture rooms with the latest audio-visual capabilities, and videotape viewing rooms with a complete library of Hewlett-Packard videotapes.

Types of seminars

Applications Oriented Seminars: In these seminars eagineers and rechnicians will be instructed in the use of Hew. lett-Packard products:
a. Basic Microwave Measurement
b. Microwave Measurement Techniques
c. RF Measurement Techniques
d. Network Analyzer-Operation \& Maintenance
e. Spectrum Analyzer-Operation \& Maintenance
f. Voltmeter-Application \& Operation
g. Frequency Measurements Techoiques
h. Oscilloscope Applications
i. Calculators
j. Computers (fee charged)

Servica Orlented Maintenance Seminars: Service oriented seminars are held only in the field. These seminars train service personnel in the maintenance, calibration and repair of Hewlett-Packard products making it possible for you to have factory trained maintenance technicians in your own service department.
a. Analog Voltmeter, Distortion Analpzer \& Oscillator
b. Digital Voltmeter
c. Electronic Counter
d. Oscilloscope
e. Medical Instrumentation*
f. Sampling Oscilloscope
g. Solid State Power Supply*
h. Spectrum Analyzer \& Sweep Oscillator

* These seminars are held in-plant and in the fleid.

Seminar duration

The seminars are from one to five days in length, depending upon the complexity of the subject; included will be lectures, demonstrations and hands-on experience with the instruments.

Expense

Seminar attendees need provide only their own travel and living expenses. (Special seminars may be arranged in your plant for a limited charge.)

Detailed information

Contact your local Hewlett-Packard sales office, or
Corporate Training Department
640 Page Mill Road
Palo Alto, California, 94304
(415) 493-1212

More effectlve: Hewlett-Packard programs are proof that videotape can be a highly effective training medium. Hew. lett-Packard videotapes convey more information in less time, and with higher retention, than even the best live instruction. Hewlett-Packard programs are produced with measurable instructional objectives. They consider what the stadent already knows, emphasize what he needs to know, and omit what he does not need to know.

More fiexible: With videotapes, you can tailor your training program to better suit the many different needs of your organization. You can select training programs for individuals with different backgrounds and specific needs, present effective programs to audiences of 1 or hundreds, and offer a library of technical programs your staff members can easily consult on their own for new information or for refresher purposes.
Less time-consuming: It's our experience that HewlettPackard video progeams compress learning time by a factor of four to one. A videotape library also reduces the time needed to organize and schedule your training. You
can schedule highly professional presentations anywhere, anytime and anyplace-without arranging for outside in. structors, or juggling the detailed "logistics" that often are required for live training sessions.
More convenient: Videotape programs come on small, easy. to-fule reels of magnetic tape. Inexpensive playback equipment is easily operated by unskilled personnel. Programs may be viewed on small portable monitors, or on full screen TV sets. Videotapes can be quickly searched for specific information via fast forward or fast rewind, and many recorders can stop on a single frame for detailed study.

More valuable: "Instant replay" is only one benefit of video training. On many videotapes, split-screen techniques let your students simultaneously watch a procedure demonstrated on one half of the screen, and see the effect of that action on the other half. Videotapes also clarify sequences that are difficult to follow in print, and provide close-ups that are impossible to show in a conventional classroom lecture.

Conslder What We Offer

A BEST SELLER

George Stanley's Praciical Transistor Course (15 tapes with text and exams)

The most valuable "How To" Series. HOW TO:
Use HP Instruments
Maintain HP Instruments

The incomparable
HP Medical Series
Nurses' Training (ECG, ICU/CCU, and many more)
Maintaining HP Medical Instruments
Just to name a few

For more Information on

- Tapes
- Formats
- Equipment
- Prices

Contact:
Your local Hewlett-Packard Field representative, or, Hewlett-Packard Company
Corporate Training Department 640 Page Mill Road Palo Alto, California 94304
(415) 493.1212

A

AC/DC Converter 177
AC/DC Meter Calibrator 251
A/D, D/A Converters 170
Accessories
Acoustics 396
Analog Meter 39, 40, 54, 57, 77
Analog Tape Recorder 199
Blank Plug-ins (140 and 180 Series) 142
Cables $40,256,348,413$
Cases and Enclosures 414.416
Decade Capacitor 56
Digital Meter 73
Electronic Counter 216
Oscilloscope 119,140
Oscilloscope Plug-in Extenders 142
Power Supply 166
Sampling Oscilloscope 110, 119
Signal Source/Generator 256, 266, 269
Sweep Drive for 302A/310A 378
Time Domain Reflectometry 119
Transit Cases 416
Acoustic Analyzer 389, 394
Active Probes 141, 363, 395
Adapters
Coaxial \& Waveguide 342
50 to 75 ohm 119
Probe 141
Airport Noise Monitoring System 395
Ammeters
AC Curcent 57
Analog 37-39, 41, 49, 57
Clip on 39,57
DC Current 37, 41, 49, 68, 71
Digital $37-39,61,68,69$
Amplifiers
AC 27, 28
Cable 396
Charge Sensitive 397
Data 29
Differential 26, 30
Frequency Standard Distribution 243
General-Purpose 27.31
Linear 398
Microphone 396
Logarithroic 47
Power/DC Source 27
Precision 28
Pulse 28
RF/Microwave 31
Video (for counters) 217
Wideband 30
Amplifier/Low Pass Filter 393
Amplifier/Power Supply 168
Analog Meters, see Meters, Analog
Analog Tape Recorders 197
Analyzers
Audio Spectrum 389, 391.394
Distortion 372, 373
Fourier 389-391
Microwave Link 354, 355
Multichannel 397-398
Network 356.370
Power Spectrum 389
Real Time, Spectrum 389. 394
Signal, Digital 389, 394
Spectrum 379, 394
Transistor Noise 77
Vibration 389
Wave 350, 374
Wave, Digital 388-394
Arithmetic Unit, Fast Fourier 389
Atomic Clock 238, 240
Attenuators
75 ohm 355
600 ohm 56
Coaxial 327
Telephone Test 348
Waveguide 329
X.Y Recorder 176
Automatic Compensator 78
Automatic Test Systems 370, 381, 405
Averager, Signal 390
B
Bit Error Detector 311
C
Cabinets \& Enclosures 414.416
Cable Fault Locators 1
Cables, General-Purpose Accessory 256, 413
Calculator \& Peripherals 408, 409
Calibrators
AC Voltmeter 251, 255
AC/DC Voltmeter/Ammeters 252
DC Voltmeter 251, 253
Horizontal Gain 140
Sound Level 396
Camera, Oscilloscope 143
Camera, Oscilloscope Accessocies 145
Capacitance Meters
Bridge $50,54,55$
R, C, L, \& D 50, 53
Card Readers, Mark/Sense 402
Carrier Preamplifier 195
Chart Advance 180
Chart Recorders 182
Clip, Logic 81
Clock, Atomic 238,240
Clock, Digital 200
Coaxial Instrumentation and Accessories 324-342
Communication Test Equipment
Microwave Link Analyzer 354
Portable Test Set 348
Psophometer 346
Selective Voltmeter 350.352
Sweep Oscillator 353
Test Oscillator 347, 349
Transmission and Noise 346
Comparators
Analog 55
Digital 70, 71
Logic 81
Components 410
Computerized Data System 230
Computer of Average Transients 390
Computers and Peripherals
Data Logger 403
Digitally Programmable Power Supplies $170,171,404$
Displays 83
Fast Fourier Arithmetic Unit 389
Systems interface 404
Computing Counter 230
Converters
$A C$ to $D C$ 45,179
$A / D, D / A$ 170
D to A 185
Frequency 216
Logarithmic 47
RF to IF 355
Rise Time 119
V to F 72, 260-261, 263
Controller, Pre-set count/rate 217, 230, 233
Correlator 389, 391
Counters, Electronic
Accessories 216
Automatic Ranging $218,230,234$
Computing 230
Counter/Timers, Electronics 207.234
Digital Voltmeter for 216
Heterodyne Converter for 216
Microwave 216, 228
Normalizing Unit for 217
Plug-in Type 213-215
Portable Battery Operated 218
Prescaler for 217
Pre-set Normalizing 217, 233
Reciprocal Taking 230,234
Snap-Together Type 218
Summary 212
Time Interval $217 \cdot 218,222,230$
Timer, Built-In DVM 222
Transfer Oscillator 216
Video Amplifies 217
Coupler/Controller 203
Couplers, Directional (Coax \& Waveguide) 330
Crystal Detectors 333
D
D/A Converters 170
Data Acquisition Systems
Computerized 406
Coupler/Controller 203-206
Data Loggers 64, 403
DC Offset for X.Y Recorder 176
DC Power Supplies
Digitally programmable 170
Industrial and Laboratory 148-168
Modular 169
Options and Accessories 166
Delay Generator 233, 308
Detectors
Bit Error 311
Crystal, Coaxial and Waveguide 333
Directional 351-353
Null 37
Optical, Radiant Flux (Power) 76
Slotted Line 335
Differential Amplifier 26
Diffecential Volemeters 36, 253
Digital
AC Meters $61-71,73$
Clock 200
Ammeters 61,68-69
Computer Peripherals 170, 404
DC Meters 61.71,73.75
Decibel Meters 62, 63
Multimeters 61-71, 73
Ohmmeters 61, 64.71
Output Control 390
Panel Meter 60
Power Meters (RF/Microwave) 316
Ratio Meter 70.71
Recorders 200
Signal and Spectrum Analyzers 388
Tape Recorders 401
Transistor Noise Meter 77
True RMS Meters 62, 64-67, 70-71
Voltmeters, DC 61-71, 73-75, 216, 222
Digitally Programmable Power Supplies 170
Directed Beam Display 84,90
Directional Couplers
Coaxial 330
Waveguide 332
Directional Detectors 331, 353
Disc Recorders 400
Discriminator, FM 234
Displacement Tranducers 82Displays
Computer Graphic 84
Directed Beam 90
Graphic, Storage 86
Large Screen X-Y 88
Panel Meter 60
Precision Raster 91
Spectrum 391
Spstem 89
Distance Measuring Instruments
Distance Meter 79
Laser Interferometer 78
Distortion Analyzers 372
Distortion Test Set 354
Down Converter 216, 355
Dual Channel Sampler 108
E
Electronic Counters (see: Counters)
F
Fast Fourier Transform Arithmetic 389
Filters
Coaxial and Waveguide 338
High-Pass 119
Low Pass 393
Tracking/Tunable 386
FM Discriminator 234
Fourier Analyzer 389
Frequency Limit Detector 230, 233
Frequency Meters
Analog 234
Coaxial and W aveguide 339
Frequency StandardsCesium240
Distribution Amplifier 243
Quartz 237
Reference System 243
Rubidium 238
Standby Power Supply 244
VLF Receiver 242
Frequency Synthesizers 245, 264, 270
Function Generator 249, 259, 263

G

Galvanometric Recorders 188.196
Generators
Function 249, 259, 263
Marker 286
Pseudorandom Bit Sequence 311
Pseudorandom Noise 392, 396
Pulse 296
Signal 267.283, 286
Square Wave 296
Sweep 295
Tracking 386
Word 298, 312
Graphic Plotter 402
H
Histogram Computer 390
Horizontal Gain Calibrator 140
I
IC Troubleshooters 81
Incremental Chart Advance 180
Interferometer, Laser 78
K
Keyboard, Computing Counter 232
L
Laser Interferometer 78
Loads/Terminations, Coaxial and Waveguide 337
Logarithmic
Amplifier 47
Voltmeter 44, 47
Logic
Clip 81
Comparator 80
Probe 81
Troubleshooting 80

M

Mark/Sense Card Reader 402
Marker Generator 140, 286
Medical Instrumentation 2, 3
Memories, Dise/Tape 400
Meter Calibrator, $A C / D C$ 252
Meters, Analog
AC Voltage $40-46$
Current 37, 41, 49, 57
DC Voltage $36 \cdot 38,40,41$
Differential 36,253, 254
Frequency 234
Impedance 49, 50, 53, 55, 360
Logarithmetic Voltmeters $44,45,47$
Noise Figure 320
Multi-Function $36-38,40,41,49$
Power 315-319
Phase 53
Ohmmeter $38,40,41,49$
Q Meter 51,52
Radiant Flux (Optical Power) 76
RMS Responding 46
SWR 343.344
Meters, Digital
AC Voltage 61-71, 73
Current 61, 68, 69
DC Voltage 61-71,73-75
Decibel 62, 63
Multi-Function 61-71, 73
Power (RF/Microwave) 316
Ratio 70, 71
Resistance 61, 64-71, 73
Transistor Noise 77
True RMS $62,64-67,70,71$
Microphone, Condenser 396
Microwave Link Analyzer 354
Microwave Test Equipment 216, 228, 315-344
Mixers, Coaxial and Waveguide 269, 341, 387
Modular Power Supplies 169
Modulators 283
Monitor, TV 91
Multichannel Analyzer 397, 398
Multimeters
Analog 36-38, 40, 41, 49, 253-254
Digital 61.71, 73
Multiparameter Analyzer 398
Multiphase Clock Generator 312
Multiprogrammers 404
N
Narrow Band TDR 118
Network Analyzers 356-370
Noise Analyzers
Transistor 77
Transmission and Noise 346
Noise Figure Measurement Equipment 320
Noise Generator, Pseudorandom 392, 396
Noise Sources 320
Noise Monitoring System 395
Nuclear Instrumentation 397, 398
OEM Recorders 179,186Ohmmeters
Analog 38, 40,41, 49Digital61, 64-71
Optical Mark/Sense Card Reader 402
Optical Radiant Flux Meter/Detector 76
Oscillarors
Audio 256
Communications 262, 347,349
Digital 258
Low Frequency 256
Quartz 237
RF 272
Sine/Square 257
Sweep 260, 263, 284-295, 353
Iest $262,347,349$
Transfer 216
Wideband 251, 256, 257, 262
Oscillographic Recorders 188
Oscilloscopes
140 Series: Plug-in, $\mathrm{DC} \cdot 20 \mathrm{MHz}, 18 \mathrm{GHz}$ Sampling 130
180 Series: Plug-in, DC-6 MHz, 18 GHz Sampling 96
1200 Series: $500 \mathrm{kHz}, 7 \mathrm{MHz}$ 135
1700 Series: DC. 150 MHz , Portable 120
Accessories 140
Bezel Adapters, Camera 145
General Information 92-95
High Writing Speed 99
Large Screen 98, 132
Low Frequency 139
Testmobiles 146, 147
TV Waveform 139
Vaciable Persistence/Storage $100,124,132,135$
P
Panel Covers 142
Panel Meters 60
Phase Measurement Equipment (see Network Analyzers)
Phase Sensitive Demodulator 195
Phase Shifters, Waveguide 341
Plotters, X-Y 173, 402
Point Plotter 176
Point Plotting System 177
Portable Oscilloscopes 120-124
Potentiometric Chart Recorders 182
Power Measurement Equipment 315-319
Power Supplies
Atomic Clock 244
DC Modular 169
Digitally Programmable 170, 171
Frequency Standards 244

ALPHABETICAL INDEX

Industrial and Laboratory 148-168
Microphone 396
Options and Accessories 166
Printer Interface 221, 390
Printers, Digital 200
Probe, Logic 81
Probe Power Supply 141
Probes, Voltage divider 57, 140
Processor, Fourier 389
Programmer, Computing Counter 231
Pulse Genecators 119, 233, 296-314
Q
Q-Meters, Direct-reading 51
Quartz Thermometer 412
R
Radiant Flux Meter/Detectors (Optical Power) 76
Raster Display, Precision 91
Rare Generators 307
Rate Limit Detector 233
Ratio Meters 36, 70, 344
Receiver, VLF 242
Recorders
Analog Chart 182-196
Analog Tape 197-199
Digital Printer 200
Digital Tape 401
Dise 400
Oscillographic 188.196
Strip Chart 182
X.Y 173
Remote Interferometer 78
RE to IF Converter 355
Rise Time Converters 119
S
Sampler, 4 or 18 GHz 109
Sampling Head, 12.4 GHz 118
Sampling Head, 18 GHz 110,134
Sampling Time Bases 134
Sampling Vertical Amplifier 134
Scanner, for X-Y Recorder 176
Sensors, Displacement \& Velocity 82
Servo Chart Recorders 182
Shorts, coaxial \& waveguide 337
Signal Analyzers 388-394
Signal Averager 390
Signal Generators
Accessories 269
Avionics 282
RF/Microwave 267.283, 286, 359
Telemetry 276, 282
Slides, Oscilloscope 142
Slot Power Supplies 169
Slotted Lines, coaxial \& waveguide 334.336
Sound Analysis 388.396
Sound Level Calibrator 396
Spectrum Analyzers 379-398
Spectrum Display 391
Spectrum Stabilizer, Nuclear 398
Standards
DC 253
Frequency (see Frequency Standards)
Transfer 251
Standing-Wave-Ratio (SWR) Meters 343
Strip Chart Recorders 182
Sweep Oscillators $260,263,284-295,359$
Swept Frequency IndicatorSwitches, coaxial341
Synchronizers, Phase-lock 274,295
Synthesizers, Frequency 245,264, 270
T
Tachometer Readout 233, 234
TDR 116
Temperature Module, for Chart Recorder 183
Terminations, coaxial \& waveguide 337
Test Sets and Noise Analyzers
Psophometer 346
Telephone Test Set 348
Transistor Noise 77
Transmission and Noise 346
Testmobiles 146
Thermistor Mounts, coaxial \& waveguide 317
Thermometer, Quariz 412
Time Base, for X-Y Recorders 180
Time Base and Sweep Expanders 112
Time Domain Reflectometer 116, 134
Time Interval Counters $213,218,222,230,233$
Time Interval Generator 233
Time Mark Generator 140
Time Standard 238, 240, 243
Time Standard Reference System 243
Tracking Generators 386
Transducers
Angle 78
Displacement 78, 82
Linear Velocity 78, 82
Transistor Testing Instrumentation 363, 365, 367
Trigger Countdown 110
Tuners, Microwave 341
Tunnel Diode 110,118
TV Monitor 91

v

Vibration Analyzer 389, 391, 394
Viewing heads . 142
Voltage Calibrators
AC 251, 255
$A C$ and $D C$... 251
DC . 251, 253, 254
Voltage Source, Precision AC 255
Voltage Source, Precision AC/DC 252
Voltage Standards
AC 255
DC ... 253
DC'Transfer . 251
Voltmeters
Accessories 39, 40, 52, 54, 57, 73, 74
Analog . 33-38, 40-46, 253
Digital . 58.71, 73.75
Differential 36 . 253
Logarithmic 44, 45, 47
RF 42
Selective . 350-352
Vector 361

W

Waveform Analyzers 350, 374,388-391
Waveguide Instrumentation \& Accessories 326.342
Wideband Oscilloscope . 101
Word Generator . 298, 312

X-Y

X-Y Plotter . 402
X.Y Recorders . 173.182

MODEL NUMBER INDEX

2FA 2.Pen X-Y Recorder 178
3LV series Linear Velocity Transducers 82
6LV series Linear Velocity Transducers 82
7LV series Linear Velocity Transducers 82
7DCDT Displacement Transducer 82
24DCDT Displacement Transducer 82
100
105A Quartz Oscillator 237
105B Quartz Oscillator 237
117A VLF Receiver 242
120B Oscilloscope 139
130C Oscilloscope 139
136A 2-Pen X-Y Recorder 178
140B Oscilloscope Mainframe 132
1407 Specrum Analyzer-Display Section 385
141B Variable Persistence/Storage Mainframe 132
141 T Spectrum Analyzer-Display Section 385
143A Large Screen Oscilloscope 132
1435 Spectrum Analyzer-Display Section 385
180 series Oscilloscopes 96
180C/D High Writing Speed Oscilloscope Mainframe 99
181 A/AR Variable Persistence/Storage Mainframe 00
182A Large Screen Oscilloscope Mainframe 98
183A-193D Widcband Oscilloscopc Mainframe 101
190A Q Meter 52
191A TV Waveform Oscilloscope 139
195A Oscilloscope Camera 144
197A Oscilloscope Camera 143
198A Oscillascope Camera 143
200
200AB Audio Oscillator 256
200CD Oscillator, Wideband 256
201 C Oscillator Audio 256
202C Oscillator Low Frequency 256
202H FM-AM Signal Generator 276
202J FM-AM Signal Generator 276
203A Oscillator, Variable Phase 259
204C Oscillator 257
204D Oscillator 257
207H Univerter 276
209A Sine/Square Oscillator 257
211A Crystal-Monitored Signal Generator 282
211B Squace Wave Generatos 314
214A Pulse Generator 314
221A Square Wave Generator 314
226A Time Mark Generator 140
230B RF Power Amplifier 32
232A Glide Slope Signal Generator 282
236A Telephone Test Oscillator 347
236A Option H10 Telephone Test Oscillator (CCIT) 347
250 B RX Meter 53
281 series Coaxial.Waveguide Adapters 342
292 series Waveguide-Waveguide Adapters 342
297A Sweep Drive 378

300

302A Wave Analyzer 378
310A Wave Analyzer 378
312A Selective Volumerer 350
313A Tracking Oscillator 350
320 2-Channel Oscillographic Recorder 188
321 2-Channel Oscillographic Recorder 188
322A 2-Channel Oscillographic Recorder 188
331 A Distortion Analyzec 373
332A Distortion Analyzer 373
333A Distortion Analyzer 373
334A Distortion Analyzer 373
3408 Noise Figure Meter 320
342A Noise Figure Meter 320
343 A VHF Noise Source 320
345B II Noise Source 320
347A series Noise Sources 320
349A Noise Source 320
350D Attenuator Set 56
353A Patch Panel 348
354A Step Attenuator 328
355 series Step Attenuators 328
360 series Coaxial Low-Pass Filters 338
362A series Waveguide Low-Pass Filters 338
375 series Waveguide Variable Attenuators 329
382 series Waveguide Precision Variable Attenuators 329
393A Coaxial Variable Attenuator 328
394A Coaxial Variable Attenuator 328
400
400D AC VTVM 44
400E AC Voltmeter 45
400EL AC Voltmeter 45
400 F AC Voltmeter 45
400FL AC Voltmeter 45
400GL Logarithmic AC Voltmeter 45
400 H AC VTVM 44
400L Logarithmic AC VTVM 44
403A AV Voltmeter 43
403B AC Voltmeter 43
410C Multifunction Volumeter 41
412A DC Volt-Ohm-Ammeter 38
415B SWR Indicator 344
415E SWR Meter 343
416B Ratio Meter 344
419A DC Null Volt-Ammeter 37
420B Coaxial Crystal Detectors 333
422A series Waveguide Crystal Detectors 333
423A Coaxial Crystal Detector 333
424A series Waveguide Crystal Detectors 333
425A DC Micro-Volt-Ammeter 38
427A Multi-Function Meter 40
428B Clip-on Milliammeter 39
430 C Power Meter 318
432 series Power Meters 316
434A Calorimetric Power Meter 319
440A Detector Mount 336
442B Slotted Line RF Probe 336
444A Slotted Line Detector 335
446B Slotted Line Detector 336
447B Slotted Line Detector 335
448A Slotted Line Sweep Adapter 336
456A Current Probe for Voltmeters 57
461A AC Amplifier 28
462A Pulse Amplifier 28
463A Precision AC Amplifier 28
465 A AC Amplifier 27
467A Power Amplifier/Supply 27
4778 Coaxial Thermistor Mount 318
478A Coaxial Thermistor Mount 317
X485A Waveguide Detector Mount 333
486A series Waveguide Thermistor Mounts 317
487 B series Waveguide Thermistor Mounts 318
489A Microwave Amplifier 32
491C Microwave Amplifier 32
493A Microwave Amplifier 32
495A Microwave Amplifer 32

- ${ }^{\text {M M }}$
536A Conxial Frequency Meter 339532 series Waveguide Frequency Meters
339
500 339 339
562A Digital Recorder 202
580A Digital to Analog Converter 185
581 A Digital to Analog Converter 185
600
606A Signal Generator 274
606B Signal Generator 274
608E Signal Generator 275
608F Signal Generator 275
612A Signal Generator 277
614A Signal Generator 279
616 B Signal Generator 279
618C Signal Generator 280
620B Signal Generator 280
626A Signal Generator 281
628A Signal Generator 281
651B Test Oscillator 262
652A Test Oscillator 262
653A Test Oscillator 349
653A Opt. H01 Test Oscillator 349
654A Test Oscillator 262
675A Sweeping Signa! Generator 359
675A/676A Network Analyzer 359
680 Strip Chart Recorder 184
700
712C DC Power Supply 168
721A DC Power Supply 157
735A DC Transfer Standard 251
738BR Opt. E02 Voltmeter Calibrator 251
740B DC Standard/ \triangle Volmerer 253
741B AC.DC Differential Voltmeter/DC Standard 254
745A AC Calibrator 255
746A High Voltage Amplifier for 745A 255
752 series Waveguide Directional Couplers 332
$774 D$ Coaxial Dual Directional Coupler 330
775D Coavial Dual Directional Coupler 330
776D Coaxial Dual Directional Coupler 330
777D Coaxial Dual Directional Coupler 330
778D Coaxial Dual Directional Coupler 330
779 D Coaxial Directional Coupler 331
784A Coaxial Directional Detector 353
786D Coaxial Directional Detector 331
787D Coaxial Directional Detector 331
788C Coaxial Directional Detector 331
789C Coaxial Directional Detector 331
796D Coaxial Directional Coupler 331
797D Coxxial Directional Coupler 331
798C Coaxial Directional Coupler 331
800
805C Coaxial Slotted Line 334
809C Universal Carriage 335
810B series Waveguide Slotted Sections 335
814B Carriage 336
815B series Waveguide Slotted Sections 336
816A Coaxial Slotted Section 335
817A Coaxial Swept Slotted Line System 334
870A series Waveguide Slide-Screw Tuners 340
885A series Waveguide Phase Shifters 340
895A DC Power Supply 164
900
905A Coaxial Sliding Load 337
907A Coaxial Sliding Load 337
908A Coaxial Termination 337
909A Coaxial Termination 337
910 series Waveguide Terminations 337
911A Coaxia! Sliding Load 337
914 series Waveguide Sliding Loads 337
920 series Waveguide Moring Shorts 337
X923A Waveguide Sliding Short 337
X930A Waveguide Shortning Switch 337
P932A Waveguide Harmonic Mixer 341
934A Coaxial Harmonic Mixer 341
938A Frequency Doubler Set 281.
940A Frequency Doubler Set 281
1000
1051A Combining Case 415
1052A Combining Case 415
11046A Combining Case 415
1104A Trigger Countdown 110
1105A-1106B 20 ps Pulse Generator 119
1105A-1108A 60 ps Pulse Generator 119
1106A Tunnel Diode 118
I106B Tunnel Diode 110
llo8A Tunnel Diode 110,118
1109B High-Pass Filter (Type N) 119
1116A Testmobile 147
1117B Testmobile 146
1118A Tesimobile 147
1119A, B, C, D Testmobiles 146
1120 A 500 MHz Active Probe 141
1121A AC Probe 363
1122A Probe Power Supply 141
1124A 100 MHz Active Probes 141
1129 A High-Pass Filter (GR 874) 119
$1200 \mathrm{~A}, \mathrm{~B}$ Dual Trace Oscilloscope, 100μ V/div 135
1201 A, 8 Dual Trace Storage Oscilloscope, $100 \mu \mathrm{~V} /$ div 135
$1202 \mathrm{~A}, \mathrm{~B} 500 \mathrm{kHz}, 100_{\mu} \mathrm{V} / \mathrm{div}$ Oscilloscope 135
1205A, B Dual Trace Oscilloscope $5 \mathrm{mV} /$ diy 135
$1206 \mathrm{~A}, \mathrm{~B} 5 \mathrm{mV} / \mathrm{djv}, 500 \mathrm{kH} \%$ Oscilloscope 135
1208A, B Display 89
1217A,B $7 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{div}$ Dual Trace Oscilloscope 135
1300A X-Y Display 88
1310A Computer Graphic Display 84
1311A Computer Graphic Display 84
1330A X.Y Display 86
1331A X-Y Display, Storage 86
1331C X-Y Display, Storage 86
1400B Differential Amplifer 133
1402A Dual Trace Amplifier 133
1403A Differential Amplifier 133
1404A Four Channel Amplifier 133
1405A Dual Trace Amplifier 133
1406A Differential Amplifier 133
1.108A Dual Trace Amplifer 133
1410A Sampling Vertical Amplifer 134
1411A Sampling Vertical Amplifier 134
1415A Time Domain Reflectometer 134
1416A Swept Frequency Indicator 134
1421A Time Base \& Delay Generator 133
1423A Time Base 133
1424A Sampling Time Base 134
1425A Sampling Time Base \& Delay Generator 134
1430C Sampling Head, 18 GHz 110,134
1432A Sampling Head, 4 GHz 110, 134
1580A Narrow Band TDR 118
1700 series Porrable Oscilloscopes 120
1700 A Portable Oscilloscope 122
1701 A Portable Delayed Sweep Oscilloscope 122
1702A Portable Storage Ostilloscope 124
1703A Portable Storage Oscilloscope, Delayed Sweep 124
1706d Portable Oscilloscope 75 MHz 126
1707A Portable, Delay'ed Sweep Oscilloscope 75 MHz 126
1710A 150 MHz Portable Oscilloscope 128
1801 A Dual Channel Vert Amp 50 MHz 102
1803A Differential/DC Offset Amplifier 104
1804A Four Channel Vertical Amplifer 104
1805A Dual Channel Vertical Amplifier (100 MHz) 106
1806A 100 ${ }_{\mu}$ V Dual Differential 105
1807A Dual Channel Vertical Amplifier 35 MHz 103
1808A Dual Channel Vert Amp 75 MHz 102
1810A 1 GHz Dual Channel Sampler 108
1811A 4 or 17 GHz Sampler 109
1815A-1815B TDR/Sampler 117
1816A Sampling Head, 4 GHz 118
1817A Sampler, 12.4 GHz 118
1818A Time Domain Reflectometcr 116
1820 C Time Base 111
1821 A Time Base/Delay Generator 111
1824A Time Base and Sweep Expander 112
1825A Time Base and Delay Generator 113
1830A Dual Channel Vertical Amplifier (250 MHz) 107
1831 A Direct Access Vertical (600 MHz) 107
1831B Direct Access Vertical (500 MHz) 107
1840d Time Base 114
1841 A Time Base/Delay Generator 115
1900 series Plug.in Pulse/Digital Generators 306
1900A / 1901 A Pulse Generator Mainframe 307
1900A-6936S Programmable Pulse Generator 313
1905A Rate Generator (25 MHz) 307
1906A Rate Generator (125 MHz) 307
1908A Delay Generator (25 MHz) 308
1910A Delay Generator (125 MHz) 308
1915A Variable Transition Time Output 309
1917A Variabic Transition Time Ourput 310
1920A Pulse Output, <350 ps Rise Time 309
1921A Positive Ourput Plug-in 310
1922A Negative Ouput Plug-in 310
1925A Word Generaror 312
1927A Fan-In Amplifier 313
1928A Fian-Out Amplifier 313
1930A PR Binary Sequence Generator 311
1934 A Multiphase Clock Generator 312
2000
21070A Data Logger for 3480A/B 64
2100A Digital Computer 399
2102A Disc Operating System 407
2070A.5055A Data Logger 403
2212B V to F Converter 72
2402A Integrating Digital Voltmeter 73
2470B Amplifer, Data 29
2471A System Data Amplifier 30
2570A Coupler/Controller 203
2575A Coupler/Controller 203
2761 A Optical Mark/Sense Card Reader 402
2761B Optical Mark/Sense Card Reader 402
2801 A Quartz Thermometer 412
2940 A Cabinet, Instrument 414,415
2940B Cabinet, Instrument 414, 415

3000

3200B VHF Oscillator 272
3205A FM Signal Generator 282
3260A Marked Card Psogrammer 266
3300A Function Generator 260
3301 A Auxiliary Plug-in 260
3302A Trigger/Phase Lock Plug-in 261
3304A Sweep/Offset Plug-in 261
3305A Sweep Plug-in 261
3310A Function Generator 263
3310B Function Generator 263
3320A Frequency Synthesizer 264
3320B Frequency Synthesizer 264
3400, R RMS Voltmeter 46
3403A True RMS Voltmeter 62
3403B True RMS Voltmeter 62
3406A RF Voltmeter 42
3420A DC Voltmeter/Ratiometer 36
3420B DC Volmeter/Ratiometer 36
3431 A Digital Panel Meter 60
3431B Digital Panel Meter 60
3431C Digital Panel Meter 60
3439A Digital Voltmeter 68
3440A Digital Voltmeter 68
3441A Range Selector for 3439A/3440A 68
3442A Automatic Range Selector (3439A/3440A) 68
3.443A High Gain/Auto-Range Unit (3439A/3440A). 68
3444A DC Multi-Function Unir (3439A/3440A) 68
3445A AC/DC Range Unit (3439A/3440A) 68
3446A AC/DC Remote Unit (3439A/3440A) 68
3450A Multi-Function Meter 70
3460A Digiral Voltrneter 74
34608 Digital Voltmeter 74
3469B Multimeter 61
3480A Multi-Function Digital Voltmeter 64
3480A Multi-Function Digital Voltmeter 64
3481A Buffer Amplifier for 3480A/B 65
3482A DC Range Unit for 3480A/B 65
3484́A Multi-Function Unit for $3480 \mathrm{~A} / \mathrm{B}$ 65
3485 A Scanning Unir for 3480 A/B 65
3529A Opt. Cll Magnetometer Probe 39
3529A Magnetometer Probe 39
35508 Portable Test Set 348
35558 Transmission \& Noise Measuring Set 346
3556A Psophometer 346
3590A Wave Analyzer 376
3591A Selective Voltmeter 352
3592A Auxiliary Plug-in 377
3593A Sweeping Local Oscillator Plug-in 377
3594A Sweeping Local Oscillator Plug-in 377
3595A Sweeping Local Oscillator Plug-in 377
3603A Automatic Tape Degausser 199
3604A Voice Channel 199
3680A AC Power Supply 199
3681A Tape Servo 199
3702B IF/BB Receiver 354
3703B Group Delay Detector Plug-in for 37028 354
3705A Differential Phase Detector Plug-in for 3702B. 354
3710A IF/BB Transmitter 354
3715A BB Transmitter Plug-ins for 3710 A 354
3716A BB Transmitter Plug-ins for 3710A 354
3720A Spectrum Display 391
3721 A Correlator 391
3722A Noise Generator 392
3730A Down Converter: RE to IF 355
3731A Oscillator Plug-in for 3730 A 355
3732A Oscillator Plug-in for 3730A 355
3733A Oscillator Plug-in for 3730A 355
3750A Attenuatror: 75Ω 355
3800A Distance Meter 79
3800 B Distance Meter 79
3801 A Power Unit-3800A 79
3801B Power Unit-3800B 79
3907.11A Remote Control Unit 199
3950 series Instrumentation Tape Recorder 197
3955 series Instrumentation Tape Recorder 197
3960 series Instrumentation Tape Recorder 198
4000
4050A Analog Comparator 55
4204A Digital Oscillator 258
4260A Universal Bridge 50
4270A Capacitance Bridge 54
4328A Milliohmmeter 49
4329A Resiscance Meter 49
4332A LCR Meter 50
4342A Q Meter 51
4350 A High Capacitance Metec 55
4350B High Capacitance Meter 55
4436A Attenuator 56
4437A Attenuator 56
4440B Decade Capacitor 56
4470B Transistor Noise Analyzer 77
4800A Vector Impedance Meter 53
4815A Vector Impedance Meter 360
5000
5010A Logic Troubleshooting Kit 81
5050B Digital Recorder 200
s0ssA Digital Recorder 201
5061 A Cesium Beam Frequency Standard 240
E10-5061A Frequency \& Time Reference System 243
E21-5061A Flying Clock (cesium) 241
5065A Rubidium Frequency Standard 238
E21-5065A Portable Rubidium Time Standard 238
K02-5065A Standby Power Supply 244
5085A Standby Power Supply 244
5087A Distribution Amplifier 243
5100B Frequency Synthesizer 246
slosA Frequency Synthesizer 246
5110B Synthesizer Driver 246
5201L Scaler-Timer 398
s210A Frequency Meter 234
5210B Frequency Meter 234
5245L Electronic Counter 213
5245M Electronic Counter 213
5246L Electronic Counter 213
s248L Electronic Counter 213

6000
6101A-6525A Laboratory and Industrial
Power Supplies 152-165
6129B-61318 Digitally Controlled Voltage Source ... 170
6177B-6186B DC Current Source 167
6610A Directed Beam Display . 90
6823A, 6824A Power Supply/Amplifer 168
6920B Meter Calibrator 252
6933B Digital-to-Analog Converter 171
6936S Multiprogrammer . 313
6940A Multiprogrammer . 404
6941A Multiprogrammer Extender 404
6947A Raster Display . 91

7000
7001A X-Y Recorder . 180
7004B X-Y Recorder . 174
7005B X-Y Recorder 173
7034A X-Y Recorder . 174
7035B X-Y Recorder 173
7040A X-Y Recorder . 179
7041A X-Y Recorder . 179
7100B Strip Chart Recorder, 2 Pen 182
7101B Strip Chart Recorder, 1 Pen 182
7123A Strip Chart Recorders 186
7123B Strip Chart Recorders 186
7127A Strip Chart Recorder, 1 Pen 182
$7128 A$ Strip Chart Recorder, 2 Pen 182
7143A Strip Chart Recorders 186
7143B Strip Chart Recorders . 186
7200A Graphic Plotter . 402
7201.A Graphic Plotter . 402

7202A Graphic Plotter 402
7414A 4-Channel Oscillographic Recorder 190
7562A Log Voltmeter/Converter 47
7563A Log Voltmeter / Amplifer 47
7591 A Point Plotting System 177
7702B Oscillographic Recorder, 2-Channel 189
7706B 6-Channel Oscillographic Recorder 191
7708B 8-Channel Oscillographic Recorder 191
7727A 6-Channel Oscillographic Recorder 191
7729A 8-Channel Oscillographic Recorder 191
7731A 16-Channel Oscillographic Recorder 191
$7858 B$ 8-Channel Oscillographic Recorder 192
7878A 8-Channel Oscillographic Recorder 192
7900A Disc Drive . 400
7970 series Digital Magnetic Tape Unit 402

8000
8002A Pulse Generators . 299
8003A Pulse Generators . 299
8004A Pulse Generator . 300
8005A Pulse Generator . 302
8006A Word Generator . 298
8007A. Pulse Generator 303
8008A Pulse Generator 305
8010A Pulse Generator 301
8012A Pulse Generator 304
8013A Pulse Generator 304
8056A Filter Set 396
8057A Precision Noise Generator 396
8064A/65A Real Time Audio Spectrum Analyzer 394
8320 series Stabilized Sweep Osc. Systems 295
8321 series Stabilized Sweep Osc. Systems 295
8322 series Leveled Hi-Power Sweep Osc. Systems 295
8324 series Stabilized Sweep Osc. Systems 295
8330A Radiant Flux Meter 76
8334A Radiant Flux Detector 76
8403A Modulator 283
8404A Leveling Amplifer 294
8405A Vector Voltmeter 361
8406A Comb Generator 387
8407 series RF Network Analyzer family 362
8407A Network Analyzer Mainframe 363
8410A Network Analyzer Mainframe 368
8410 S series Network Analyzers 365
8411 A Harmonic Frequency Converter 368
8412A \varnothing-Magnitude Display 363, 368
8413A \varnothing-Gain Indicator 368
8414A Polar Display 363, 368
8418A Auxiliary Power Supply 368
8430A-8436A Bandpass Filters 338
8443A Tracking Generator/Counter 386
8443B Tracking Generator 386
8444A Tracking Generator 386
8445A Automatic Preselector 386
8447 series Amplifiers 31
8457 series Microwave Synthesizers 295
8470A Coaxial Crystal Detector 333
8471 A Coaxial Crystal Derector 333
8472A Coaxial Crystal Detector 333
8477A Power Meter Calibrator 317
8478B Coaxial Thermistor Mount 317
8491 series Coaxial Fixed Attenuators 327
8492 series Coaxial Fixed Attenuators 327
8493 series Coaxial Fixed Attenuators 327
8540 series Automatic Network Analyzers 370
8552A Spectrum Analyzer-IF Section 385
8552B Spectrum Analyzer-IF Section 385
8553B Spectrum Analyzer•Tuning Section 384
8554L Spectrum Analyzer-Tuning Section 384
8555A Spectrum Analyzer-Tuning Section 384
8556A Spectrum Analyzer-Tuning Section 384
8580 series Automatic Spectrum Analyzers 281
8600A Digital Marker 286
8601A Generator/Sweeper 286
8605A Sweep Oscillator 353
8614A Signal Generator 278
8614 B Signal Source 278
8616A Signal Generator 278
8616B Signal Source 278
8620 series Sweep Oscillators 287
8620A Sweeper Mainframe 289
8620B Sweeper Mainframe 288
8621A RF Drawer for 8620A/B 291
8651A RF Oscillator 272
8654A Signal Generator 273
8660A Synthesized Signal Generator 270
8660B Synthesized Signal Generator 270
8690B Sweep Oscillator 292
8691A-8697A RF Units (Grid-leveled BWO) for 8690B 293
8691B-8695B RF Units (PIN Leveled BWO) for 8690 B 293
8692C RF Unit for 8690B 292
8698B RF Unit for 8690B 292
8699B RF Unit for 8690B 292
8700A RF Drawer for 8690B 292
8701 A Sequential Sweep Control 294
8705A Signal Multiplexer 294
8706A Control Unit for 8690 B 294
8707A RF Unit Holder 294
8708A Synchronizer 274
8709A Synchronizer 295
8717B Transistor Bias Supply 367
8721A Coaxial Directional Bridge 364
8728A Network Comparator 363
8731-8735 series PIN Modulators 283
8740A Transmission Test Unit 369
8741A Reflection Test Unit 369
8742A Reflection Test Unit 369
8743A Reflection/Transmission Test Unit 369
8745A S-Parameter Test Set 367,369
8746B S-Parametes Test Set 367,369
8747A series Waveguide Refection/Transmission Test Units 369
8761A, B Coaxial Switch 341
8801A Low Gain Preamplifier 194
8802A Medium Gain Preamplifier 194
8803A High Gain Preamplifier 194
8805A Carrier Preamplifier 195
8805B Carrier Preamplifier 195
8806B Phase Sensitive Demodulator 195
8807A AC/DC Converter 196
8808A Logarithmic Converter 196
8809A Signal Coupler 196
8820A Amplifier for Recorder 193
8821 A Amplifier for Recorder 193
8875A Differential Amplifier 26
8900B Peak Power Calibrator 318
8925A DME/ATC Test Set 282
9000
9211 Transit Case 416
9211 Field Cases 416
9211 Operating Cases 416
9500 series Automatic Test Systems 405
9600 series Data Acquisition Systems Computerized 406
9800 series Calculator 408
00000-10000
00513A Q Standard 52
00s18A Q Standard 52
10001 A LO:1 Divider Probe 140
10001B 10:1 Divider Probe 140
10002A 50:1 Divider Probe 140
10002B 50:1 Divider Probe 140
10003A 10:1 Divider Probe 140
10004B 10:1 Divider Probe 140
10004C 10:1 Divider Probe 140
10005B 10:1 Divider Probe 140
10006B 10:1 Divider Probe 140
10006C 10:1 Divides Probe 140
10007B 1:1 Probe 140
10008B 1:1 Probe 140
10010 C BNC Adapter Tip 141
10011 A BNC Adapter Tip 141
$10011 B$ BNC Tip, Probe 142
10012B 10:1 Divider Probe 140
10014C 10:1 Divider Probe 140
10016C 10:1 Divider Probe 140
10020A 700 MHz Passive Probe 141
10036A Probe Tip Kit 142
10037A Probe Tip Kit 142
10090A 50 ohm Attenuators 141
10091 A 50 ohm Attenuators 141
10092A 50 ohm Attenuators 141
10100B 100 ohm Feed-Thru 141
10100C 50 ohm Feed-Thru 141
10110A BNC to Banana Post 142
10111 A Adapter BNC to Banana 142
10166A Panel Cover 180 series Cabinet 142
10111A BNC to Banana Plug Adapter 40
10167A Flexible Covers 180 series Cabinet Models 142
10170A Flexible Covers 180 series Cabinel Models 142
10172A Flexible Covers 180 series Cabinet Models 142
10169A Panel Cover 1200 series Cabinet 142
10175A Viewing Hood 142
10175B Viewing Hood 142
10176A Viewing Hood 142
10352A Grafiok Back 145
10353A Pack Film Back 145
10355A Camera Bezel Adapters 145
10356A Camera Bezel Adapters 145
10357A Camera Bezel Adapters 145
103588 Camera Carrying Case 145
10360A Camera Bezel Adapters 145
10361 A Camera Bezel Adapters 145
10362A Camera Bezel Adapters 145
10363A Camera Bezel Adapters 145
10106A Camera Bezel Adapters 145
10365A Roli Film Back 145
10406A Plug-in Extender Cable (140 series) 142
10407A Plug-in Extender (180 series) 142
10408A-10410A Blank Plug-ins (180 series) 142
1041 A A Horizontal Gain Calibrator (180 series) 140
10452A 0.5 ns Rise Time Converter 119
10453A 1 ns Rise Time Converter 119
10454A 2 ns Rise Time Converter 119
10455A 5 ns Rise Time Converters 119
10456A 10 ns Rise Time Converter 119
10457A Adapter, 50 to 75 ohm (Type N) 119
10458A Adapter, 50 to 75 ohm (Type F, CATV) 119
10477A-10478A Blank Plug-Ins (140 series) 142
10501A Cable 413
10502A Cable 413
10503A Cable 413
10511A Spectrum Generator 269
10514A Double Balanced Mixer 269
10515A Frequency Doubler 269
10525A Logic Probe 81
10528A Logic Clip 81
10529A Logic Comparator 80
10531 A Filter Kit (for 5201A) 234
10532A Extender Board (for 5326/27) 223
10533A Printer Interface (for 5300A Counter) 219
10534A Double Balanced Mixer 269
10536A Adapter (for 5360A) 232
10542A Remote Program Interface (for 5326/27) 223
10565A Remote Interferometer 78
11000
11000A Cable Assembly 256,413
11001A Cable Assembly 40, 256, 413
11002A Test Lead 40,413
11003A Test Lead 40,413
11004A Line Matching Transformer 256
11005A Line Matching Transformer 256
11018A Adapter for 410C AC Probe 57
11028A 100 to 1 Current Divider 57
11035A Cable 348,413
11036A AC Probe for 410C 57
11039A Capacitive Voltage Divider 57
11040A Capacitive Voltage Divider 57
11042A Probe Coaxial "T" Connector 57
11043A Probe Coaxial ' N '' Connector 57
11045A DC Voltage Divider for 410 C 57
11046A Combining Case 348, 415
11048B Feed.Thru Termination 262
11048C 50』 Feedthrough 266
11065 A Input Cable for 3460 A 74
11074A Voltage Divider Probe 57
11075 A High Impact Case 40
11085A Remote Control Cable 74
11086 A Cable 413
11094B 75』 Feedthrough 266
11096A High Frequency Probe 40,57
$11135 A$ AC Power Pack for 204 C/D 257
11136 A Mercury Power Pack for 204 C/D 257
11137A Rechargeable Battery/AC Pack for 204C/D 257
11500A Cable 413
11501A Cable 413
11507 A Output Termination 269
1i508A Terminated Output Cable 269
11509A Fuseholder 269
11510A Carrying Case for 805C 334
11511A Type N Short 337
11512A Type N Short 337
11517A Mixer 387
11518A Mixer Taper Section 387
11519A Mixer Taper Section 387
11520A Mixer Taper Section 387
11524A APC7.N Adapter 342
11525A APC7.N Adapter 342
11527A Thermistor Mount Adapter 317
11528A Thermistor Mount Adapter 317
11531A Test Unit for 8690B 295
11533A APC7-SMA Adapter 342
11534A APC7-SMA Adapter 342
11536A Tee (for 8405A) 361
11539A Reproduce Track Selector 199
11540A Waveguide Stand 342
11543 A-11548A Waveguide Clamps 342
11549A Power Splitter 361
11550A DC Test Set for 434A 319
11553A Pack Sensor 199
11565A APC-7 Short 337
11570A Accessory Kit for 8405A 361
11581A Attenuator Set 327
11582A Attenuator Set 327
11583A Attenuator Set 327
11587A Accessory Kit for 8410 Series 368
11588A Rotary Joinr 342
11589A Bias Network 368
11590A Bias Network 368
11599A Quick-Connect Adapter for 8745 A 369
11600B Transistor Fixture 367
11602B Transistoc Fixture 367
11604A Universal Extension for 8745A 369
11605A Flexible Arm for 8743A 369
11606A Rotary Air Line 342
11607A Small Adapter for 8745A 369
11608A Transistor Fixture 367
11560 A Accessory Kit for 8410 series 368
11652A Refection/Transmission Kit for 8407A 363
11654A Passive Probe Kit for 8407A 363
11655A Impedance Probe for 8407A 363
11658A Matching Resistor for 84047A 364
11661 A Extension Module for 8660 A, B 270
11675A Leveling Cable Assembly for 784A 353
13000
13060A Remote Start/Stop Switch 199
13061A, B DC-AC Inverter (for 3960) 199
13062A Tape Loop Adapter 199
13063A Voice Channel 199
13065A Rack Mount Kit 199
13066A Fiber Glass Transit Case 199
13068A/B Rack Slide Mounting Kit 199
13181A Controller (for 7970) 401
13215A Disc Power Supply 400
13219A Disc Service Unit 400
13515A Frequency Doubler Probe 272
15000
15108A Microphone Preamplifier 396
15109B Condenser Microphone 396
15114A Microphone Power Supply 396
15117A Sound Level Calibrator 396
I5118A Microphone Preamplifier 396
15119C/D Condenser Microphone 396
15127A Cable Amplifier 396
15550A Accessory Kit for 3702B 355
16000
16009A Transistor Socket Kit 77
16014 A Series Loss Test Adapter 52
16150A Interface Kir (327A) 54
16151A Interface Kit (4270A) 54
16462A Auxiliary Capacitor 52
16470A.16490A Reference Inductors 52
17000
17005A Incremental Chart Advance 180
17012B Point Plotter 176
17012C Point Plotter 176
17108A Time Base 180
17170A DC Couples 175
17171A DC Amplifies 175
171》 1 A Time Base 175
17173A Null Detector 175
17174B DC Offset 176
17175A Filter 176
17176A Scanner 176
17177A AC/DC Converter/DC Preamplifier 177
17178A DC Attenuator 176
17500A Multiple Span Input Module 183
17501A Multiple Span Input Module 183
17502A Temperature Module 183
17505A High Sensitivity Module 183
[7506A Single Span Input Module 183
33000-86632A
33300 series Step Attenuators 328
60063 A-60246B DC Power Supply 169
80500A Aircraft Noise Monitoring System 395
85404B S.Parameter Test Set 363
85426A Bias Insertion Network 363
85428A Matching Network 363
86200 series RE Plug.ins for $8620 \mathrm{~A}, \mathrm{~B}$ 290
86300 series RF Modules for 8620A, B; 8700A 291
86601A RF Section for 8660A, B 270
86602A RF Section for 8660A,B 270
86631 A Auxiliary Section for $8660 \mathrm{~A}, \mathrm{~B}$ 270
86632A Modulation Section for 8660A, B 270

The Model 8875A is a differential do amplifer that provides high gain (up to 3000) and wide bandwidth. It features low drift for reliable, long term measurements, a common mode rejection of at least 120 dB at 60 Hz (500 ohm source unbalance, gain of 1000) and a common mode tolerance of $\pm 20 \mathrm{~V}$. Intermodulation distortion is avoided by use of direct-coupled input circuits (no choppers or modulators are used). An output having a capability of $\pm 10 \mathrm{~V}$ at ± 100 mA is standard, with a second independent output of $\pm 10 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$ optional. The 8875 A is available as a single unit, in banks of up to 10 channels for rack mounting or in portable cases.

The 8875 A is ideal for use with thermocouples, $d c$ excited strain gages and other low level sources, with read out to devices such as digital voltmeters, oscillographs, analog. digital converters and similar units. Applications include space vehicle checkouk, monitoring of physical variables, wind tunnel tests and arrangements with either input or output multiplexers.

Performance Specifications

Bandwidth: de to 75 Hz within 3 dB , at fixed gain steps. Can be narrowed to as low as de to 2 Hz with optional switch.selectable filter,
Galn: fixed seeps of $1,3,10,30,100,300,1000$ plus OFF; on any range, variable gain potentiometer may be swiched to provide uncalibrated gain up to 3 X gain switch setting. Gain accuracy $\pm 0.1 \%$; gain vernier allows setting any one fixed gain to an accuracy of 0.01%.
Input circuit: differcntia), active guarded; will accepr floating inpue without ground retum; may be used single-ended.
Input impedance: differential, $20 \mathrm{M} \Omega(\pm 5 \%)$ with less than $0.001 \mu \mathrm{~F}$ shuns: common mode (guarded), greater than $2000 \mathrm{M} \Omega$ with less than 2 pF shunt.
Common mode rejection: ar least 120 dB from de to 60 Hz for up to 500 source impedance either side of inpur al gain of 1000: 66 dB minimum at gain of 1.
Common mode tolerance: $=20 \mathrm{~V}$.

Bandwldth	Nolso	Bandwldth	Nolse
de. 10 Hz	$1 \mu V 90$	$\mathrm{dc}-10 \mathrm{kHz}$	$3 \mu \mathrm{~V}$ ims
dc. 100 Hz	$3 \mu \mathrm{~V} p$	dc. 50 kHz	$4 \mu \mathrm{~V}$ rms
dc-1 kHz	$6 \mu \vee \mathrm{pp}$	dc-250 kHz	$5 \mu \mathrm{Vms}$

Slawing: gain of 1 or $3,0.7 \mu \mathrm{~V} / \mathrm{s}$; gain greater than $3,1 \mu \mathrm{~V} / \mathrm{s}$ referred to output, for 10 mV do offset at ourput with resistive load of 100Ω or greater.
Input-output isolation: greater than $200 \mathrm{M} \Omega$ shunted by less than 2 pF .
Temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

General Specifications

Power: il $1 / 230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 6$ VA.
Dimenslons; $4 \frac{3}{4} 4^{\prime \prime}$ high, $1.9 / 16^{\prime \prime}$ wide, $19^{\prime \prime}$ deep ($121 \times 40 \times$ $381 \mathrm{~mm})$.
Welght: $3.5 \mathrm{lb}(1,6 \mathrm{~kg})$.
Prlces: 8875A Differential Amplifier, 5550 .
Option 01: dual outputs (10 mA and 100 mA capability: shore on one has negligible effect on other), add $\$ 75$.
Optlon 02: swirch selected filters (single-pole, low pass, with comer frequencies of $2,200,2000$ and $20,000 \mathrm{~Hz}$), add 575 .
Optlon 03: gain ranges of $10,20,50,100,200,500$ and 1000 , add $\$ 25$.
Option 04: 14010A Cord Connector Set for bench-top use (required for single-channel operation), add $\$ 65$.
Option 05: combines Option 01 and 02 (filters on 10 mA output only), add $\$ 150$.
Option 06: combines Option 02 and 03, add $\$ 100$.
Note: must order 1069.01 A case for multichannel banks of 10 or less. $\$ 365$. Sufficient blank panels ($01069-61069$) to fill case are re. quired to maintain temperature stability specifications, $\$ 10$ each .

SOLID-STATE AMPLIFIERS Precision general-purpose amplifiers Models 465A, 467A

HP 465A Amplifier

The HP Model 465A is a general purpose amplifer and an excellent impedance converter (10 megohms to 50 ohms). This amplifier has extremely stable 20 dB or 40 dB gain over a continuous frequency cange of 5 Hz to 1 MHz . Either gain may be selected rapidly with a switch on the front panel.
This solid-state amplifier is ideal for increasing the power output of solid-state oscillators or amplifiers. The output stage provides low output irapedance and wide dynamic range. The HP 465A is a three-terminal device isolated from chassis and may be foated up to 500 volts dc above chassis ground.

465A Specifications

Voltage galn: 20 dB (X10) or 40 dB (X100), open circuit.
Galn accuracy: $\pm 0.1 \mathrm{~dB}(\pm 1 \%)$ at 1000 Hz .
Frequency response: $\pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz}$ to $50 \mathrm{kHz} ;<2 \mathrm{~dB}$ down at 5 Hz and 1 MHz .
Output: $>10 \mathrm{~V}$ rms open circuir; $>5 \mathrm{~V}$ rms into 5088 (0.5 W). Distortion: $<1 \%, 10 \mathrm{~Hz}$ to $100 \mathrm{kHz}:<2 \%, 5 \mathrm{~Hz}$ to 10 Hz and 100 kHz to 1 MHz .
Input Impedance: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Oukput Impedance: son.
Noise: $<25 \mu \mathrm{~V}$ rms referred to input (with $1 \mathrm{M} \Omega$ source resistance).

HP 467A Amplitier/Power Supply

The solid-state HP 467A Power Amplifier/Supply is a $10-$ watt peak power amplifier and -20 to +20 vole de porver supply. The power amplifier has a wide bandwidth and low de drift. suitable for many applications wherever a pow'er source is required. Unique features are low distortion ($<0.01 \%$), low drift and high-gain accuracy.

An output greater than ± 20 volts peak and ± 0.5 A peak is available from do up to 1 MHz . At full output the distortion of the 467 A is less than 3% up to 1 MHz . The amplifer is a threeterminal device isolated from chassis and may be floated up to 200 volts dc above chassis ground.

467A Specifications

Power amplifier

Voltage galn (non-inverting): fixed steps: $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 5, \mathrm{X} 10$. Variable: $0-10$ resolution is better than 0.1% of full output, Accuracy: $\pm 0.3 \%$ from de to $10 \mathrm{kHz}: \pm 1.0 \%$ from 10 kHz to $100 \mathrm{kHz}: \pm 10 \%$ from 100 kHz to 1 MHz with load of $>40 \Omega$.
Output: $\pm 20 \mathrm{Vp}$ at $0.5 \mathrm{~A} p$.
Distortion: $<0.01 \%$ at $1 \mathrm{kHz} ;<1 \%$ at $100 \mathrm{kHz} ;<3 \%$ at 1 MHz .
Input impedanca: $50 \mathrm{k} \Omega$ shunted by 100 pF .
DC power supply
Voltage range: $> \pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 1 \mathrm{~V}$; with adjustable vernier, Resolution: betret than 0.1% of fuli output.
Current: ± 0.5 A p.
Load regulation: (front panel) $<10 \mathrm{mV}$, no load to full load.
Line regulation: $<10 \mathrm{mV}$ for a $\pm 10 \%$ change in line voltage.

General

Output impedance: (front panel): $5 \mathrm{~m} \Omega$ in series with 1 $\mu \mathrm{H}$.

Temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $450 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Dimensions: $5 / /^{\prime \prime}$ wide, $3^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{rom}$).
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP 465A, $\$ 245$.

Capacitance load: $0.01 \mu \mathrm{~F}$ or less does not cause instability.
Ripple and noise: $<5 \mathrm{mV} p-p$ (referred to output) for am. plifier and power supply.
Current limit: $<800 \mathrm{~mA}$.
Temperature coefficient: $< \pm 0.05 \% /{ }^{\circ} \mathrm{C}$ of output or ± 2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ at output, whichever is greater.
Input-output terminals: front panel: $3 / 4$ " spaced banana ter. minals for input, output, and chassis. Rear panel: BNC terminals. Circuit ground can be floated 200 V de above chassis ground.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power required: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz} ; 60 \mathrm{VA}$ max.
Dimensions: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (withour removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$).
Weight: ner, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: HP 467A, \$610.

461A

463A

SPECIFICATIONS* 461 /462A		
	461A	462A
FREQ. RANGE:	$1 \mathrm{kHz}-150 \mathrm{MHz}$	Leading edge and irailing edge rise time,
PULSE RESPONSE:		
FREQ RESPONSE OVERLOAD RECOV	$\pm 1 \mathrm{~dB} .1 \mathrm{kHz}$ to 150 MHz when operating into a 50 n resistive load 1500 kHz ref. 1 $<1 \mu s$ for 10 umes overload.	Overload recovery, <1 us for 10 times overload. Duration for 10% droon 30 $\mu \mathrm{s}$ Delay: nominally 121014 ns
PULSE OVERLOAD/DURATION/DELAY:		
GAIN Iselected by front panal switch)	At $500 \mathrm{kHz}: 40 \mathrm{~dB}+0.5 \mathrm{~dB}$ or $20 \mathrm{~dB}+1.0 \mathrm{~dB}$ (Inverting)	20 or 40 dB (invering).
INPUT Z	Nominal 50n	
MAX INPUT	$1 \vee$ rims or $2 \vee p$ pulse	
MAX. OC INPUT	$\pm 2 \mathrm{~V}$ (for protection of the input circuitry)	
INPUT NOISE	$<40 \mathrm{uV}$ in 40 dB position ($50 \Omega \mathrm{load}$)	
OUTPUT	0.5 Vrms into 50 n	$1 \vee \mathrm{p} \cdot \mathrm{p} 1 \mathrm{nto} 50 \Omega$
DIMENSIONS	$51 / 8^{\prime \prime}$ wide. $3^{\prime \prime}$ high (without removable feet), 11^{\prime} deep ($130 \times 76 \times 279 \mathrm{mml}$	
WEIGHT	Net 4 lbs. $(1,8 \mathrm{~kg}$.$) ; shipping 6 \mathrm{lbs},(2,7 \mathrm{kg}.$.	
POWER	115 or $230 \mathrm{~V}+10 \%$, 48 to $440 \mathrm{~Hz}, 12 \mathrm{VA}$ max.	
ACCESSORIES	$11048850 n$ feed-through termination $\$ 10.00$	
PRICE	HP 461A $\$ 360$	HP 462A \$360

Specifications* 463A

FIXED GAIN (OC COUPLED)				
Range		DC .10 Hz	$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$10 \mathrm{kHz} \cdot 100 \mathrm{kHz}$
$\times 10$	Accuracy Distortion	$< \pm 0.3 \%{ }^{*}$	$\begin{aligned} & < \pm 0.01 \% \\ & <0.01 \% \end{aligned}$	$\begin{aligned} & < \pm 0.1 \% \\ & <0.1 \% \end{aligned}$
$\times 100$	Accuracy Distortion	$< \pm 3 \%{ }^{\text {c }}$	$\begin{aligned} & < \pm 0.1 \% \\ & <0.03 \% \end{aligned}$	$\begin{array}{r} < \pm 1.0 \% \\ <0.1 \% \end{array}$
$\times 1000$	Accuracy Distortion	< $\pm 30 \%$ -	$\begin{array}{r} < \pm 0.3 \% \\ <0.1 \% \\ \hline \end{array}$	$\begin{array}{r\|} \hline< \pm 3.0 \% \\ <0.5 \% \\ \hline \end{array}$

Preclsion AC Amplifler

Flxed gain (ac coupled): identical to dc coupled except coupling capacitor causes 0.01% error at 250 Hz to 3 dB error at 3.5 Hz .

Adjustable gain (ac or de coupled): gain may be adjusted from 0 to 100% of the fired gain range.

LONG TERM STABILITY (FIXED GAIN):			
Frequency	$\times 10$	Gain, $\times 100$	$\times 1000$
10 Hz 1010 kHz	$0.003 \% / \mathrm{mo}$	$0.03 \% / \mathrm{mo}$	$0.3 \% / \mathrm{mo}$
	or $0.01 \% / \mathrm{yr}$	or $0.1 \% / \mathrm{yr}$	or $1 \% / \mathrm{Yr}$
10 kHz 10100 kHz	$0.03 \% / \mathrm{mo}$	$0.3 \% / \mathrm{mo}$	$3 \% / \mathrm{mo}$

Dlstortion: same as fixed gain cange.
Temperature coefficlent: see data sheet.

Input Impedance: fixed gain, $100 \mathrm{k} \Omega(\pm 5 \%),<35 \mathrm{pF}$; adjustable gain, 30 k ? (max.) to $50 \mathrm{k} \Omega$ (min.), $<200 \mathrm{pF}$.
Maximum input voltage: protected to $\pm 150 \mathrm{~V}$. AC coupling capacitor $\pm 500 \mathrm{~V}$ p.
Nolse: sefer to data sheet.
Output characterlstics
Voltage: dc: $100 \mathrm{~V}, 20 \mathrm{~mA}, \mathrm{ac}: 100 \mathrm{~V} \mathrm{~ms}, 50 \mathrm{~mA}, \dagger$
Power: 5 W continuous.
Impedance: from 0.05Ω to 20Ω
Minlmum resistive load: 100Ω.
Maximum capacitance: capacitive drive capability of 463 A is increased with a resistor in series with the outpur.

General

Temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 75 \mathrm{VA}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $s^{\prime \prime}$ high (without removable feet), $131 / 4^{\prime \prime} \operatorname{deep}(426 \times 127 \times 337 \mathrm{~mm})$.
Weight: net, $19 \mathrm{lbs}(8,6 \mathrm{~kg})$; shipping, $24 \mathrm{lbs}(10.8 \mathrm{~kg}$).
Accessories furnished; rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 463A, $\$ 735$.

- For complete data, reter to Tachnical Oata Sheot.
- Includes temperature coefficient and short term stability.
† From 11 Hz to 50 kHz .

DATA AMPLIFIER Solid-state, wideband differential amplifier Model 2470B

 AMPLIFIERSThe HP 2470B Amplifier is a fexible wideband differential amplifier exhibiting low drift and noise, achieved without the use of a chopper. The instrument will supply up to 1 watt output to a resistive or reactive load. Exceptionally high reliability and accuracy are achieved by the use of silicon semiconductors.

Applications include amplification of strain gage bridge, thermorouple and other low-impedance sensors. Amplifier provides an output suitable for data acquisition devices, in-
cluding recording galvanometers and oscillographs, analog recorders, serio control systems. Low instrument cost keeps per-channel price to the minimum. The 24708 also applies directly to many general-purpose laboratory uses, both differential and single-ended.

The amplifier with its power supply is packaged compactly. Ten instruments fit side-by-side in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space, or two instruments may be installed in a portable case.

Specifications

Specifications include $\pm 10 \%$ line voltage rariation, hold for 1 K max. source resisrance, any unbalance, and assume calibration after specified warmup.
DC gain: 6 fixed steps of $x 1, \times 10, \times 30, \times 100, \times 300, \times 1000$ Optional vernier (ioturn porentiometer) extends gain to $\times 3.5$.

DC gain accuracy: calibrated gain: 01% of output; other gains: $.03 \%$, consiscing of $.02 \%$ gain-to-gain accuracy and $.01 \%$ gain trim resolution.
Gain stability: $\mathrm{dc}: \pm .005 \%$ of output per month; ac: $\pm .1 \%$ per month, for ac to 2 kHz ; temp. coeff: $\pm .001 \%$ per ${ }^{\circ} \mathrm{C}$.
Linearity: dc: $\pm .002 \%$ of full scale, referred to straight line through zero and full scale oueput. AC: $\pm .01 \%$ of full scale; inputs to 2 kHz .
Zero drift (offset): per day: $\pm 5 \mu \mathrm{~V}$ rti (referred to input) $\pm 200 \mu \mathrm{~V}$ roo (referred to output): per month: $\pm 25 \mu \mathrm{~V} \mathrm{ri}$ $\pm 500 \mu \mathrm{~V}$ ro: temp. coeff: $\pm 1 \mu \mathrm{~V} \pm .5$ namp sti $\pm 40 \mu \mathrm{~V}$ rto per ${ }^{\circ} \mathrm{C}$.
Maximum input signal: $\pm 1 \mathrm{I} \mathrm{V}$, differential plus common mode.
Differential input Impedance: 10° ohms shanted by $.001 \mu \mathrm{~F}$
Common made rejection: 120 dB at 60 Hz for gains of x30 and higher.
Common mode return: from input common to output common; 1 megohm, max.
Nolse: 0 to $10 \mathrm{~Hz}: 1 \mu \mathrm{~V}$ p-p rti and $10 \mu \mathrm{~V}$ p-p ro; to 50 kHz : $5 \mu \mathrm{~V}$ rms rti and $500 \mu \mathrm{~V}$ rms rto.
Output: $\pm 10 \mathrm{~V}$ max, 0 to 100 mA . Self-limits.
Output impedance: 0.1 ohm in series aith $10 \mu \mathrm{H}$ max.
Load capability: 100 ohms or $01 \mu \mathrm{~F}$ for full output.
Slewing: $10^{\circ} \mathrm{V} / \mathrm{sec}$ at gain of $1 ; 5 \times 10^{4} \mathrm{~V} / \mathrm{sec}$ ar gain of 1000 .

Bandwldth: for any gain step, 0 to $50 \mathrm{kHz}=3 \mathrm{~dB} ; 0$ to 15 kHz $\pm 1 \mathrm{~dB} ; 0$ to $5 \mathrm{kHz} \pm 1 \% ; 0$ to $1.5 \mathrm{kHz}=.1 \%$: 0 to 500 Hz $\pm .01 \%$.
Serting time: $100 \mu 5$ to within $.01 \%$ of final value.
Overload recovery: 200μ so within $.01 \%$ of final value for signal of 10 times full scale, but less than 10 V ; less than s ms for signal plus common mode up to 20 V .
Overload signal: -17.5 to -19.5 V with no overload, 0 to -1 V in overload: 5 mA drive capability; front panel lamp indication.
Operating conditions: ambient temperatures 0 to $55^{\circ} \mathrm{C}$; relative humidity to 95% ar $40^{\circ} \mathrm{C}$.
Warmup: operates immediately after turn-on, but requires 3 hours in free air, 30 minutes in Portable Case or Combining Case (plus 1 hour additional warmup for each $10^{\circ} \mathrm{C}$ differ. ence between storage temperature and operating ambient) for specificd accuracy and zero drift.
Reliability: predicred MTBF (90% confidence) 20,000 hours when operated at $25^{\circ} \mathrm{C}$ ambient.

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Dimenslons: $1.9 / 16^{\prime \prime}$ wide, $47 / \mathrm{B}^{\prime \prime}$ high, $15^{\prime \prime}$ deep (39.7×123.9 $\times 381 \mathrm{~mm}$).
Weight: ner 4 lbs (1.8 kg) ; shipping $61 / 2 \mathrm{lbs}$ (2.9 kg)
Accessories avallable: mating rear connector; mating rear connector with porver cord, inpur/ourput cables; combining case: holds up to 10 instruments in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space (maring coonectors furnished) includes power cord and fan; portable case: holds two amplifiers (mating connectors furnished) and includes power switch, pilot light, power cord and fan.

Prlee: HP 2470B, 5725: option 003 with vernier add $\$ 100$.

AMPLIFIERS

SYSTEM DATA AMPLIFIER
 Excellent performance at lower cost
 Model 2471A

The HP 2471A System Data Amplifier is a wideband dif. ferential-input amplifier featuring excellent system performance at low per-channel cost through extensive use of integrated circuits and modern plug-in-design packaging techniques.
The 2471 A is a single plug-in circuit board which consists of two identical and independent amplifier channels. each providing up to $\pm 10 \mathrm{~V}, 50 \mathrm{~mA}$ full-scale output. Each channel has four switch-selectable calibrated gains from 1 to 1000 in decade multiple steps. Bandwidths are also selectable for each channel by plugein jumpers with a choice of $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz controlled bandwidths with 12 dB -per-octave rolloff, and full bandwidth (greater than 50 kHz). Common mode rejection is $>80 \mathrm{~dB}$ at the
two lowest gains and $>120 \mathrm{~dB}$ at the highest gain.
Up to 10 amplifier boards (20 channels) may be installed in a model 12670 A Combining Case which includes power supplies and connectors for all boards. The case occupies only $101 / 2$ inches of rack space. A pull-down front panel allows direct access to the boards. The amplifier boards are furnished with mating connectors, simplifying installation where the cormbining case is not used.

The system data amplifier is ideally suited for amplifica. tion of strain gage bridge, thermocouple and other lowimpedance sources. The amplifier output is compatible with high-speed analog-to-digital converters such as used in computerized data acquisition systems.

Specifications, 2471A*

DC galn: selectable in 4 fixed steps of $\times 1, \times 10, \times 100, \times 1000$.
DC gain accuracy: $\pm 0.01 \%$.
DC galn stabllity: $\pm 0.02 \%$ of output for 6 months; temp coeff. $\pm .005 \%$ per ${ }^{\circ} \mathrm{C}$.
DC linearity: $\pm 0.01 \%$ of full scale, referred to straight line through zero and \pm full scale output.
Zero drift: per day: $\pm 10 \mu \mathrm{~V}$ rt $\pm \mathrm{l} \mathrm{mV}$ rto. Voltage temp. coeff.: $\pm 1 \mu \mathrm{~V}$ rit $\pm 0.2 \mathrm{mV}$ ato per ${ }^{\circ} \mathrm{C}$. Current temp. coeff.: $\pm 0.50 \mathrm{~A}$ rti per ${ }^{\circ} \mathrm{C}$.
Maximum Input signal: $\pm 11 \mathrm{~V}$ diferential pius common mode; combined input of $\pm 20 \mathrm{~V}$ will not damage the amplifier.
Common mode rejectlon (CMR): dc to 60 Hz , up to $1 \mathrm{~K} \Omega$ line unbalance:

Gain	$C M R$
1000	$>120 \mathrm{~dB}$
100	$>100 \mathrm{~dB}$
10,1	$>80 \mathrm{~dB}$

Common mode return: from input common to output common: 10 megohms max.

Nolse:

(with source

> Bandwidth
> 0.10 Hz
> 0.50 kHz

Noise $3 \mu \mathrm{~V}$ peak-to-peak $<5 \mathrm{uV}^{\mathrm{rms}} \mathrm{rti}$, $<0.5 \mathrm{mV}$ mss to

Output: $\pm 10 \mathrm{~V}^{\mathrm{V}}$ max. 0 to 50 mA . Short-circuit proof.
Output impedance: <0.1 ohm in series with $10 \mu \mathrm{H}$.
Load capabillty: 200 ohms resistive. Capacitive load up to $0.01 \mu \mathrm{~F}$ will not cause instability.
Slewing rate: $>1 \mathrm{~V}$ per $\mu \mathrm{sec}$.
Bandwidth: selectable in 5 steps: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, 10 kHz with 12 dB -per-octave rolloff and max. amplifier bandwidth of $>50 \mathrm{kHz}$.
Operating conditions: ambient temperature 0 to $55^{\circ} \mathrm{C}$; relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Power required: +30 V @ $50 \mathrm{~mA},-30 \mathrm{~V}$ @ $50 \mathrm{~mA},+15$ V @ 60 mA plus 50 mA max. load current, -15 V @ 60 mA plus 50 mA max. load curcent.
Power supply immunity: $\pm 30 \mathrm{~V},>120 \mathrm{~dB}$ rit; $\pm 15 \mathrm{~V}$, $>40 \mathrm{~dB}$ rto.
Dimensions: $73 / 4^{\prime \prime} \mathrm{H}(197 \mathrm{~mm}), 11 / 4^{\prime \prime} \mathrm{W}(31,8 \mathrm{~mm})$, $105 / 8^{\prime \prime} \mathrm{D}(269 \mathrm{~mm})$.
Weight: net $11 / 4 \mathrm{lb}(567 \mathrm{gm})$; shipping $2 \mathrm{lb}(0,91 \mathrm{~kg})$
HP 12670A Combining Case: (includes integral power supply and holds up to ten 2471A Amplifiers (20 channels).
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}, 110$ watts (for full complement of 20 channels).
Dimensions: $101 / 2^{\prime \prime} \mathrm{H}(267 \mathrm{~mm}), 19^{\prime \prime} \mathrm{W}(483 \mathrm{~mm}), 205 / \mathrm{s}^{\prime \prime}$ D (508 mm).

[^1]Thin film hybrid integrated circuit amplifers have been combined with fully regulated, solid state power supplies to form a series of general purpose amplifiers. The HP 8447 series of amplifiers embodies the inherently high reliability of integrated circuits and the convenience of a small, lightweight package.

The series features low noise and wide bandwidth. Flat frequeacy response and low distortion enhance the general utility of the amplifiers. Long term stability and reliability is assured by the use of microelectronic amplifier circuits.

Specifications

	847A Proamp	8447B Proamp	BA7C Power Amp	8447 Preamp	$\begin{gathered} \text { 8447E } \\ \text { Powor Ampl } \end{gathered}$	$8447 f$ Preamp Powar Amp
Frequency Range	10.1 - 400 MHz	$0.4 \cdot 1.3 \mathrm{GHz}$	30-300 MH2	$100 \mathrm{kHz} \cdot 1.3 \mathrm{GHz}$	100 kHz l .3 GHz	100 kHz - 1.3 GHz
Typical 3 هB Bendvidth	50 kKz - 700 MHz	$0.35 \cdot 1.35 \mathrm{GHz}$	10.400 MHz	$50 \mathrm{kHz} \cdot 1.4 \mathrm{GHz}$	50 kHz - 1.4 GHz	$50 \mathrm{kHz} \cdot 1.4 \mathrm{GHz}$
Mean Gain	$\begin{aligned} & 20 \mathrm{~dB} \pm 0.5 \mathrm{~dB} \text { at } \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & >20 \mathrm{~dB} \\ & 22 \mathrm{~dB} \text { Typical } \end{aligned}$	$30 \mathrm{~dB} \pm 1 \mathrm{~dB}$	$\left\{\begin{array}{l} 26 d B \pm 1.5 \delta \mathrm{~B} \\ \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{array}\right.$	$\begin{aligned} & 22 d \mathrm{~dB}=1.5 \mathrm{~dB} \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{aligned}$	
Gain Flatness across full Fre. quency Range	$\pm 0.5 \mathrm{~dB}$	± 2.588	$\pm 1 \mathrm{d8}$	$\pm 1.5 \mathrm{d8}$	$\pm 1.5 \mathrm{~dB}$	
Noise Figure	$<5 \mathrm{~dB}$	$\begin{aligned} & <5 d \mathrm{CD} 0.4-1.0 \mathrm{GHz} \\ & <6 \mathrm{C} 81.0 \cdot 1.3 \mathrm{GHz} \end{aligned}$	<11 dB	$<8.5 \mathrm{~dB}$	<11 $\mathrm{dB}^{\text {Typical }}$	
Output Power for 1 dB Gain Compression	P +7 dBm	$>-3 \mathrm{dBm}$	$>+17 \mathrm{dBm}$	${\underset{\text { Typical }}{ }+7 \mathrm{dBm}}^{+}$	$>+15 \mathrm{dBm}$	
Harmonic Distortion	$\begin{aligned} & -35 d 8 \text { for } 0 \mathrm{dBm} \\ & \text { ortput } \end{aligned}$	$\begin{aligned} & -30 \mathrm{~dB} \text { for }-15 \mathrm{dBm} \\ & \text { output } \end{aligned}$	$\begin{array}{\|l\|} -35 \mathrm{~dB} \text { for }+10 \mathrm{dBm} \\ \text { output } \end{array}$		$\begin{aligned} & -30 \mathrm{~dB} \text { for }+10 \mathrm{~d} 8 \mathrm{~m} \\ & \text { output } \end{aligned}$	
Typical Ouput for $<-60 \mathrm{~dB}$ Marmonic Distortion	-25 d8m	- 45 d8m	-15 dBm	- 30 dBm	-20 dem	
VSWR	<1.7	$\begin{aligned} & <20 \text { Input } \\ & <2.2 \text { output } \end{aligned}$	<2.0	$\begin{aligned} & <2.0 \text { Input } \\ & <2.2004 p u t \\ & 1.1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <2.2 \\ & 1 \cdot 1300 \mathrm{MHz} \end{aligned}$	
Impedance	50Ω	50Ω	$\begin{aligned} & 50 \Omega \\ & 0 p 100275 \Omega \end{aligned}$	50Ω	50 n	
Reverse Isolation	$>30 \mathrm{~dB}$	>40 d8	$>35 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40 \mathrm{~dB}$	
Maximum DC Voltage Indut	$\pm 10 \mathrm{~V}$					

General

Power requirements: 110 or 230 V ac $\pm 10 \%, 48.400 \mathrm{~Hz}$ 15 watts.
Dimensions: $81 / 2^{\prime \prime}$ (216 mm) deep by $51 / 8^{\prime \prime}(130 \mathrm{~mm})$ wide by $33 / 8^{\prime \prime}(85,8 \mathrm{~mm})$ high.
Waight: net, $3 \mathrm{lb}, 7 \mathrm{oz}(1,56 \mathrm{~kg}$); shipping, $5 \mathrm{lb}, 1 \mathrm{oz}(2,30$ kg).
Price: Model $8447 \mathrm{~A}, 8550$; Model $8447 \mathrm{~B}, \$ 600$; Model 8447C, $\$ 450$; Model 8447D, 8650; Model 8447E, $\$ 700$; Model 8447F, \$1175.

Options Available

	Option 001 Dual Chennel BNC Connectors	Opiton 010 Type N Conneators	Option 011 Dual Channel Type N Connectors	Option 002 $76 \cap$ Input and Output Impadenee
8447A	Add $\$ 400$	-	-	-
84478	Add \$450	Add \$50	Add $\$ 500$	-
8447C	-	-	-	Add \$10
84470	Add \$500	Add $\$ 25$	Add $\$ 550$	-
8447E	-	Add 525	-	-
8447 F	-	Add $\$ 50$	-	-

AMPLIFIERS

MICROWAVE/POWER AMPLIFIERS

Broadband, high-gain, high power amplification Model 489A, 491C, 493A, 495A, 230B

Advantages:

$D C$-coupled modulation circuitry allow's power leveling and remote programming
Periodic-permanent-magnet focusing means fewer alignment problems

Uses:

Antenna efficiency and pattern measurements
Extends attenuation measuring systems capability by at least 30 dB .
Amplification of frequencies from 1 to 12.4 GHz is accomplished in four ranges by the Hewlett.Packard microwave amplifiers. Each delivers over 1 watr with an input of 1 mW or jess, a gain of at least 30 dB .

Specifications

input/output: impedance, sCD; connectors, type N female.
Amplitude modulation:
Sensitivity: modulation input of $>-20 \mathrm{~V}$ peak reduces RF output by more than 20 dB (rom de to 50 kHz .
Frequency response: dc to $500 \mathrm{kHz}(3 \mathrm{~dB}$).
Pulse response: $<1 \mu$ s rise ánd fall times.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 140 \times$ 467 mm).
Weight: net. $33 \mathrm{lbs}(14,9 \mathrm{~kg})$; shipping $40 \mathrm{lbs}(18,0 \mathrm{~kg})$.

	489 A	4916	4934	495A
Frequency range (CH)	1-2	24	48	7-12.4
Power output (with 1 mW or less input)	IW	1W	1 W	IW
Gisin at catao output	30 dB	30 dB	30 dB	30 dB
Gain variation with freq. at rated outcout small signal across any 10% of band across full band	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~d} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB}:\left\{\left.\begin{array}{l} \text { Hor } \\ \text { MHO } \end{array} \right\rvert\,\right. \\ & \leq 10 \mathrm{~dB} \end{aligned}$
Noise max, noise figure	30 dB	30 dB	30 dB	30 dB
Psice	\$2450	\$2450	\$2800	\$800

230B Tuned RF power amplifier

The HP 230 B is a cuned RF power amplifier covering 10 to 500 MHz in six continuous ranges. It provides up 1030 dB of gain, and has a maximum rated power output of 4.5 watts. With a rypical noise figure of 6 to 9 dB , it is also suitable for low level applications. High and low level applications of the power amplifer are discussed in Application Note $i 6$.

Specifications, 230B

Frequency range: 10 to 500 MHz in six bands: 10 to 18.5 MHz , 18.3 to $35 \mathrm{MHz}, 35$ to $65 \mathrm{MHz}^{2} 65$ to $125 \mathrm{MHz}, 125$ to 250 $\mathrm{MHz}, 250$ to 500 MHz .
RF gain: 30 dB (10 to 125 MHz), 27 dB (129 to 250 MHz), 24 dB (250 to 500 MHz), with 10 volts outpur into 50 ohms.
RF bandwidth: $>700 \mathrm{kHz}$ (10 to 150 MHz), $>1.4 \mathrm{MHz}$ (150 to 500 MHz), with 10 voles output into 50 ohms.
RF output:
Level: up to 15 volts across external 50 -0hm load (4.5 watts).
Leval monitor: full scale ranges of 3,10 , and 30 volts, ac. curate to 10% from 10 to 500 MHz .
AM range: reproduces 0 to 100% modulation of driving source.
Connectors: rype N female.
Dimensions: $163 / 4^{\prime \prime}$ wide, $73 / 16^{\prime \prime}$ high, $181 / 16^{\prime \prime}$ deep (425 $\times 183 \times 459 \mathrm{~mm}$).
Welght: net, $35 \mathrm{lbs}(15,8 \mathrm{~kg})$; shipping $52 \mathrm{lbs}(23,4 \mathrm{~kg})$.
Price: $\$ 1120$.

Analog Instruments

Voltage, current and resistance mea. surements are easy, fast, and accurate with electronic instruments using meter movements. Most electronic voltmeters, ammeters and ohmmeters use rectifiers. amplifiers and other circuits to generare a current proportional to the quantity being measured, which then drives a meter movement. Devices of this type are called analog instruments.

Meter movements-the meter-movement readout should continue to be popular since it is economical and suitable for many jobs. It also lends itself well to special, nonlinear scales such as $d B$ scales. The pivot-jervel suspension has been replaced by taut-band suspension. This has resulted in excellent repeatability with hysteresis virtually eliminated. This repeatability, in turn, makes practical the individually-calibraced meter scale. Both of these improvements are standard in most Hew'ett-Packard ana\log voltmeters.

DC measurements

The de voltmeter represents a straightformard application of electronics to measuring instruments. This instrument usually has a de amplifer preceding the meter movement. For most de current measurements, the meter movernent by itself serves the purpose admirably. For lower current measurements, the sensitivity of the meter movement must be increased. Electronic instruments over. come this difficulty by measuring the small voltage drop across a low value resistance placed in series with the current to be measured.

AC voltage measurements

Analog (meter) indicating ac voltmeters fall into three broad caregories: av-erage-responding, peak-responding, and rms-responding. $A C$ voltmeters in general use are average and peak-responding types, although rms values are of princi. pal interest.

Average-responding voltmeters

Probably the most widely used mea. surement technique combining acceptable accuracy and reasonable cost is the aver-age-responding (absolute average) merhod. Figure 1 shows a typical arrangement for making an everage measurement.

The average value of an ac voltage is simply the average value of voltage values measured point by point along the waveform. The average value of a sine wave is really zero, because the waveform

(Figure 1. Average-responding voltmeter.)
has equal positive and negative values when averaged for one whole cycle. Since the equivalent dc or energy content in the waveform usually is the quantity of interest, the average value of a sine wave is taken to mean the average rectified value. The average value of one-half cycle of a sine wave is 0.636 times the peak value.

The use of average responding is a consequence of the ride use of sine waves in electronic measurements. In calibrating an average responding meter, a pure sine wave with an rms amplitude of 1 volt can be applied to the meter, and the resulting pointer deflection marked on the scale as 1 volt. Accually, the average value of this sine wave is 0.91 volts, but since pointer defection is linearly proportional to input voltage, an average responding meter calibrated in ims volts provides reliable indications of rms voltage if the input is a sine wave. This indjcation is not affected more than 3% by as much as 25% second hatmonic content in the input waveform, and useful indications are obtained on waveforms with even more distortion. For this reason, average responding voltmeters are widely accepred as low-cost substitures for truerms.responding voltmeters, as long as sinusoidal signals are being measured.

Peak-responding voltmeter

There are situations where the peak amplitude of an ac signal is significant, such as the monitoring of a transmitter modulating signal, or in studies of vibra. tion components, or in other situations where peak energy must be known. How. ever, the dominant reason for the use of peak-responding ac voltmeters lies in the nature of their circuitry. Peak-responding circuits allow a voltmeter to serve as a multifunction meter and, what is more important, enables it to be used at much higher frequencies. Here again, since the majority of measurement situations involve sine waves, peak-responding meters
usuaily are calibrated in ems volts. Figure 2 shows a typical arrangement for mak. ing a peak measurement. A calibrating sine wave of 1 volt rms amplitude causes a pointer deflection equivalent to 1.414 volts, but this point can be marked as 1 volt rms on the scale. As long as the in. put waveform is a sine wave, the peak. responding indication is proportional to the rms value. However, the peak-responding meter is more susceptible to errors caused by harmonic distortion in the input waveform than the average responding meter. Another consideration is the maximurn sensitivity of the instrument which is limited by the instrument probe diode characteristics. For this reason, careful design is required to achieve even 0.5 volt full scale deflection sensitivity on the lowest range of a peak-responding meter. Conventional voltmerers responding to the absolute average of an ac waveform may sometimes be limited in sensitivity and bandwidth. These restrictions may be relieved by sampling the signal prior to detection and amplification. Hewlett-Packard's RF voltmeter uses a sampling technique (see page 42).

(figure 2. Peak-responding voltmeter).
For a detailed discussion of the limits of error introduced into peak and aver-age-cesponding voltmeters by various harmonics, refer to Hewlett-Packard's Application Note 60.

RMS-responding voltmeter

The true-rms measurements technique is most of ten used when a high degree of accuracy is required. Instrument indica. tion is proportional to the ems heating value of the impressed waveform. The root-mean-square (rms) value of any complex quantity is obcained by summing the squares of each component and taking the square root of the sum; this is defined as the equivalent heating power of the waveform.

This operation is performed by sensing the waveform's heating power. Heating power is measured by feeding an amplified version of an input waveform to

(Flgure 3. RMS.responding voltmelar).
the heater of a thermocouple. The voltage output is proportional to the waveform's heating power. The true rms value is measured independently of the wave. shape, provided that the peak excursions of the measured waveform does not exceed the dynamic range of the instrument. Harnonic distortion is not an error contributing factor. This arrangement al. lows accurate readings of the ims value of complex waveforms having high crest factors. Crest factor is defined as the ratio of the peak voltage to the rms voltage of a waveform with the de component removed. A voltmerer with a high crest factor rating is able to read accurately the ums values of periodic signals that have waveforms significantly different from sinusoidal. High crest factor performance is not obtained easily. An rms voltmeter with a high crest factor must have ampli.

figure 4, four different types of mator scales avallable. (a) Linear $0-3 \vee$ and $0.10 \quad V$ scales plus a dB scale. (b) Linear di scale plus nonilinear a de scale. (D) Linear d日 scale plas nonlifear on larger are for greater resolution, \{d) Linear -20 on arger afc for greater resolution as inear-20. catlons applisations.

Fers with sufficient dynamic range to pass signals that have a peak amplitude many times larger than full scale rms value. A wide dynamic range is not the only consideration. To prevent thermocouple burn-our, the amplifier design should in. ciude some provision for power limiting. Because amplitude limiting would limit the crest factor, the voltmeter must be designed with a limit on the voltage-time product so that thermocouple burn-outs are prevented without restricting wide dynamic range.

In general, true-rms meters reveal only the rms value of an ac signal. Because they are ac coupled, most voltmeters have a frequency cut-off around 20 Hz . This restriction keeps the true-rms voltmerer from accounting for any low frequencies or dc components in a signal. Heariett. Packard digital voltmeters solve this problem. Refer to pages 62-67.

Voltmeter considerations

Accuracy-Before we can discuss meter accuracy, we must have a familiacity with the various meter scales available. Many instruments have meter scales marked in both volts and decibel (dB) units. It should be noted that dB and voltage are complements of each other. Thar is, if a voltage scale is made linear, the dB scale on the same meter face will be logarithmic or nonlinear. Likewise, if the dB scale is made linear, the voltage scale becomes nonlinear. The term "lin. ear-log scale" is applied to an instrument that has a linear $d B$ scale and therefore a nonlinear voltage scale. Several differ. ent types of meter faces are illustrated in Figure 4.

Analog merers (Figure 5) usually have nonlinearities and/or offsets present in the attenuators and amplifers. The meter movement itself can have nonlinearities . . . even with individually calibrated meter scales. Nonlinearities cause percent of reading errors, and offsers cause percent of full scale errors. Percent of reading errors are constant no matrer where the meter pointer is. Percent of full-scale erroz increases as the pointer goes further down scale.

Looking at instrument specification sheets, accuracy specifications are usually expressed in one of three ways: 1 . (percent of the full-scale value) 2. (percent of the reading) 3. (percent of reading +

flgure 5. Nonilnearities cause \% of reading errors. Offsets cause \% of full scale errors.
percent of full-scale). The first is probably the most commonly used accuracy specification. The second (percent of reading) is more commonly applied to meters baving a logarithmic scale. The last method has been used more recently to obtain a tighter accuracy specification on a linear-stale instrument.

Hewlett.Packard uses the iwo-part ac. curacy specification to take advantage of the upper-scale accuracy and yet maintain a reasonable specification for the lower portion of the scale.

For a thorough evaluation of accuracy, the following should be considered: Does it apply at all input-voltage levels up to maximum overrange point? (Linearity specifications may be added to qualify this point.) Does it apply to all frequencies throughout its specifed bandwidth? Does it apply on all ranges? Does it apply over a useful temperature range for the application? If not, is remperature coefficient specified?

Selecting an Anaiog Voltmeter

Basic specs for Hewlett-Packard analog meters are in Table I. Guidelines are restated below.
(1) For measurements involving dc applications, select the instrument with the broadest capability meeting your requirements.
(2) For ac measurements involving sine waves with only modest amounts of distortion $(<10 \%)$, the average-responding voltmeter can perform over a band-width extending to several megahertz.
(3) Most broadband average-responding voltmeters are limited in sensitivity ($100 \mu \mathrm{~V}$ full-scale) by inherent noise and spurious signals. For as measurements involving low level signals that may be obscured by noise or other unrelated signals, the tuned voltmeter provides the best accuracy and most sensitivity per dollar (refer to 3410A data sheet).
(4) For high-frequency measurements ($>10 \mathrm{MHz}$), the Feak-responding voltmeter with the diode.probe input is the most economical choice. Peak-responding circuits are acceptable if inaccuracies caused by distortion in the input waveform can be tolerated.
(5) For measurements where it is im. portant to determine the effective power of waveforms that depart from a true sinusoidal form, the true rms-responding voltmeter is the appropriate choice.
(6) For very wide bandwidths (up to 1 GHz) and high-sensitivity measurements of sinusoidal or non-sinusoidal waveforms, the HP 3406A is the proper choice. Although the 3406 A is average. responding, it has a sample hold output which makes analysis of waveforms possible.

Table 1. HP Analog Instruments

DC YOLTMETERS	Votiago hang	Fraquenay Renga Adairaoy at Fs*	Ingul Impadanos	Model	$\begin{aligned} & \mathbf{8 s t} \\ & \text { Pıgı } \end{aligned}$
OC NULC VOLTMETER		$=2 \frac{d c}{8}+1 \mu v$	100 K - 100 Mr depend. ing on range (Infirite when nulled)	419A	37
DC DIfferential voltmeter	$1 \vee$ to I kV (4 ranges)		$>10^{\prime \prime}$ at null	$\begin{aligned} & 3420 \\ & A / B \end{aligned}$	36
DC OIFFERENTIAL VOLTMETER	$1 \mathrm{mV} \cdot \underline{\mathrm{l}} \mathrm{kV}$ (7 rangas)	$\begin{gathered} d \mathrm{~d} \\ \pm(0.005 \mathrm{gdg} \\ +0.0004 \% \mathrm{rg}) \end{gathered}$	$>10^{10}$	7400	253
AC VOLTMETERS	Volirpe Ringe	Frequinoy Riags Typiosi Aocursoy	मesponas inpur Impedaroo	Modal	$\begin{aligned} & 800 \\ & \text { Pigl } \end{aligned}$
bayteay operated ac voltmeter	$\lim _{13 \cap \operatorname{mgs})}-300 \mathrm{~V}(12$	$\begin{aligned} & 1 H z-1 \mathrm{MHz} \\ & =3 \%-5 \% \end{aligned}$	Avarage $2 \mathrm{~m}_{\mathrm{n}} /<25-<60 \mathrm{p} 5$	403A	43
RECHARGEABLE BATtERY AC VOLTMETER	$\begin{aligned} & \operatorname{lnV}, 300 V(12 \\ & \text { ranges }) \end{aligned}$	$\begin{aligned} & 5 \mathrm{Kz}-2 \mathrm{MHz} \\ & \pm 2 \%-=5 \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { Rverage } \\ 2 \mathrm{~m} /<30 \cdot<60 \mathrm{pF}, \end{gathered}$	403 B	43
scale.	$\begin{gathered} 1 m \mathrm{~V}-300 \mathrm{~V}-70.58- \\ +52 \mathrm{de}(12 \text { ranges }) \end{gathered}$	$\begin{aligned} & 10 \mathrm{KZ} \cdot 4 \mathrm{MH}=2 \% \text { to } \\ & \pm 10 \% ; 400 \mathrm{H}=1 \% \mathrm{to} \\ & 10 \%: 800 \mathrm{~L}:-1 \mathrm{lom}=5 \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { Averags } \\ 10 \mathrm{~m} / 20 \cdot 35 \mathrm{of} \end{gathered}$	$\begin{aligned} & 800 \mathrm{D} \\ & 4000 \\ & 40014 \end{aligned}$	44
FAST-RESPONSE AC VOLTMETER 100 kHz low-pass iller ac amplifiter	$\begin{aligned} & 100 \mathrm{~V}-300 \mathrm{~V}-90 \mathrm{~dB} . \\ & +52 \mathrm{~dB} \end{aligned}$	${ }_{=4 \%}^{20 \mathrm{~Hz}}-4 \mathrm{MHz}- \pm 1 \%-$	$\begin{aligned} & \text { Average } \\ & 10 \mathrm{mp} / 10-25 \mathrm{pf} \end{aligned}$	${ }_{400 \mathrm{~F}}^{400}$	45
High accuracy ab voltmeter 20 dE log scale (0 dB = $=1 \mathrm{~V}$)	$\begin{aligned} & -100 \mathrm{~dB} \cdot+60 \mathrm{~dB}(8) \\ & \operatorname{rangos)} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz}-4 \mathrm{MHz}=0.2 \\ & \mathrm{~dB}-0 . \mathrm{AB} \end{aligned}$	Average $10 \mathrm{M} \Omega<15 .<30 \mathrm{pF}$	4006 L	45
HIGH ACCURACY AC VOLTMETER has dc output ($\pm 0.5 \%$) for driving recorder	$\begin{aligned} & 1 \mathrm{mV} \cdot 300 \mathrm{~V} \cdot 70 \mathrm{~dB} . \\ & +52 \mathrm{~dB} \\ & \hline \end{aligned}$	$\log _{=5 \%} 0 \mathrm{~Hz}_{\mathrm{Z}} \cdot 10 \mathrm{MHz}=1 \% \text {. }$		$40 \mathrm{E}$	45
AC DIFFEAENTIAL VOLTMETER also de \triangle VM/dc standard	1 V -I kV (4 18nges)	$20 \mathrm{~Hz} \cdot 20 \mathrm{xHz} \pm\left(0.02 \%{ }^{2}\right.$ reading $+0.01 \%$ range \dagger	1 M $\mathrm{m} /<5 \mathrm{pF}$	7418	254
AC MICROVOLTMETER: measures signals obscured by nolse	$3 \mu-3 V(13$ (anges) -10 dBm 10 +10 dBm	$\begin{aligned} & 5 \mathrm{~Hz}-600 \times \mathrm{Hz} \pm 3 \% \\ & =10 \% \end{aligned}$	Avarage $10 \mathrm{Mn} /<10.20 \rho \mathrm{~F}$	3610A	$\begin{aligned} & \text { Sox } \\ & \text { data } \\ & \text { sheet } \end{aligned}$
RMS VOLTMETER DROVIdes Ims raodings of compiex signals. Has d'c output for driving OVM's or racorders	$1 \mathrm{mv} \cdot 300 \mathrm{~V}$ (12 ranges)	$\begin{aligned} & 10 \mathrm{~Hz} \cdot 10 \mathrm{MH}+18 \% \\ & \times 5 \% \end{aligned}$	$10 \mathrm{M} \Omega / 15 \cdot 40 \mathrm{DF}$	3400 A	46
SAMPLINQ RF VOLTMETER provides true ims measuremants when used with 3400A. Many accessorles	$1 \mathrm{mV}-3 \mathrm{~V}$ (8 ranges)	$\begin{aligned} & 10 \mathrm{kHz} \mathrm{lo}>1.2 \mathrm{GHz} \\ & =3 \% \cdot \pm 13 \% \end{aligned}$	Stalísticalaveraga; Input Z depends on probe ifp used	3406 A	42
Rf millivoltmeter	$10 \mathrm{mV} \cdot 10 \mathrm{~V}$ (7 ranges ${ }^{\text {c }}$	$\begin{aligned} & 500 \mathrm{kHz} \text { to } 1 \mathrm{GHz}=3 \% \\ & 1 \mathrm{~dB} \end{aligned}$	Iroul 2 debeends on proba lio usad	411A	$\begin{aligned} & \text { Soe } \\ & \text { data } \\ & \text { sheat } \end{aligned}$
VECTOR VOLTMETER Dhase and ampliude measurements	$100 \mu \mathrm{~V} \cdot 10 \vee$ (9 ramges)	$\begin{aligned} & 1 \mathrm{MHz}=1 \mathrm{GHz}=0.5 \mathrm{~dB}-. \\ & \pm 1 \mathrm{~dB} \end{aligned}$	$\underset{\substack{\text { Averges } \\ 0.1 \mathrm{~m}_{n} / 2.5 \mathrm{FF}}}{ }$	8405A	381
MILLOHMMETER; two probes used when moking 4 terminal messurements	$\begin{aligned} & 0.001 \text { to } 100 \mathrm{n} \text { fS }(11 \\ & \text { ranges) } \end{aligned}$	$1 \mathrm{kHz}(1 \mathrm{xed})=2 \% \mathrm{FFS}$	Max. outpur Voltage: 20 mV	4328A	49
HIGH RESISTANCE METER and plcoammeter		$\begin{aligned} & \text { Vollaga: } \pm 10 \% \\ & \text { Curfent- }=5 \% \end{aligned}$	$\begin{aligned} & \text { Max. output Vollisge: } \\ & 1 \mathrm{kV} \end{aligned}$	4329A	49
MULTIFUNCTION METERS	Voftaga Range (Acouracy)	Current Range (Aocuricy)	Assistance Range (Acourfey)	Modal	Bot
gattery.operateo multifunction meter has $10 \mathrm{M}_{\Omega}$ dc input impadance and $10 \mathrm{Mn} / 20$ of ac ingus imperance			$10 \mathrm{D}-10 \mathrm{Mn}$ midseala $\pm 5 \%$; from 3 to 3 gn the meter scale 7 fanges	427A	40
VERSATILE VOLTMETER has $100 \mathrm{M}_{\mathrm{a}}$ de Input impodance and $10 \mathrm{M} \mathrm{M}^{\prime} .5$ df ac im. podance		$\begin{aligned} & D C= \pm 15 \mu^{A} \quad 10=150 \\ & m A(=3 \%) \text { ranges } \end{aligned}$	$10 \mathrm{~g}-10 \mathrm{Mr}$ écemar scale) 0 to mióscalo: $\pm 5 \%$ or $\pm 2 \%$ of midscale (whichever Is greater) 7 ranges	4100	41
VAGUUM-TUBE VOLTMETER has $122 \mathrm{M}_{\Omega}$ de inpul impadance and $10 \mathrm{M} / \mathrm{m}^{\prime} .5 \mathrm{pF}$ ac impedance			${ }^{10} \mathrm{~g}-10 \mathrm{Ma}$ midscale; *5\% from 3 to 30 on moter scale (la on XI range) 7 ranges	4108	$\begin{aligned} & \text { Soe } \\ & \text { data } \\ & \text { sheet } \end{aligned}$
OC VACUUM-tube voltmeter has $10 \mathrm{~m}_{\Omega}$ to $200 \mathrm{M}_{\Omega}$ input impedance	$\begin{aligned} & \text { DC: }=1 \mathrm{mV} \cdot=1000 \mathrm{~V} \\ & (\neq 1 \%) 13 \text { ranges } \end{aligned}$	$\begin{aligned} & 0 C:=1 \quad 10 \text { wIA } \\ & (\infty 2 \%) 3^{4} \text { ranges } \end{aligned}$	$\begin{aligned} & \ln _{\text {midacale }} 100 \mathrm{Mn}\langle \pm 5 \% \\ & \text { ranges } \end{aligned}$	412A	38
OC MICROVOLT-AMMETER has I M ${ }_{\text {R }}$ imput impedance (Voltmeler)	$\begin{aligned} & 0 C_{i}=10 \mathrm{MV}=1 \mathrm{~V} \\ & (\pm 3 \%) 11 \text { ranges } \end{aligned}$	$\begin{aligned} & 0 C=10 \mathrm{pA} \text { to } \pm 3 \mathrm{~mA} \\ & (\pm 3 \%) 18 \text { ranges } \end{aligned}$		425A	38
BATIERY OPERATEO DC VOLT-AMMETER: 10 Ma minimum Indut impedance, all ranges	$\begin{aligned} & 0 C:=1 m V_{1}=300 \mathrm{~V} \\ & (\pm 3 \%) 12 \text { 1anges } \end{aligned}$	$\begin{array}{\|l} =1 \mathrm{nA} \pm 360 \text { A } \\ (\mathrm{m} 3 \%) 12 \text { ranges } \end{array}$		4303 A	$\begin{gathered} \text { Se日 } \\ \text { dola } \\ \text { dheet } \end{gathered}$
CURRENT METERS	Curront Range	Aceursoy	Froquanay Manga	Model	$\begin{aligned} & \text { Soe } \\ & \text { Papt } \end{aligned}$
DC MILLIAMMETER with cilp-on grabe eliminates direct connection	$\underset{(9 \text { ranges })}{\operatorname{lom}^{\mathrm{mA}}-10 \mathrm{~A} F}$	$\pm 3 \%$	dc - 400 Hz	428B	39
AC CLIP-ON CURRENT PROBE makes modsurements withoul breaking circuil	$\begin{aligned} & \text { ImA } \text { i A rms (to } 25 \mathrm{~A} \\ & \text { Wind divider) } \end{aligned}$	2\% 28103 dB	$25 \mathrm{~Hz}-20 \mathrm{MHz}$	456a	57

[^2]
DC Δ VOLT/RATIOMETER
 1 ppm stability with $\pm 0.002 \%$ accuracy
 Models 3420A \& 3420B

The Hewletr-Packard Models 3420A and 3420B are precision de differential voltmeters and ratiometers. The 3420A is operated from ac line power only, while the 3420 B operates from either ac line power or internal rechargeable batteries.

Functioning as a de differential voltmeter, the 3420A/B measure de voltages within $\pm(20 \mathrm{ppm}$ of reading +2 ppm of range) on all ranges. As a do ratiometer, both instruments measure ratios within $\pm(20 \mathrm{ppm}$ of reading +4 PPm of range) on all ratio ranges.

Specifications

DC Differential Voltmeter

Ranges

Voltage: $\pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}$ and $\pm 1000 \mathrm{~V}$ with up to 10% overranging available on all ranges.
Resolution: 6-digit readout yields resolution of 1 ppm of sange: 0.2 ppm of range indicated on meter.
Performance rating

Accuracy

30 day: $\pm(0.002 \%$ of reading $+0.0002 \%$ of range) at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$.
90 day: $\pm(0.003 \%$ of reading $+0.0002 \%$ of cange) at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$.
Stability: (at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$): $1 \mathrm{hr}:<1 \mathrm{ppm}$ of reading; 24 hr : $<5 \mathrm{ppm}$ of reading.
Temperature coefflcient: $<4 \mathrm{ppm}$ of range $/{ }^{\circ} \mathrm{C}\left(20^{\circ} \mathrm{C}\right.$. $\left.30^{\circ} \mathrm{C}\right)$; $<5 \mathrm{ppm}$ of range $/ 1^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} \cdot 20^{\circ} \mathrm{C}\right.$ and 30°. $40^{\circ} \mathrm{C}$).
Zero adjustment range: $> \pm 12 \mathrm{ppm}$ of range.
Meter nolse: $<0.2 \mathrm{PPm}$ of range $\mathrm{p}-\mathrm{p}$.
Input characteristics
Inputs: floated binding posts on front panel can be operated up to $\pm 500 \mathrm{~V} \mathrm{de}$ (350 V rms) with respect to chassis ground.
Input resistance: $>10^{11} \Omega$ at null, $<70 \% \mathrm{RH}$; at least $10 \mathrm{M} \Omega$ $\pm 0.05 \%$ off null ($1 \mathrm{~V}, 10 \mathrm{~V}$ ranges); $10 \mathrm{M} \Omega \pm 0.05 \%$ ($100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges).
Effective comman-mode rejection (ECMR)
$\mathrm{DC}:>140 \mathrm{~dB}$ on 1 V and 10 V ranges, $<70 \% \mathrm{RH}$. $>110 \mathrm{~dB}$ on 100 V and ikV ranges, $<70 \% \mathrm{RH}$.
60 Hz and above: $>150 \mathrm{~dB}$ on all ranges, $<70 \% \mathrm{RH}$.
Normal mode-rejection (NMR)
60 Hz and above: $>102 \mathrm{~dB}$.
Maximum normal-mode signal: 25 V ims on 1 V range; 200 V ims on $10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ zanges.
Overload protection: $\pm 1100 \mathrm{~V}$ dc may be applied on any range or sensitivity for up to 1 min without damaging
instrument. Meter indicates within s after removal of overload.

DC Ratiometer

Ranges

Ratio: X1, X.1, X. 01 and X. 001.
Resolution: 6 -digit readout yields resolution of 1 ppm of range; 0.2 pprn of range indicated on meter.

Performance rating

Accuracy: $\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}\right)$.

$$
30 \text { day: } \dot{-}\left(0.002 \% \text { of reading }+\frac{0.0004 \% \text { of range }}{\left.E_{(A} \text { to COM }\right)}\right)
$$

90 day: $\pm\left(0.003 \%\right.$ of reading $\left.+\frac{0.0004 \% \text { of range }}{E_{(A \text { to } C O M)}}\right)$.
Stability: (at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$) $1 \mathrm{hr}:<1 \mathrm{ppn}$ of reading: $24 \mathrm{hr}:<5 \mathrm{ppm}$ of reading.
Temperature coefflesent: ($10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) X 1 range: $<\mathrm{l}$ ppm of range per ${ }^{\circ} \mathrm{C}$.
X.l, X. $01, \mathrm{X} .001$ ranges: $<5 \mathrm{ppm}$ of range per ${ }^{\circ} \mathrm{C}$.

Zero adjustment range: $> \pm 12 \mathrm{ppm}$ of range.
Meter nolse: $<0.2 \mathrm{ppm}$ of range ($\mathrm{p}-\mathrm{p}$).
Input characteristics
Input: 3 rerminals, A, B, Common.
$\begin{aligned} & \text { Displayed } \\ & \text { Voltage Ratio }\end{aligned}=\frac{\left.E_{(B 10} \mathrm{COM}\right)}{\left.E_{(A \text { to }} \mathrm{COM}\right)}$
with: $\mathrm{E}_{(\mathrm{A} \text { to }}$ COM) $|>| \mathrm{E}_{(\mathrm{B} \text { to }}$ COM) ! and of same polarity.

A to Common (Max)		Input Resistance	
Range	Input Vollage	A to Common	B to Common
X1	10 V	$10 \mathrm{kS} \pm 0.05 \%$	$>10^{10} \Omega$ at null; at least $10 \mathrm{M} \Omega \pm 0.05 \%$ off null
X. 1	70 V	$100 \mathrm{k} \Omega \pm$ 土 0.05%	
X. 01	500 V	$1 \mathrm{M} \Omega \pm 0.05 \%$	
X. 001	1000 V	$10 \mathrm{M} \Omega \pm 0.05 \%$	

DC Vollmeter
Ranges: $\pm 10 \mu \mathrm{~V}$ to $\pm 1 \mathrm{kV}$ in 9 decade ranges.
Accuracy: $\pm 3 \%$ of range.
Input resistance: $\pm 10 \mu \mathrm{~V}$ to $\pm 10 \mathrm{mV}$ ranges: $1 \mathrm{M} \Omega$. $\pm 100 \mathrm{mV}$ to 1 kV ranges: $10 \mathrm{M} \Omega$.

General

Recorder output: fully adjustable 0 to $\pm 1 \mathrm{~V}$ supplies 1 mA to $1 \mathrm{k} \Omega$ minimum resistance (in ratiometer mode, recorder ground must be isolated from COM rerminal by $>10^{10} \Omega$).
Recorder output noise: $<50 \mathrm{mV}$ p.p ($<0.5 \mathrm{ppm}$ of range referred to input at maximum sensitivity).
Operatińs temperature: instrument will operate within rated specifications from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless otherroise specified.
Power: $3420 \mathrm{~A}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to 440 Hz , $6 \mathrm{VA} \max .3420 \mathrm{~B}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz , 6 VA max or rechargeable batteries (8 furnished) 30 hours operation per recharge; input for fast charge mode.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $\times 111^{\prime \prime}$ deep ($425 \times$ $132 \times 286 \mathrm{~mm}$).
Weight: 3420 A net $20 \mathrm{lbs}(9 \mathrm{~kg})$: shipping $26 \mathrm{lbs}(11,7 \mathrm{~kg})$. 3420 B net $21 \mathrm{lbs}(9,3 \mathrm{~kg}$); shipping $26 \mathrm{lbs}(11,7 \mathrm{~kg})$.
Accessories furnished: rack mount kit for 19" rack.
Price: HP 3420A, \$1400; HP 3420B, $\$ 1550$.

DC NULL VOLT-AMMETER
 18 Voltage, 7 current ranges; $0.1 \mu \mathrm{~V}$ resolution
 Model 419A

MEASURING DEVICES

Eighteen voltage ranges with $0.1 \mu \mathrm{~V}$ resolution on the lowest range set this HP solid-state DC Null Voltmeter apart from previous de null meters. The accuracy of this rechargeable battery-operated instrument is $\pm 2 \%$ of end scale ± 0.1 $\mu \mathrm{V}$ on all ranges. Noise is less than $0.3 \mu \mathrm{~V} \mathrm{p}-\mathrm{p}$, and drift is less than $0.5 \mu \mathrm{~V} /$ day .

An internal bucking source allows input voltages up to 300 mV to be nulled giving an infinite input impedance. Input impedance above the 300 mV range is 100 megohms.

Pushbutton Selection Provides Convenience-versatility

Seven pushbuttons allow the operator to select rapidly the desired function of the HP 419A. This de null voltmeter operates from the ac line or from the internal rechargeable batteries. During operation from the ac line, the batteries are trickle-charged. A fast-charge pushbutton is provided to increase the charging rate, recharging the batteries in approximately 16 hours. Battery voltage may be easily checked with the battery-test pushbutton. The zero pushbutton enables the operator to compensate for any internal offsets before making a measurement. When this pushbutton is depressed, the positive leg of the voltmeter is disconnected from the positive input terminal and connected to the negative input terminal.

When the VM pushbutton is depressed, the HP 419A functions as a zero-center scale $3 \mu \mathrm{~V}$ to 1000 V dc voltmeter.

When the AM pushbutton is depressed, the HP 419A functions as a zero-center scale 30 pA to 30 nA ammeter.

Specifications

DC null voltmeter

Ranges: $\pm 3 \mu \mathrm{~V}$ ro $\pm 1000 \mathrm{~V}$ de in 18 zero-center ranges.
Accuracy: \pm (2% of range $\pm 0.1 \mu \mathrm{~V}$).
Zero control range: $> \pm 15 \mu \mathrm{~V}$.
Zero drift: $<0.5 \mu \mathrm{~V} /$ day after 30 min warm-up.
Zero temperature coefficient: $<0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Response time: 3 s to within 95% of final reading on $3 \mu \mathrm{~V}$ range; 1 s to within 95% of final reading on $10 \mu \mathrm{~V}$ to 1000 V ranges.
Noise: <0.3 $\mu \mathrm{V}$ p-p, input shocted.
[Noise amplitude approximates Gaussian distribution. RMS value (standard deviation) is $<0.075 \mu \mathrm{~V}, \mathrm{P}-\mathrm{P}$ noise value is $\langle 0.3 \mu \mathrm{~V} 95 \%$ of the time.]
Input characteristics
At null: infinite zesistance on $3 \mu \mathrm{~V}$ through 300 mV sanges in SET NULL mode. Negative input terminal can be floated up to $\pm 500 \mathrm{~V}$ de from powerline ground.
Off null:

Vottage range	Input rasistance
$3 \mu \mathrm{~V} \cdot 3 \mathrm{mV}$	$100 \mathrm{k} \Omega$
$10 \mathrm{mV} \cdot 30 \mathrm{mV}$	$1 \mathrm{M} \Omega$
$100 \mathrm{mV} \cdot 300 \mathrm{mV}$	$10 \mathrm{M} \mathrm{\Omega}$
$1 \mathrm{~V} \cdot 1000 \mathrm{~V}$	$100 \mathrm{M} \Omega$

Negative input terminal can be floated up to $\pm 500 \mathrm{~V}$ dc from powerline ground.
AC normal-mode rejectlon: ac voltages 50 Hz and above and 80 dB greater than end scale affect reading $<2 \%$. Peak ac voltage nor to exceed maximum overload voltage.

DC ammeter

Ranges: $\pm 30 \mathrm{pA}$ to $\pm 30 \mathrm{nA}$ in 7 zero-center ranges.
Accuracy: $\pm(3 \%$ of range $+1 \mathrm{pA})$.

Zeró control range: $> \pm 150 \mathrm{pA}$.
Zero drift: <s pA/day after 30 min warm-up.
Zaro temperature coofficient: $<0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
Noise: <3 pA p.p, input shorted.
Input resistance: $100 \mathrm{k} \Omega$ on all ranges.
Amplifier
Gain: 110 dB on $3 \mu \mathrm{~V}$ range, decreases 10 dB per range.
Output: 0 to $\pm 1 \mathrm{~V}$ at 1 mA maximum for end-scale reading. Output level adjustable for convenience when used with secorders.
Output resistence: depends on setring of output level control. $<35 \Omega$ when output control is set to maximum.
Noise: 0.01 Hz to 5 Hz : same as voltmeter (referred to in. put), $>5 \mathrm{~Hz}:<10 \mathrm{mV}$ rms (referred to output).

General

Ovarioad protectlon; the following voltages can be applied without damage to instrument.
1 V to 1000 V range: 1200 V dc .
10 mV to 300 mV ranga; 500 V dc.
$3 \mu \mathrm{~V}$ to 300 mV range: 50 V dc .
Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.
Operating humidity: $<70 \% \mathrm{RH}$.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 2 \mathrm{VA}$ max. or 4 intermal rechargeable batteries (furnished). $30-\mathrm{hr}$ operation per recharge. Operation from ac line permissible during recharge.
Dimenstons: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet). $8^{\prime \prime}$ deep ($197 \times 156 \times 203 \mathrm{~mm}$).
Weight: net, $8.3 \mathrm{lb}(3,7 \mathrm{~kg})$; shipping, $12 \mathrm{lb}(5,4 \mathrm{~kg})$.
Price: HP 419A, 8475.

The HP Model 412A is a multipurpose meter designed to measure de voltage, current, and resistance with laboratory accuracy.

Specifications

Voltmeter

Voltage range; pos. and neg. voltages from 1 mV to 1000 V full scale, 13 ranges.
Accuracy: $\pm 1 \%$ of full scale on any range.
Input resistance: $10 \mathrm{M} \Omega \pm 1 \%$ on $1 \mathrm{mV}, 3 \mathrm{mV}$ and 10 mV ranges; $30 \mathrm{M} \Omega \pm 1 \%$ on 30 mV range; $100 \mathrm{M} \Omega \pm 1 \%$ on 100 mV range; $200 \mathrm{M} \Omega \pm 1 \%$ on 300 mV range and above.

AC rejectlon: a voltage at power line or twice power line frequency $40 \mathrm{~dB}>$ full scale affects reading $<1 \%$. Peak voltage must not exceed 1500 V .

Ammeter

Current range: pos. and neg. currents from $1 \mu \mathrm{~A}$ to 1 A fuil scale, 13 ranges.
Accuracy: $\pm 2 \%$ of full scale on any range.
input resistance: decreasing from 1000Ω on $1 \mu \mathrm{~A}$ rañge to 0.15 on 1 A range.

Ohmmeter
Resistance range: resistance from 1Ω to $100 \mathrm{M} \Omega$ center scale, 9 ranges.
Accuracy: $\pm 5 \%$ of reading at center scale.
Short elrcult current: from $0.01 \mu \mathrm{~A}$ on the $\mathrm{X} 100 \mathrm{M} \Omega$ range to 10 mA on the 1Ω range.
Amplifler"
Voltage gain: 1000 maximum.
DC bandwidth: de to 0.7 Hz on all voltage ranges.
Output: proportional to meter indication; 1 V at full scale; max. current, 1 mA (full scale corresponds to 1 on upper scale)

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 60 \mathrm{VA}$ max.
Dimensions: cabinet: $71 / 2^{\prime \prime}$ wide, $11^{1 / 2^{\prime \prime}}$ high, $10^{\prime \prime}$ deep (191 x $292 \times 254 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ deep behind panel ($483 \times 134 \times 191 \mathrm{~mm}$).
Welght: net: $12 \mathrm{ibs}(5,5 \mathrm{~kg})$; shipping $14 \mathrm{lbs}(6,4 \mathrm{~kg})$ (cabinet); net $12 \mathrm{lbs}(5,5 \mathrm{~kg})$; shipping: $21 \mathrm{lbs}(9,5 \mathrm{~kg}$) (rack mounc).
Price: HP 412A, $\$ 475$ (cabinet). HP 412AR, $\$ 480$ (rack mount).

* Refer to data sheet for complete specifications.

DC MICROVOLT-AMMETER
 $10 \mu \mathrm{~V}, 10 \mathrm{pA}$ full scale sensitivity Model 425A

Hewletr-Packard's 425A, DC Microvolt-Ammeter, makes measurements of extremely small de voltages from $1 \mu \mathrm{~V}$ to 1 V ; de currents, from 1 pA to 3 mA .

Specifications

Microvolt-ammeter

Voltage range: pos, and neg. voltages from $10 \mu \mathrm{~V}$ end scale 101 V end scale, 11 steps, $1,3,10$ sequence.
Corrent range: pos and neg. currents from 10 pA end scale
to 3 mA end scale, 18 steps, $1,3,10$ sequence.
Input impedance: voluge ranges, i $\mathrm{M} \Omega \pm 3 \%$; current range, depends on range, $1 \mathrm{M} \Omega$ to 0.33Ω.
Accuracy: within $\pm 3 \%$ of range; line frequency vaciations $\pm 5 \mathrm{~Hz}$ affect accuracy $< \pm 2 \%$.
Amplifier*
Galn: 100,000 maximum.
DC bandwidth:
$\mathrm{d} c$ to 0.1 Hz on $10 \mu \mathrm{~V}$ range.
dc to 0.3 Hz on $30 \mu \mathrm{~V}$ range.
de to 0.7 Hz on $100 \mu \mathrm{~V}$ range and above.
Output: 0 to 1 V for end-scale reading. adjustable (5000Ω shunt potentiometer). 1 mA maximum at 1 V output.

General

Power: 115 or (230 V must be specified) $\pm 10 \%, 60 \mathrm{~Hz}, 50 \mathrm{VA}$ max.; 50 Hz operation is available as option 001.
Dimensions: cabinet: $73 / /^{\prime \prime}$ wide, $113 / /^{\prime \prime}$ high, $12^{\prime \prime}$ deep (186 x $299 \times 305 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $11^{\prime \prime}$ deep behind panel ($483 \times 178 \times 279 \mathrm{~mm}$).
Welght: net 17 lbs ($7,7 \mathrm{~kg}$); shipping $18 \mathrm{lbs}(B, 2 \mathrm{~kg}$) (cabinet); net 21 lbs (9.5 kg); shipping 31 lbs (14 kg) (rack mount).
Price: HP 425A, $\$ 585$ (cabiner). HP 425A Option 001, for operation from 50 Hz power, no extra charge.

[^3]
CLIP-ON MILLIAMMETER Measures current without interrupting circuit Model 428B and probes

Description

Direct current from 0.02 milliampere to 10 amperes can be mea sured with the HP 428B without interrupting the circuits and with. out the error-producing loading of conventional methods.

For any measurement of de within its range, simply clamp the jaws of the $428 B$ around a wire and read.

This ease and speed of operation are unparalleled, especially for applications where many dc measurements must be made. Wide current range of the 428 B will bandle most signals directly. For even greater sensitivity, several loops may be put through the probe, increasing the sensitivity by the same factor as the number of loops.

In addition to making current measurements directly, the 428B is also valuable for measuring sums and differences of currents in separate wires. When the probe is clipped around two wires carrying current in the same direction, their sum is indicated on the meter; when one of the wires is revensed, their difference is measured. Thus, current balancing is possible by obtaining a zero difference reading.

Model 428 B provides an output voltage proportional to the mea. sured current, which is useful for driving recorders or making lowfrequency (dc to 400 Hz) current measurements.

Specifications

Current range: 1 mA to 10 A full scale, nine ranges.
Accuracy: $\pm 3 \%$ of full scale $\pm 0.15 \mathrm{~mA}$, from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (when instrument is calibrated to probe).
Probe inductance: $<0.5 \mu \mathrm{H}$.
Probe Inducted voltage: $<15 \mathrm{mV}$ p (worst case at 20 kHz and harmonics)
Output: variable linear output level with switch position for cali. brated l V into open circuit (corresponds to full scale deflection). 1.5 V max. into open circuit in uncalibrated position. 0.73 $\pm .01 \mathrm{~V}$ into $1 \mathrm{~K} \Omega$ in calibrared position.
Nolse: 1 raA range, $<15 \mathrm{mV}$ rems across $1 \mathrm{k} \Omega$.
3 mA cange, $<5 \mathrm{mV}$ ms across $1 \mathrm{k} \mathrm{\Omega}$.
10 mA through 10 A ranges, $<2 \mathrm{mV}$ rms across $1 \mathrm{k} \Omega$.
Frequency range: dc to 400 Hz (3 dB point).
AC rejection: signals above 5 Hz with p value $<$ full scale affect meter accuracy $<2 \%$ (except at 40 kHz racrier frequency and its harmonics). On the 10 A range, ac p value is limited to 4 A .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approx. $75 \mathrm{VA} \max$
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C} 10+69^{\circ} \mathrm{C}$.
Probe Insulation: 300 V maximum.
Probe tip size: approximately $1 / 2^{\prime \prime}$ by ${ }^{2} 1 / 212 "$; aperture diameter 5 解"
Dimensions: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ($191 \times 292 \times$ 368 mm); rack mount: $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $13^{\prime \prime}$ deep ($483 \times$ $177 \times 330 \mathrm{~mm}$).
Weight: net 19 ibs ($8,6 \mathrm{~kg}$), shipping 24 lbs ($10,9 \mathrm{~kg}$) (cabinet); net 24 lbs ($10,8 \mathrm{~kg}$); shipping $32 \mathrm{lbs}(14,4 \mathrm{~kg}$) (rack mount).
Price: HP 428B, $\$ 675$ (cabinet); HP 428BR, $\$ 680$ (rack mount)

Accessories Available

3529A Magnetometer Probe

The HP 3529A Magnerometer Probe is useful in applications where determination must be made of the direction or magnitude of a magnetic field. It is useful in applications ranging from acoustical transdecer design to investigations involving the Zeeman effect.

Conversion factor is $1: 1$, producing a reading on the 4288 in milliaroperes which is directly equal to the measured feld strength in milligauss. Range is 1 milligauss to 10 gauss with the 428B. The bandruidth is de to 80 Hz , and accuracy is $\pm 3 \%$ of full seale when the probe is calibrated with the instrument.
Price: HP 3529A, $\$ 95$.

3529A Option C11 Magnetometer Probe

The 3529A Option Cil is a special magnerometer probe used to convert the Hewlett-Parkard 428A or 428B DC Milliammerer into a direct reading magnetometer ($1 \mathrm{G}=1 \mathrm{~mA}$ indication on 428 A/B meter). The 3529A Option C11 Magnetometer Probe is specificaliy designed to measure the relative magnetic field serength of individual bar magnets on twistor memory cards used in the Westem Electric Electronic Switching System (No. IESS). Refer to data sheet for further information.
Price: HP 3529A, Option C11, \$170.

Description

The Hewlett-Packard Model 427A is a portable, versatile, low cost multi-function meter which is valuable in any laboratory, production line, service department, or in the feld. It is capable of measuring dc voltages from 100 mV to 1 kV full scale; ac voltage from 10 mV to 300 V full scale at frequencies up to 1 MHz ($>500 \mathrm{MHz}$ with the 11096 A High Frequency Probe) ; and resistance from 10Ω to $10 \mathrm{M} \Omega$ center scale.

The 427A will operate continuously for more than 300 hours on its internal 22.5 V dry cell battery. AC line and battery operation is available as an option.

Specifications

DC volimeter
Ranges: $\pm 100 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ in 9 ranges in 10 dB steps.
Accuracy: $\pm 2 \%$ of range.
Input resistance: $10 \mathrm{M} \Omega$.
AC normal-mode rejection (ACNMR): ACNMR is the ratio of the normal-mode signal to the resultant error in readout. 50 Hz and above: $>80 \mathrm{~dB}$.
Overload protection: 1200 V dc .

AC valtmeter

Ranges: 10 mV to 300 V in 10 ranges in 10 dB steps.
Frequency range: 10 Hz to 1 MHz .
Response: responds to average value, calibrated in rms.
Accuracy

Frequanoy	Range	
	0.01 V to 30 V	$100 \mathrm{~V} \mathrm{to} \mathrm{300V}$
10 Hz to 100 kHz	2% of range	2% of cange
100 kHz to 1 MHz		

Input impedance: 10 mV to 1 V range, 10 Ms shunted by $<40 \mathrm{pF} ; 3 \mathrm{~V}$ to 300 V range, $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Overload protection: 300 V rms momentarily, 1 V range and below: 450 V rms max. above I V range.

Ohmmeter

Ranges: 10 to $10 \mathrm{M} \Omega$ center scale in 7 decade ranges.
Accuracy (from 0.3 to 3 on scale): $\pm 5 \%$ of reading.
Source current (ohms terminal positive). Short circult current: from 10 mA on the X 10 range to $0.1 \mu \mathrm{~A}$ on the X 10 M range.
Open clrcuit voitage: from 0.1 V on the X 10 range to 1 V on the X 10 M sange.

General

Input: may be floated up to $\pm 500 \mathrm{~V}$ de above chassis ground. Ohms inpur open in any function except ohms. Volts input open when instrument is off.
Operaling temparature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: >300 hr operation per battery.
HP 427A: 22.5 V dry cell battery, Eveready No. 763 or RCA VS102. HP 427A Option 001: battery operation or ac line operation, selectable on rear panel. 115 V or $230 \mathrm{~V} \pm 20 \%$ 48 Hz to $440 \mathrm{~Hz}, 2$ VA max.
Dimensions (standard $1 / 3$ module): $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feer), $8^{\prime \prime}$ deep ($130 \times 159 \times 203 \mathrm{~mm}$).
Welght: net, $5.3 \mathrm{lb}(2,4 \mathrm{~kg})$; shipping, $8 \mathrm{lb}(3,6 \mathrm{~kg})$.
Price (includes battery): HP 427A, $\$ 250$.
HP 427A Option 001, add $\$ 25$.

Accessories available

HP 11096A High Frequency AC Probe extends range to $>500 \mathrm{MHz}$. With the 11096 A you can measure 0.25 to 30 V rms signals out to 500 MHz with better than ± 1 dB accuracy. Usable zelarive measurements can be made up to 1 GHz (3 dB point at 700 MHz). The 11096 A is a peak-responding detector calibrated to produce a de output proportional to the rms value of a sine rave input. Input impedance is 4 Ma shunted by 2 pF . Price: HP 11096A, $\$ 75$.
HP 11075A High Impact Case. A rugged case for carrying. storing and operating the $427 \mathrm{~A}, \$ 60$.
HP $11001 \mathrm{~A} 45^{\prime \prime}$ test lead, dual banana plug to male BNC, $\$ 7$.
HP 11002 A 60 test lead, dual banana plug to alligator clips, $\$ 8$.
HP $11003 \mathrm{~A} 60^{\prime \prime}$ test lead, dual banana plug to pencil probe and alligator clip, $\$ 10$.
HP 11039A 1000: 1 capacitive voltage divider, 25 kV max, $\$ 250$.
HP 10111 A BNC female to dual banana adapter, $\$ 10$.

MULTIFUNCTION VOLTMETER
 All-purpose instrument measures to 700 MHz
 Model 410C

Description

The HP Model 410 C is a versatile general purpose instrument for use anywhere electrical measurements are made. This one instrument measures dc voltages from 15 mV to 1500 V , direct current from $1.5 \mu \mathrm{~A}$ to 150 mA full scale, and resistance from 0.2Ω to $500 \mathrm{M} \Omega$. With a standard plug-in probe, ac voltages at 20 Hz to 700 MHz from 50 mV to 300 V and comparative indications to 3 GHz are attainable.

410 C Specifications

DC voltmeter

Voltage ranges: $\pm 15 \mathrm{mV}$ to $\pm 1500 \mathrm{~V}$ full scale in 15,50 sequence (11 ranges).
Accuracy: $\pm 2 \%$ of full scale on any range.
Input resistance: $100 \mathrm{M} \Omega \pm 1 \%$ on 500 mV cange and above, $10 \mathrm{M} \Omega \pm 3 \%$ on 150 mV range and below.

AC voltmeter
Voltage ranges: 0.5 V to 300 V full scale in $0.5,1.5,5$ sequence (7 ranges).
Frequency range: 20 Hz to 700 MHz .
Accuracy: $\pm 3 \%$ of full scale at 400 Hz for sinusoidal voltages from 0.5 V to 300 V rms. The ac probe responds to the positive peak-above-average value of the applied signal. The meter is calibrated in rms.
Frequency response: $\pm 2 \%$ from 100 Hz to 50 MHz (400 Hz ref.) ; 0 to -4% from 50 MHz to 100 MHz ; $\pm 10 \%$ from 20 Hz to 100 Hz and from 100 MHz to 700 MHz .
Input impedance: input capacitance 1.5 pF , input resistance $>10 \mathrm{M} \Omega$ at low frequencies. At high frequencies impedance drops off due to dielectric loss.
Safety: the probe body is grounded to chassis at all times for safery. All ac measurements are referenced to chassis.

DC ammater

Current ranges: $\pm 1.5 \mu \mathrm{~A}$ to $\pm 150 \mathrm{~mA}$ full scale in $1.5, \mathrm{~s}$ sequence (11 ranges).
Accuracy: $\pm 3 \%$ of full scale on any range.
Input resistance: decreasing from $9 \mathrm{k} \Omega$ on $1.5 \mu \mathrm{~A}$ range to approximately 0.3Ω on the 150 mA range.
Special carrent ranges: $\pm 1.5, \pm 5$ and $\pm 15 \mathrm{nA}$ may be measured on the 15,50 and 150 mV ranges using the dc voltmerer probe, with $\pm 5 \%$ accuracy and $10 \mathrm{M} \Omega$ input resistance.

Ohmmeter

Resistance range: resistance from 10Ω to $10 \mathrm{M} \Omega$ center scale (7 ranges).
Accuracy: Zero to midscale: $=5 \%$ of reading or $\pm 2 \%$ of midscale, which ever is greater.
$\pm 7 \%$ from midscale to scale value of 2.
$\pm 8 \%$ from scale value of 2 to 3 .
$\pm 9 \%$ from scale value of 3 to 5.
$\pm 10 \%$ from scale value of 5 to 10 .

Amplifier

Voltage gain: 100 maximum.
AC rejection; 3 dB at 0.5 Hz ; approximately 66 dB at 50 Hz and bigher frequencies for signals $<1600 \mathrm{~V}$ P or 30 times full scale, whichever is smaller.
Isolation: impedance between common and chassis is >10 $\mathrm{M} \Omega$ in paraliel with $0.1 \mu \mathrm{~F}$. Common may be floated up to 400 V de above chassis for de and resistance measurements.
Output: proportional to meter indication: 1.5 V de at full scale, maximum current, 1 mA .
Output Impedance: $<3 \Omega$ at dc.
Noise: $<0.5 \%$ of full scale on any range ($\mathrm{p}-\mathrm{p}$).
DC drift: $<0.5 \%$ of full scale/yr at constant remperature; $<0.02 \%$ of full scale/ ${ }^{\circ} \mathrm{C}$.
Overload recovery: recovers from 100:1 overload in $<3 \mathrm{~s}$.

General

Maximum input: (see overload recovery) dc: 100 V on 15,50 and 150 mV ranges, 500 V on 0.5 to 15 V ranges, 1600 V on higher ranges. ac: 100 times full scale or 450 V p which ever is less.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 26$ VA max.
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$) behind panel.
Weight: net $8 \mathrm{lb}(4 \mathrm{~kg})$; shipping $12 \mathrm{lb}(5,44 \mathrm{~kg})$.
Accessories furnished: detachable power cord, NEMA plug.
Accessorles avallable: see page 57.
Price: HP 410 C with HP 11036 A Derachable AC Probe, $\$ 515$. 410 C Option 002 (less ac probe), deduct $\$ 50$.

Description

Average-response (calibrated in rms of a sine wave) of high frequency signals previously impractical can now be made easily with the HP 3406A Sampling Voltmeter. Employing incoherent sampling techniques, the HP 3406A has extremely wide bandwidth (10 kHz to 1.2 GHz) with high input impedance. Signals as small as $50 \mu \mathrm{~V}$ can be resolved on the sampling voltmeter's linear scale. Full scale sensitivity from 1 mV to 3 V is selected in eight 10 dB steps and may be read directly from -62 dBm to +23 dBm for power measurements. Accessory probe tips make the HP 3406A suitable for voltage measurements in many applications such as receivers, amplifiers and coaxial transmission lines.

Measurement indications can be retained on the 3406A meter by depressing a push-bution located on the pen-type probe. This feature is useful when measurements are made in awkward positions where the operator cannot observe the meter indication and probe placements at the same time. Other features include a de recorder output and sample hold output for connection to oscilloscopes, and peak or true rms voltmeters if other than absolute average measurements are required.

Specifications

Voltage range: 1 mV to 3 V full scale in 8 ranges; decibels from -50 to $+20 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into 50Ω); average-responding instrument calibrated to rms value of sine wave.
Frequency range: 10 kHz to 1.2 GHz ; useful sensitivity from 1 kHz to beyond 2 GHz .

Full-scile accuracy (\%) with appropriate accessory (after probe is properly calibrated)

10	20	25	100	100	700	1	1,2
kHz	kHz	kHz	kHz	MHz	MHz	GHz	GHz

± 13	± 8	± 5	± 3	± 5	± 8	± 13

input impedance: input capacity and resistance will depend upon accessory tip used. 100,000 , shunted by $<2.1 \mathrm{pF}$ at 100 kHz with bare probe; $<10 \mathrm{p} F$ with 11072A isolator tip supplied.

Sample hold output

Provides ac signal whose unclamped portion has statistics that are narrowly distributed about the statistics of the input, inverted in sign (operating into $>200 \mathrm{k} \Omega$ load with <1000 pF). Output is 0.316 V at f.s. on any range.
Noise: $<175 \mu \mathrm{~V}$ rms referred to input.
Accuracy (after probe is properly callbrated): 0.01 V range and above: same as full scale accuracy of instrument.
0.001 V to 0.003 V range: value of input signal can be computed by taking into account the residual noise of the instrument.
Jltter: meter indicates withia $\pm 2 \%$ p of reading 95% of time (as measured with HP 3400A True RMS Voltmeter).
RMS crest factor: 0.001 V to $0.3 \mathrm{~V}, 20 \mathrm{~dB} ; 1 \mathrm{~V}, 13 \mathrm{~dB}$; $3 \mathrm{~V}, 3 \mathrm{~dB}$.

Meter

Meter seales: linear voltage, 0 to 1 and 0 to 3; decibel, -12 to +3 . Individually calibrated taut-band meter.
Response time: indicates within specifed accuracy in <3 s.

Jitter: $\pm 1 \%$ peak (of reading).

General

DC recorder output: adjustable from 0 to 1.2 mA into 1000 ohms at full scale, proportional to meter deflection.
Overload recovery time: meter indicates within specified accuracy in $<5 \mathrm{~s}$ (30 V p-p max.).
Maximum input: $\pm 100 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V}$ p.p.
RFI: conducted and radiated leakage limits are below those specified in MIL-6181D and MIL-1-16910C except for pulses emitted from probe. Spectral intensity of these pulses are nominally $50 \mathrm{nV} / \sqrt{\mathrm{Hz}}$; spectrum extends beyond 2 GHz .
Temperature range: instrument, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; probe, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 25 \mathrm{VA}$ max.
Dlmensions: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($197 \times 159 \times 279 \mathrm{~mm}$); $1 / 2$ module.
Weight: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Accessorles: refer to data sheet.
Price: HP 3406A, $\$ 795$.

Description

Models 403A and 403B ac voltmeters are versatile, general purpose instruments for laboratory and production work and are ideal for use in the field since they are solid-state, battery-operated, and portable.

Both measure from 100 microvolts to 300 volts, the 403 A covering 1 Hz to 1 MHz and the 403 B covering 5 Hz to 2 MHz . Boch operate from internal batteries and thus may be completely isolated from the power line and external grounds, perrnitting accurate measurements at power-line frequency and its harmonics without concern for beat effects. Isolation from external ground also permits use where ground loops are troublesome. Tumover effect and waveform errors
are minimized because the meters respond to the average value of the input signal.

The 403 B operates from an ac line as well as from the internal battery pack, and batteries recharge during ac operation. Battery charge may be easily checked with a frontpanel switch to assure reliable measurements. Normally, about 60 hours of ac operation recharge the batteries; but an internal adjustment is provided which nearly doubles the charging rate. The Model 403B can be used while its batteries charge. A sturdy taut-band meter eliminates friction and provides greater precision and repeatability.

For improved resolution in dB measurements, the 403 B option 001 is available. This version spreads out the dB scale by making it the top scale of the meter.

HP Madel	403A	403B	403日 Dption 001
Range	0.001 to 300 V rms full scale. 12 rances. in a 1.3 .10 seauence. $-60 \mathrm{d8}$ to +50 dB in 12 ranges with 10 dB steds.		
Meter	responds to average value of input waveform, calibrated in the rms value of a sine wave.		
Frequency range	1 Hz to 1 MHz	5 Hz to 2 MHz	5 Hz to 2 MHz
Accuracy	within $=3 \%$ of full scale, 5 Hz to 500 kHz ; within $=5 \%$ of full scale, 1 to 5 Hz and 500 kHz to 1 MHz	within $=2 \%$ of full scale from 10 Hz to 1 MHz ; within $=5 \%$ of full scale from 5 to 10 Hz and 1 to 2 MHz , except $=10 \% 1$ to 2 MHz on the $300 \vee$ range $\left(0\right.$ to $50^{\circ} \mathrm{C}$)*	within $=0.2 \quad \$ 8$ of full scale from 10 Hz to 1 MHz ; within $=0.4 \mathrm{~dB}$ of full scale from 5 to 10 Hz and I to 2 MHz , except $=0.8 \mathrm{~dB} \mathrm{I}$ to 2 MHz on the 300 V range $\left(0\right.$ lo $50^{\circ} \mathrm{C}$)*
Input impedance	$2 \mathrm{M} \Omega$ shunted by $<60 \mathrm{pF}, 0,001$ to $0,1 \mathrm{IV}$ ranges; $2 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$ on 0.3 10300 V ranges	2MS; shunted by <60 pF; 0.001 to 0.03 V ranges; $<30 \mathrm{pF}, 0.1$ to 300 V ranges	same as 403B
Maximum input	$600 \mathrm{Vp}, 0.3 \mathrm{~V}$ and higher ranges; 25 V rms or 600 V р on 0.1 V and lower ranges (fused).	Fuse protected (signal ground can be $=500$ \checkmark dc from chassis).	same as 403 B
Power	5 standard radio-type mercury cells. Battery life approx. 400 hours	4 rechargeable batteries, $40 \mathrm{hr}^{\prime}$ operation per recharge, up to 500 recharging cycles; self-contained recharging circuit functions during operation from ac line	same as 4038
Dimensions	$\begin{aligned} & 81 / \mathrm{s}^{\prime \prime} \text { wide, } 51 / 2^{\prime \prime} \text { high, } 62 / \mathrm{s}^{\prime \prime} \text { deep (} 210 \times 140 \times \\ & 162 \mathrm{~mm} \text {) } \end{aligned}$	51/8" wide, $61 / /^{"}$ high (without removable feen. $8^{\prime \prime}$ deed ($130 \times 159 \times 203 \mathrm{~mm}$)	same as 403B
Weight	net 43/7 lbs (2,1 kg); shipping 8 lbs ($3,6 \mathrm{~kg}$)	net $61 / 2 \mathrm{lbs}(2,9 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$	same as 4038
Price	\$380	\$350	\$375

Description

Model 100 D is a precision volemeter offering wide voltage

accuracy of $\pm 2 \%$ of reading of $\pm 1 \%$ of full scale, whichever is more accurate. The $5^{\prime \prime}$ meter is mirror backed.

	400D,DR	400 ${ }_{1} \mathrm{HA}$	400L,LR
Voltage range:	1.0 mV to 300 V full scale, 12 ranges	1.0 mV to 300 V full scale 12 ranges	-70 dB to +52 dB in 12 ranges 1.0 mV to 300 V fuil scale, 12 renges
Frequency range:	10 Hz to 4 MHz		
Accuracy:	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 20 \mathrm{~Hz}: \pm 10 \% \text { l.s. } \\ & 20 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}: \pm 20 \mathrm{l} . \\ & 1 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \pm 3 \% \text { f.s. } \\ & 2 \mathrm{MHz} \text { to } 4 \mathrm{MHz}=10 \% \text { i.s. } \end{aligned}$	$10 \mathrm{~Hz} 1020 \mathrm{~Hz}: \pm 10 \% \mathrm{i} . \mathrm{s}$. 20 Hz to $50 \mathrm{~Hz}:=2 \%$ i.s. $50 \mathrm{~Hz} 10500 \mathrm{kHz}:=1 \% \mathrm{f} \mathrm{s}$ $500 \mathrm{kHz} 101 \mathrm{MHz}:=2 \% \mathrm{f} . \mathrm{s}$ 1 MHz to $2 \mathrm{MHz}:=35 \mathrm{l} . \mathrm{s}$. 2 MHz to $4 \mathrm{MHz}^{2} \pm 10 \% \mathrm{k} .5$.	$10 \mathrm{H}_{2} 1020 \mathrm{~Hz}:=5 \%$ of rdg . 20 Hz (0 $50 \mathrm{~Hz}: \pm 3 \%$ of rdg. or $\pm 2 \%$ of t.s. t 50 Hz to $500 \mathrm{kHz}:=2 \%$ of rdg. or $\pm 1 \%$ of f.s. \dagger 500 xHz to $1 \mathrm{MHz}: \pm 3 \%$ of rdg. or $=2 \%$ of l.s. \dagger 1 MHz to $2 \mathrm{MHz}:=4 \%$ of rdg. or $=3 \%$ of f.s. \dagger 2 MHz to $4 \mathrm{MHz}^{2} \pm 5 \%$ of rdg.
Calibration:	reads rms valus of sine wave; voltage indicalion proportional to average value of applied wave; linear voltage scale 0 to 3 and 0 to 1; dB scale $-12 \mathrm{co}+2 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{~mW}$ in $600 \Omega) ; 10 \mathrm{~dB}$ interval between ranges		reads rms value of sine wave; logarithmic voltage srale 0.3 lo 1 and 0.8 to 3 : Imear dB scale. -10 dB to +2 dB (based on $0 \mathrm{~dB}=1 \mathrm{~mW}$ in 500Ω); 10 dB intervals between ranges
Input impedance:	10 MQ shunted by $<20 \mathrm{pF}$ on ranges 1 to 300 V ; $<35 \mathrm{pf}$ on ranges 0.001 to 0.3 V		
Amplifier:	output 0.15 V max; output impedance 50Ω; max. gain 150 on 0.001 cange		
Power :	115 or (230 V musi be speafied) $=10 \%, 4810440 \mathrm{~Hz}$: 80 VA max.		
Dimensions	cabinet mount: $71 / 2^{\prime \prime}$ wide. $111 / 2^{2}$ high, $12^{\prime \prime}$ deep ($191 \times 292 \times 305 \mathrm{~mm}$) rack mount: $19^{\prime \prime}$ wide, 7 " high, 10 海" deep behino danel ($483 \times 389 \times 276 \mathrm{~mm}$)		
Weight:	nel $18 \mathrm{lbs}(8,1 \mathrm{~kg}$, shapping $20 \mathrm{lbs}(9.0 \mathrm{~kg})$ (cabinet mount: net $21 \mathrm{lbs}(9,45 \mathrm{~kg}$), shipping 32 lbs (14.4 kg) (rack mount)		
Price.	$\begin{aligned} & \text { HP 4000, } \$ 385^{*} \\ & \text { HP } 4000 \mathrm{R}, \$ 390^{*} \end{aligned}$	$\begin{aligned} & \text { HP 400H, } \$ 395^{*} \\ & \text { HP 400HR, } \$ 400^{* *} \end{aligned}$	HP 400L, \$395* HP 400LR, $\$ 400^{* *}$

AC VOLTMETERS

400E

400 FL

400GL

SPECIFICATIONS *				
Calibration	400E	400F	400EL/400FL	400 GL
	reads rims value of sine wave: volrage indication proportional to absolute average of applied wave.			
	scale -10 to $+2 \mathrm{~dB}, 10 \mathrm{~dB}$ between ranges; 100 divisions orr 0 to 1 scale		IInear dB scale $-10 d 8$ to $+2 d B$. 10 dB between ranges: Log voltage scales 0.3 to 1 and 0.810 3; 120 divisions from -10 to $+2 \mathrm{~dB}$	linear dB scale, 100 divisions from -20 to 0 dB . Log valiage scale $0 d B=1 \mathrm{~V}$
Input Impedance	Resistance: $10 \mathrm{M} \Omega$ on all ranges			
	$<25 \mathrm{pF}$ to <12 pF depending on ranges	$<25 \text { pF to }<10 \text { pF }$ depending on ranges	400E L: same as 400E 400F L: s8me as 400F	$<30 \mathrm{pF}$ to $<15 \rho F$ depending on ranges
Recovery from Overload	<2 s for 80 dB overload			
	300 Vmox input			1200 V max input
Power				
	DC External Eatteries: + and -voltages between 35 V and 55 V .			
Dimensions	$51 / 8^{\prime \prime}$ wide. 61/4' high (without removable feetl. $11^{\prime \prime}$ deep ($130 \times 359 \times 279 \mathrm{~mm}$)			
Weight	same as 400GL	net 6 los $12,7 \mathrm{kgl}$ shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg})$	400E L: same as 400GL 400 FL: same as 400F	net 6 lbs $(2,7 \mathrm{~kg})$ shipping 9 ibs $(4,1 \mathrm{~kg})$
Price	\$345	\$330	$\begin{aligned} & \text { 400EL: } \$ 355 \\ & 400 \mathrm{FL}: \$ 340 \end{aligned}$	\$350

- Refer to data sheet for special options and complete specifications.

Description

The Hewlett-Packard Model 3400A is a true root-mean. square (rms) voltmeter, providing a meter indication proportional to the dc heating power of the input waveform. In addition to its meter indication, the Model 3400A provides a de output proportional to meter deflection making it a useful true rms detector for graphic recording and digitizing with a de digital voltmeter, such as the HP Model 3440 A .

Versatility

Versatility of the Model 3400A is enhanced by its wide $10 . \mathrm{Hz}$ to $10 . \mathrm{MHz}$ frequency response, high crest factor, $1-\mathrm{mV}$ to 300 -Volt full-scale sensitivity and $10-\mathrm{M} \Omega$ input impedance. Six-decade frequency coverage makes the 3400 A extremely fexible for all audio and most of measurements and permits the measurement of broadband noise and fastrise pulse. A wide range of sensitivity (12 ranges) allows measurement of anything from "down in the grass" signal and noise, to transmitter and amplifier outputs (with $30 \cdot \mathrm{~dB}$ overload protection). Pulses or other non-sinusoids with crest factors (ratio of peak to rms) up to 10:1 can be measured full seale. Crest factor is inversely proportional to meter defiection, permitting up to $100: 1$ crest factor at 10% of full scale. The ability of the 3400 A to accept waveforms with such large crest factors insures accurate noise and pulse measurements without the need for correction factors. Permanent plots of measured data and higher resolution measurements can be obtained by connecting an X.Y plotter, strip chart recorder or digital voltmeter to the convenient rear-panel dc output. The de output provides a linear 0 to 1 -volt drive proportional to meter defection.

RMS current

True-rms carrent measurements can be made conveniently by using the HP Model 456A Current Probe with the Model 3400A. See page 57.

Specifications

Voltage range: 1 mV to 300 V full scale, 12 ranges.
DB range: -72 to +52 dBm ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
Frequency range: 10 Hz to 10 MHz .
Response: responds to rms value (heating value) of the input signal for all waveforms.

10 Hz	50 Hz	1 MHz	2 MHz	3 MHz 10 MHz
$\pm 5 \%$	$\pm 1 \%$	- 2%	=3\%	$\pm 5 \%$

Ac-to-de converter accuracy: \% of full scale $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$)*

Crest factor: (ratio of peak to rms amplitude of input sig. nal) : 10 to 1 at full scale (except where limited by maximum input) inversely proportional to meter deflection, (e.g., 20° to 1 at half-scale, 100 to 1 at tenth scale).

Maximum continuous input voitage: 500 V ac peak at 1 kHz on all ranges; 600 V dc on all canges.
Input impedance: from 0.001 V to 0.3 V range: $10 \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$. From 1.0 V to 300 V range: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$. ac-coupled input.
Response time: for a step function, <5 s to final value.
AC overload: 30 dB above full scale or 800 V p, whicherer is less, on each range.
Output: negative 1 V dc into open circuit at full-scale deflection, proportional to meter deflection from $10-100 \%$ of full scale. 1 mA maximum; nominal source impedance is 1000Ω. Output noise $<1 \mathrm{mV}$ rms.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 12 \mathrm{VA}$ max. Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($1 / 3$ module). ($130 \times 159 \times 279 \mathrm{~mm}$).
Weight: net: $71 / 4 \mathrm{lbs}(3,3 \mathrm{~kg})$; shipping: $10 \mathrm{lbs}(4,5 \mathrm{~kg}$).
Accessories furnished: 10110A Adapter, BNC to dual banana jack.
Accessories available: 11001 A Cable, 45 in. long, male BNC to dual banana plug, $\$ 7.00$. 10503 A Cable, 4 ft . long, male BNC connectors, 513.00 . 11002A Test Lead, dual banana plug to alligator clips, $\$ 8.00$. 11003 A Test Leads, dual banana plug to probe and alligator clip, $\$ 10.11076 \mathrm{~A}$ Catrying Case, $\$ 60, \mathrm{HP}$ Model 456 A AC Current Probe, $1 \mathrm{mV} ; 1 \mathrm{~mA}$, s 250.
Price: HP 3400A. 5600.
HP Mrodel 3400A option 001 spreads out the dB scale by making it the top scale of the meter, add $\$ 25$.
Rear terminals in parallel with front panel terminals and linear \log scale uppermost on the meter face are available on special order.

[^4]Log Voltmeter/Converter Model 7562A

The Model 7562A is a wide range (80 dB), single channel logarithmic voltmeter/converter designed to produce de output voltages in a logarithmic relationship to de input voltages or the true RMS value of an ac input voltage. The 7562A contains a true RMS detecror which, inherently, is not dependent on pure sinusoidal sig. nals to achieve measurement accuracy. A self-contained meter calibrated in volts and $d B$ makes the 7562 A an accurate voltmeter. A constane amplitude oscilloscope output makes the converter compatible with a variety of oscilloscope readout and phase meter applications.

Specifications

Performance specifications

Ac and de modes

Input:
Dynamic range: 80 dB .
Voltage range: 1 mV to 10 V or 10 mV to 100 V selectable by front panel switch. Accepts either ac or positive signals.
Output:
Voltage: 0 to 800 mV dc corresponding to $10 \mathrm{mV} / \mathrm{dB}$. Output impedance: 100 ohms.
Dc mode
Accuracy; $\pm 0.25 \mathrm{~dB}$ at $25^{\circ} \mathrm{C}$.
Input impedance: 100 ks , shunted by less than 100 pF ; singie ended.
Temperature coefficient: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum.
Zero stablity: $\pm 0.25 \mathrm{~dB}$.
Ac mode
Input impedance: $1 \mathrm{M} \Omega$, shunted by less than 100 pF : single ended.
Accuracy and frequency response: (ar $25^{\circ} \mathrm{C}$).

Temperature coefficient: $\pm 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum.
Slewing speed:

Range setring	Minimum slewing speed
0.5 Hz	$1 \mathrm{~dB} / \mathrm{s}$
5 Hz	$10 \mathrm{~dB} / \mathrm{s}$
50 Hz	$60 \mathrm{~dB} / \mathrm{s}$

Oscilloscope output: approx. 0.5 V rms regardless of input.
Crest factor: 5:1 unless limited by max. input voltage.
General specifications
Maximum peak Input voltage: $\pm 25 \mathrm{~V}$ on 1 mV to 10 V range; $\pm 250 \mathrm{~V}$ on 10 mV to 100 V range.
Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear-input and output-BNC connectors.
Power requlrements: $115 / 230 \mathrm{Vac}, 50$ to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Dlmenslons: $3.7 / 16^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep (88×197 $\times 292 \mathrm{~mm}$).
Weight: net, $8 \mathrm{lb}(3,6 \mathrm{~kg})$; shipping, $12 \mathrm{lb}(5,4 \mathrm{~kg})$,
Price: Model 7562A $\$ 1045$.

Log Voltmeter/Amplifier Model 7563A

The Model 7563A Logarithmic Voltmeter/Amplifier is a low cost, single channel, de logarithmic amplificr with a very high dynamic range (110 dB) designed to produce a logarithmic.related dc output roltage for a very wide range of de inpot voltages. A single input range of $316 \mu \mathrm{~V}$ to 100 V is coupled with an input polarity switch for ease and versatility of operation. A high (100 $k \Omega$) input impedance and low (less than 5Ω) output impedance allows the 7563A to be used in systems or on the bench. A front panei meter calibrated in dB and mV provides instancaneous visual indication of operating levels. Applications include: log scaling of recorder axes, pulse height analyzers, scope displays, and almost any circumstance where log compression of do voltage ranges is required. The 7563 A is an accurate voltmeter. Dual or single rack mounting capability is afforded by a field installable rack mounting adapter, utilizing a minimum of rack space.

Specifications

Ferformance speciflcations

Input
Dynamic range: 110 dB .
Voltage range: $316 \mu \mathrm{~V}$ to 100 V . Accepts either positive or negative signals, selectable by front panel swicth.
Output
Voltage: 0 to 1.1 V dc corresponding to $10 \mathrm{mV} / \mathrm{db}$. Rear Terminals; adjustable i to $10 \mathrm{mv} / \mathrm{dB}$.
Output Impedance: less than 5Ω front panel, 300Ω rear.
Meter accuracy: reading accurate to $\pm 1.5 \mathrm{~dB}$, referced to ourput. Input impedance: $100 \mathrm{k} \Omega$, shunted by less than 100 pF ; single ended.
Accuracy: (at $25^{\circ} \mathrm{C}$).

$316 \mu \mathrm{~V}$		10 mV	10 V	
	$\pm 0.5 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$

Temperature coefficlent: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum and $\ddagger 3$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ referred to input.
Zero stability: $\pm 0.25 \mathrm{~dB}$ at constant temperature.
Rise time:

Maximum Rlse Tkme	
Slaral Level	$1 \mathrm{mV}-10 \mathrm{~V}$ Rangs
$316 \mu \mathrm{~V}-1 \mathrm{mV}$	$2000 \mu \mathrm{~s}$
$1 \mathrm{mV}-10 \mathrm{mV}$	$400 \mu \mathrm{~s}$
$10 \mathrm{mV}-100 \mathrm{mV}$	$40 \mu \mathrm{~s}$
100 mV 1 V	$4 \mu \mathrm{~s}$
$\mathrm{VV}-100 \mathrm{~V}$	$2 \mu \mathrm{~s}$

General specifications
Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear-input and output-ENC connectors.
Power requirements: $115 / 230 \mathrm{~V}$ ac, 50 to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Dimensions: $3-7 / 16^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep (88×197 x 292 mal).
Weight; net, $8 \mathrm{lb}(3,6 \mathrm{~kg})$: shipping, $12 \mathrm{lb}(5,4 \mathrm{~kg})$.
Price: Model 7563A 37,45.

Impedance/Z/ $\theta, C, R, L, D \& Q$

Hewlett-Packard's family of imped. ance measurement instruments combine the familiar null measurement techniques with digital logic and feedback circuits, to achieve simple and rapid operation without a sacrifice in precision. The basic specifications for Hewlett-Packard's impedance family is summarized in table 1. This table will help you select the best impedance instrument for your needs. Frequency, Q, capacitance, inductance, resistance and basic accuracy can be traded off to select the most suitable in. strument. For some instruments, capacitance and inductance are not the principal parameters but are secondary to the primary readout. An example is the Vector impedance meter, which displays Z and θ directly on two separate meters.

Impedance considerations

There are two basic eypes of impedance measuring instruments: bridge instruments and meters. In general, bridge type instruments have the best accuracy specifications. This type of instrument las found wide application and is the basis for the HP 4260A Universal Bridge, 4270A Automatic Capacitance Bridge, and 250 B RX Meter.
In the past, bridge instruments have required considerable operator skill to
obtain consistent results. However, the Universal Bridge was specifically designed to achieve rapid and consistent audio frequency measurements. This instrument has been used extensively as a manual instrument for the general characterization of components.
The evolution of bridge measurements has created the need for completely automatic instruments to rapidly characterize multi-conductor cables, variable capacitor diodes, and discrete capacitors. To satisfy these customer requirements, the 4270A Automatic Capacitance Bridge was developed. This instrument is completely programmable and displays capacitance and dissipation/conductance in digital form. BCD outputs are available for remote processing.

Impedance meters in general utilize constant current/voltage sources to excite the unknown impedance. Amplitude and phase sensitive voltmeters detect the real and reactive voltage/current components of the unknown. The display for most impedance meters is an analog meter. Although impedance meters do not have the accuracy of bridge instruments, they are less expensive and very easy to use. The 4350A High Capacitance Meter, 4800A Vector Impedance Meter, and the 4332A LCR Merer urilize this principal. Impedance meters have analog outputs
proportional to the displayed function. This signal may be used with the 4050A Analog Comparator to select components on a High/Go/Low basis.

Summary

To help you select an impedance meter suitable to your needs, the following guidelines may be used:
(1) For a desired accuracy and cost range, select the instrument wirl the broadest capability in C, L, R\&Q. (2) Bridge instruments will provide the best accuracies ($.1 \%$ to 1%). However, only the higher priced bridges offer the speed and convenience in measurement available in meter type instruments. (3) The best value where parts selection is desired is a meter instrument where an analog signal is a vailable for use with an analog comparator. (4) To obrain meaningful results, a parts user should make measurements at the same frequency specified by the manufacturer. (5) Hewlett. Packard's impedance instruments have been used in numerous diverse applications from the measurement of the dielectric constant of liquids, to the wing to fuselage continuity on aircraft. If you have an unusual application and need assistance, contact your nearest HewletrPackard sales office for application information.

TABLE 1. HP IMPEDANCE METERS

MILLIOHMMETER Convenient two probe measurements Model 4328A

 MEASURING DEVICES

The HP 4328A Milliohmmeter is a portable instrument for ac measurement of low resistances. Maximum sensitivity is 20 μ ohms, making it ideal for measuring the contact resistance of switches, relays and connectors; it is also useful for safe testing of fuses and squibs.

A unique phase discriminator permits accurate resistive mea. surements on samples with a series reactance up to twice full scale resistance.

Specifications

Range: 0.001 to 100 ohms full scale in a $1,3,10$ sequence. Aceuracy: $\pm 2 \%$ of full scale.
Measurlng frequency: $1000 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$,
Voltage across sample: $200 \mu \mathrm{~V}$ peak at full scale.

Maximum voltage across sample: 20 mV peak. External superimposed dc: 150 V dc maximum. Recorder output: 0.1 V dc output at full scale. DISSIPATION IN SAMPLE

Range (ohmsl	Applied Current (mA)	Maximum Dissipation in Samples (μW)
0.001	150	23
0.003	50	8
0.01	15	2.3
0.03	5	0.8
0.1	1.5	0.23
0.3	0.5	0.08
1	0.85	0.023
3	0.05	0.008
10	0.015	0.0023
30	0.005	0.0008
100	0.0015	0.00023

General

Power requirements: $115 / 230 \mathrm{~V}$ switch $\pm 10 \%, 50$ to 60 Hz , 1.65 VA max.

Welght: net, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping, $12 \mathrm{lbs}(5,4 \mathrm{~kg})$.
Dimensions: $51 / s^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($130 \times 158 \mathrm{x}$ 279 mm).
Accessories furnished: Model 1600s Probe (clip-on), 16006A Probe (pin-contact) and 16007A/B Test Leads. Detachable power cord.
Prlce: HP 4328A, \$620: Option 001 (rechargeable battery operation), add $\$ 25$.

RESISTANCE METER
 Wide range for high resistance, low current Model 4329A

The HP Model 4329A is a solid-state insulation resistance meter designed for easy, accurate and direct readings of the very high resistance values typically found in synthetic resins, porcelain, insulating oils and similar materials. It is also useful for leakage measurements of capacitors, transformers, switches and cables. Seven regulated dc test voltages (berween 10 and 1000 V) are provided as test source. Test voltage shorts of sample breakdown currents will not damage instrument circuirry. The HP 4329 A also has a current measurement capa. bility. Minute currents as low as 0.05 PA can be readily mea. sured.

Specifications

Resistance measurement
Range: $500 \mathrm{k} \Omega$ to $2 \times 10^{10} \Omega$.
Accuracy: at low resistance end of each scale, accuracy is $\pm 3 \%$; near center scale $\pm 5 \%$; and, near the specified upper limit on the meter scale (see table below), accuracy is $\pm 10 \%$. Above these limits, accuracy is not specified.

On all voltage ranges, if multiplier is set to Rmax, an additional $\pm 3 \%$ is included.
AVAILABLE RESISTANCE READINGS

Test Voltage	Available Resistonce Resdings	Meter Scale	Accuracy Upper Limit
10 V	$5 \times 10^{5} \Omega$ $102 \times 10^{14} \Omega$.51020	5
25 V	$1.25 \times 10^{6} \Omega$ $105 \times 10^{14} \Omega$.13105	1.25
50 V	$2.5 \times 10^{6} \Omega$ $101 \times 10^{15} \Omega$.251010	2.5
100 V	$5 \times 10^{6} \Omega$ to $2 \times 10^{15} \Omega$.5 to 20	5
250 V	$1.25 \times 10^{7} \Omega$ $105 \times 10^{15} \Omega$.13 to 5	1.25
500 V	$2.5 \times 10^{7} \Omega$ to $1 \times 10^{16} \Omega$.25 to 10	2.5
1000 V	$5 \times 10^{7} \Omega$ to $2 \times 10^{16} \Omega$.5 to 20	5

Current measurement

Range: 0.5×10^{-13} to $2 \times 10^{-18} \mathrm{~A}$ in 8 ranges.
Input resistance: 10^{4} to $10^{11} \Omega \pm 1 \%$, depending on range.
Accuracy: $\pm 5 \%$ of full scale deflection (there can be an additional $\pm 3 \%$ error at the top decade).

General

Recorder output: 0 to 100 mV dc; $1 \mathrm{k} \Omega$ output resistance.
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}, 3.3 \mathrm{VA}$ max.
Dimenslons: $61 / 2^{\prime \prime}$ high (166 mm), $7-25 / 32^{\prime \prime}$ wide (298 mm), $8-25 / 32^{\prime \prime}$ deep (223 mm).
Welght: net, 8 lbs ($3,5 \mathrm{~kg}$) ; shipping, $12 \mathrm{lbs}(5,4 \mathrm{~kg})$.
Accessory furnlshed: HP 16117A Eow Noise Test Leads.
Price: HP 4329A, $\$ 840$.

MEASURING DEVICES

Universal Bridge

Advantages

Measurements of C, L, R, D and Q with five-bridge cirevits; FUNCTION sairch which selects the appropriate equivalent circuit.
3-digit readout for C, R, L; RANGE suritch selection automatically determines the unit, and decimal point.
Electronic AUTO-BALANCE; AUTO position FUNC. TION switch provides fast nulling by single control of CRL dial, D or Q measurement is done by switching out of AUTO and adjusting only DQ control.
Direction indicacors (<CRL>); direction of range selection and CRL control is automatically indicated for fast nulling.
External oscillator ($20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$), dc bias supply and detector; terminals for interfacing are provided on the rear panel.

Specifications*

Range and accuracy

Range (7 ranges, maximum resolution $1 \mathrm{uH}, 1 \mathrm{pF}, 10 \mathrm{~m} \Omega$)			
Inductance	Capacitance	Resistance	Accuracy
$1 \mathrm{uH} \cdot 1 \mathrm{mH}$	$1 \mathrm{pF} \cdot 1000 \mathrm{pF}$	$10 \mathrm{~m} \Omega \cdot 10 \Omega$	$\pm(2 \%+1$ count)
$1 \mathrm{mH}-100 \mathrm{H}$	$1000 \mathrm{pF} \cdot 100 \mathrm{uF}$	$10 \Omega-1 \mathrm{M} \Omega$	$\pm(1 \%+1$ count $)$
$100 \mathrm{H}-1000 \mathrm{H}$	$100 \mathrm{uF} \cdot 1000 \mathrm{uF}$	$1 \mathrm{M} \Omega-10 \mathrm{M} \Omega$	$\pm(2 \%+1$ count $)$

LOW D series C	$0.001 \cdot 0.12$	$\pm \sqrt{D \text { reading }} \%$
पाGHD parallel C	$0.05 \cdot 50$	$4(10 \times 0$ reading $+41 \%$ $-(10$ VD reading +2$) \%$
LOW O series L	$0.02 \cdot 20$	$\begin{aligned} & \text { +(10/Q reading) } 4 \% \\ & -(10 / V \text { Qrearina })+2 \% \end{aligned}$
HIGH O parallet L	8-1000	$\pm 2 \sqrt{0 r \text { reading }}$ \%

LCR Meter

Hewlett-Packard Model 4332A LCR Meter measures induerance, capacitance, and resistance with speed and accuracy. The instrument provides direct-readings of L, C and R with linear merer scales. The 4332A is extremely useful for measurements of both linear and non-linear components such as semiconductor capacitor values, inducrance of coils with ferfite core. Combining the 4332A analog output with the 4050A Analog Comparator provides a rapid GO/NO-Go rest system.

Specifications

Inductance measurement

Range: $3 \mu \mathrm{H}$ to 1 H full scale. 12 ranges. Measuring frequency
$3 \mu \mathrm{H}$ to $1000 \mu \mathrm{H}$ ranges: $100 \mathrm{kHz} \pm 5 \%$.
3 mH to 1000 mH ranges: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: $<1.5 \mathrm{mV} \mathrm{mms}$.
 scale $+0.03 \mu \mathrm{H}]$.

Capacitance measurement

Range: 3 PF to $1 \mu \mathrm{~F}$ full scale, 12 tanges.
Measuring frequency
3 pF to 1000 pF ranges: $100 \mathrm{kHz}=9 \%$.
3 nF to 1000 nF ranges: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: approximately 70 mV ms
Accuracy (at $25^{\circ} \mathrm{C}$): $\pm\left[1 \%\right.$ reading $+\left(1.5 \%+\frac{3}{Q}\right.$) of full scale +0.03 pF .

Resistance measurement
Range: 3Ω to $1 \mathrm{M} \Omega$ full scale, 12 ranges.
Measuring frequency: $1 \mathrm{kHz} \pm 5 \%$.
Voltage across sample: $<1 \mathrm{mV}$ rms.
Accuracy (at $25^{\circ} \mathrm{C}$)
3Ω to $30 \mathrm{k} \Omega$ ranges: $\pm(0.5 \%$ reading $+2 \%$ full scale + 0.03Ω).
$100 \mathrm{k} \Omega$ to $2000 \mathrm{k} \Omega$ ranges: $\pm(1 \%$ reading $+2 \%$ full scale).

General

Temperature range: 0 to $30^{\circ} \mathrm{C}$.
Temperature coefficient (0 to $50^{\circ} \mathrm{C}$): $\pm 0.05 \%$ full scale $/{ }^{\circ} \mathrm{C}$.
Analog outputs
1 V de at any full scale range.
1 V or 0.3 V de full scale.
Input power: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%$, 48 to $66 \mathrm{~Hz}, 8.8 \mathrm{VA}$ max. Dimensions: $51 / \mathrm{B}^{\prime \prime}$ wide. $61 / 4^{\prime \prime}$ high (withour removable feer). $11^{\prime \prime}$ deep ($130 \times 152 \times 279 \mathrm{~mm}$).
Weight: ner, $74 / 5 \mathrm{lbs}(3,5 \mathrm{~kg}$): shipping, $101 / 2 \mathrm{jbs}(4,7 \mathrm{~kg})$.
Price: $\$ 720$.

Q METER
 Measures $\mathrm{Q}, \mathrm{L}, \mathrm{C}$, \& resonant frequency
 Model 4342A

MEASURING DEVICES

Description

The direct-reading expanded scale of the 4342A permits measurement of Q from s to 1000 and readings of very small changes in Q resulting from variation in test parameters. The 4342A is solid state with the elimination of specially matched, fragile thermocouple components.
The Q meter consists of a stable, continuously variable oscillator, with automatic level-control. The outpur is applied in series with an external unknown and an internal variable capasitor. A Q volkmeter with high input Z is connected across the internal variable capacitor portion of the tuned circuit to measure the reactive voltage in terms of circuit Q.

Usefułness

The 4342A will measure dissipation factor and dielectric constant of insulating materials. The Q meter can measure coef. ficient of coupling, mutual inductance, and frequency response of transformers. RF resistance, reactance, and Q of resistors and capacitors can also be determined.

Internal oscillator

The internal oscillator covers a frequency range from 22 kHz to 70 MHz (10 kHz to 32 MHz in Option 001) in seven bands. This source is automatically leveled to provide a constant injec. tion voltage. This ALC feature eliminates the Q multiplier control found on other Q meters.

Q voltmeter

High stability of the Q Voltmeter eliminates Q-zero adjust. ment for routine measurements. Accurare information on changes in Q is obrainable on all Q-ranges through the greater resolution (x 10) of delta-Q measurement.

Constant voltage injection system

The 4342A utilizes a constant voltage injection system eliminating the fragile thermocouple system found in other Q meters. The low impedance of this injection system increases Q accuracy.

Rapid inductance measurement

A single " L " point on the frequency dial eliminates the neces. sity to readjust frequency during inducrance measurements.

GO/NO-GO Q selector

The Q.limit selector will be especially useful for rapid Go/ No.Go testing. The high response speed of the Go/No-Go indicator compared to the meter movement is an added feature. Externa! devices may be remotely controlled by the Go/No-Go over limit signal.

Simple, Easier operation

Push-burton operation of frequency range and $\mathrm{Q} / \Delta \mathrm{Q}$ range selection provides straight forward measurement. Automatic indictaion of meter scales, frequency dials and frequency multi. pliers are featured, adding to simplicity and reading speed.

Specifications
 RF characteristics

RF range: 22 kHz to 70 MHz in 7 bands: 22 to 70 kHz , 70 to $220 \mathrm{kHz}, 220$ to $700 \mathrm{kHz}, 700$ to $2200 \mathrm{kHz}, 2.2$ to $7 \mathrm{MHz}, 7$ to $22 \mathrm{MHz}, 22$ to 90 MHz .
RF accuracy: $\pm 1.5 \%$ from 22 kHz to $22 \mathrm{MHz} ; \pm 2 \%$ from 22 MHz to $70 \mathrm{MHz} ; \pm 1 \%$ at " L " point on frequency dial.
RF increments: approximately 1% resolution.
Q measurement characteristics
Q range: 5 to 1000 in 4 ranges: 5 to 30,20 to 100,50 to 300 , 200 to 1000.

Q accuracy: of of indicated value. (at $25^{\circ} \mathrm{C}$).

| 0 | Freq. | $22 \mathrm{kHz}-30 \mathrm{MHz}$ |
| :---: | :---: | :---: | $30 \mathrm{MHz} \cdot 70 \mathrm{MHz}$

Q increments: upper scale: 1 from 20 to 100 , lower scale: 0.5 from 5 ro 30 .
ΔQ range: 0 to 100 in 4 ranges: 0 to 3,0 to 10,0 to 30 , 0 to 100.
ΔQ accuracy: $\pm 10 \%$ of full scale.
ΔQ increments: upper scale: 0.1 from 0 to 10 , lower scale: 0.05 from 0 to 3.

Inductance measurement characteristies

L range: $0.09 \mu \mathrm{H}$ to 1.2 H , direct reading at 7 specific frequencies.
L accuracy: $\pm 3 \%$ after substikution of residuals (approx 10 nH).

Resonating capacitor characteristics

Capacitor range: main dial: 25 to 470 pF ; vernier dial -5 to +5 pF .
Capacitor accuracy: main dial: $\pm 1 \%$ or 1 pF , whichever is greater; vernier dial $\pm 0.1 \mathrm{pF}$.
Capacitor increments: main dial: 1 pF from 25 to $30 \mathrm{pF}, 2 \mathrm{pF}$ from 30 to $200^{\prime} \mathrm{pF}, 5 \mathrm{pF}$ from 200 to 470 pF : vernier dial: 0.1 pF .

Generas

Rear panel outputs

Frequency monitor: 170 mV rms min, into 50Ω.
Q analog output: 0 to $1 \mathrm{~V} \pm 50 \mathrm{mV}$ de after 15 minutes warm-up, proportional to meter deflection. Output im. pedance approximately $1 \mathrm{k} \Omega$.
Over simit signal output: contact closure at the rear panel. Relay contact capacity 0.5A/IS VA.
Over fimit display time: selectable, 1 s or conrinuously on, after limit exceeded.
Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V}=10 \%, 48.440 \mathrm{~Hz}, 27.5 \mathrm{VA}$ max.
Dimensions: $163 / /^{\prime \prime}$ wide, $5.7 / 16^{\prime \prime}$ high, 16.5/16" deep (125 x $138 \times 4 \mathrm{~mm}$).
Weight: net, $31 \mathrm{lbs}(14 \mathrm{~kg}$) ; shipping, $41 \mathrm{lbs}(18,49 \mathrm{~kg})$.
Price: Model 4342A, $\$ 1669$.

MEASURNG DEVGES canhimer!

Measures L, L, C, \& resonant frequency Model 4342A

4342A Opt 001

(Changes from the standard specifications)

RF characteristics

RF range: 10 kHz to 32 MHz in 7 bands: 10 to $32 \mathrm{kHz}, 32$ to $100 \mathrm{kHz}, 100$ to $320 \mathrm{kHz}, 320$ to $1000 \mathrm{kHz}, 1$ to 3.2 MHz , 3.2 to $10 \mathrm{MHz}, 10$ to 32 MHz .

RF accuracy: $\pm 1.5 \%$ from 10 kHz to 10 MHz .
$\pm 2 \%$ from 10 MHz to 32 MHz .
$\pm 1 \%$ at "L" point on frequency dial.

Q measurement characteristics
Q accuracy: \% of indicated value (at $25^{\circ} \mathrm{C}$).

0		
$5 \cdot 300$	$300 \cdot 600$	$600 \cdot 1000$
± 7	± 10	± 15

Price: Model 4342A Opt 001, add $\$ 100$ to base price.

Accessories for 4342A Q Meter*

Series loss test adaptor
The 16014A Series Loss Test

16014 A Adaptor is designed for measuring low impedance components, low. value inductors and resistors, and also high-value capacitors. Using the adaptor aods convenience in connecting components in series with the test circuit of the 4342A Q Meter, This adaptor consists of a teflon printed-circuit base on which are mounted binding posts, to ac. cept the Reference Inductors, and a pair of low-inductance series terminals for the unknown.

Measurable capacitance range: 450 pF to $0.225 \mu \mathrm{~F}$.
Measurable resistance range; 4Ω to $8 \mathrm{k} \Omega$ at $10 \mathrm{kHz} .10 \mathrm{~m} \Omega$ to 80Ω at 10 MHz .
Equivalent paralle| capacitance between unknown terminals: 3 pF .
Equivalent parallel resistance between unknown terminals: approximately $10 \mathrm{M} \Omega$ at 1 MHz .
Residual Inductance: approximately 30 nH .
Price: HP 16014A, $\$ 38$.

16462A

Auxiliary capacitor

The 16462A Auxiliary Capacitor is designed to extend the \bar{a} and \bar{L} measurement capabillty of the 4342A a Meter. It is especially useful for measuring small inductors at low frequencies. Price: HP 16462A, $\$ 165$.

Raference Inductors*

A range of 20 inductors, any of which can be supplied separately. is available for use with the 4342A Q Mieter for measuring the Rf characteristics of capacitors, resistors, and insulating materials. These inductors have 3 terminals. One terminal is connected to the case to stabilize measurements.

Price: HP 16671A through HP 16490A, and HP 16465A, \$28. each. HP 16470A set of twenty (1647)A-16490A), \$445.

Q standards*
The 00513A and 00518A Q standards are hermerically sealed reference inductors having accurately measured, highly stable inductance and Q characteristics. These Q standards are par. ticularly useful for checking the overall operation and accuracy of Q-meters.
Prices: HP 00513A, HP 00518A, $\$ 125$ each; set of one HP 00513A and five HP 00518A, $\$ 675$.

- Refer to data shoet for complate specificalions.

Q METER
 Direct Q measurement 20 to 260 MHz

Model 190A

Description
The Herlett-Packard 190A Q Meter finds applications in the VHF range of frequencies. This instrument employs a special coupling impedance to introduce voltage across the resonant circuit. This voltage, as well as the voltage across the internal Q capacitor, is measured by two vacuum tube voltmeters and indicated on a single meter.

Specifications

Frequency range: 20 to $260 \mathrm{MHz} ; 4$ bands.
RF accuracy: $\pm 1 \%$.
Q measurement
Q range; total range: 5 to 1200 ; low range: 10 to 100 , \triangle range: 0 to 100.
Q accuracy: $\pm 7 \% 20$ to $100 \mathrm{MHz}: \pm 15 \% 100$ to 260 MHz (for circuit Q of 400 read directly).
Resonating capacitor charactertistics
Capacitor range: 7.5 to 100 pF .
Capacitor accuracy: $\pm 0.2 \mathrm{pF}, 7.5$ to $20 \mathrm{pF} ; \pm 0.3 \mathrm{pF}, 20$ to 50 $\mathrm{pF} ; \pm 0.5 \mathrm{pF}$, 50 to 100 pF .
Capacitor callbration: 0.1 pF increments.
Accessories avallable: 00590A Reference Inductors.

Physical characteristics

Dimensions: $141 / 4^{\prime \prime}$ wide, $101 / 8^{\prime \prime}$ high, $101 / 2^{\prime \prime}$ deep ($362 \times 257 \times$ 267 mm).
Weight: net, $25 \mathrm{lbs}(11,3 \mathrm{~kg})$; shipping, $32 \mathrm{lbs}(14,4 \mathrm{~kg})$.
Power: 190A: 95 to $130 \mathrm{~V}, 60 \mathrm{~Hz}, 60.5 \mathrm{VA}$ max: 190 AP : $115 / 230 \mathrm{~V}, 50 \mathrm{~Hz}, 60.5 \mathrm{VA}$ max.
Price: HP 190A, AP, $\$ 1475$.

VECTOR IMPEDANCE METER Quickly measure Z \& $\theta, 5 \mathrm{~Hz}$ to 500 kHz
 Model 4800A

Description

The Hervlett-Packard 4800A Vector Impedance Meter will make fast measurements of impedance to 10 megohms and phase to $\pm 90^{\circ}$ of unknown two-terminal networks. Measurement can be made at a particular Frequency or over a continu. ous range from 9 Hz to 500 kHz . The instrument may be mechanically swept to produce continuous measurements over its full frequency range. Analog outputs are available for X-Y recording.

Specifications

Fraquency

Range: 5 Hz to 500 kHz in five bands.
Accuracy: $\pm 2 \%$ from 50 Hz to $500 \mathrm{kHz}, \pm 4 \%$ from S to $50 \mathrm{~Hz}, \pm 1 \%$ at 15.92 on frequency dial from 159.2 Hz to $159.2 \mathrm{kHz}, \pm 2 \%$ at 15.92 Hz .
Impedance measurement
Range: 18 to $10 \mathrm{M} \Omega$ in 7 ranges.
Accuracy: $\pm 5 \%$ of reading.
Phase angle measurement
Range: $0^{\circ} \pm 90^{\circ}$; accuracy: $\pm 6^{\circ}$.
Direct inductance measurement range: $1 \mu \mathrm{H}$ to $100,000 \mathrm{H}$.
Accuracy: $\pm 7 \%$ of reading for $Q>10$ from 159.2 Hz to 159.2 kHz ; $\pm 8 \%$ of reading for $\mathrm{Q}>10$ at 15.92 Hz .

Direct capacitance measurement range: 0.1 pF to $10,000 \mu \mathrm{~F}$.
Accuracy: $\pm 7 \%$ of reading from $\mathrm{D}<0.1$ from 159.2 Hz to $159.2 \mathrm{kHz} . \pm 8 \%$ of reading for $D<0.1$ at 15.92 Hz .

Measuring terminal characteristics

Configuration: terminals above ground.
Waveshape: sinusoidal.
Recorder outputs
Frequency: level, 0 to I V nominal.
Impedance: level, 0 to 1 V nominal.
Phase angle: level, $0 \pm .9 \mathrm{~V}$ nominal.
Accessories furnished: 13525A Calibration Resistor, 00610A.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 133 \mathrm{x}$ 467 mm).
Weight: net, $24 \mathrm{lbs}(10,8 \mathrm{~kg})$; shipping, $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Power: 105 to 12 s V or 210 to 250 V , 48 to $440 \mathrm{~Hz}, 29.7 \mathrm{VA}$. Price: HP 4800A, $\$ 1650$.

RX METER
 Self-contained rf bridge, 500 kHz to 250 MHz Model 250B

Description

The Hewlett-Packard 2508 RX Metec is a self-contained instrument for measuring the equivalent parailel resistance and capacitance or inductance of two-terminal networks. The instrument contains a continuously tuned oscillator, high-frequency bridge and amplifier-detector.

The oscillator is mounted inside a rigid casting to obtain a high degree of accuracy, stability and low leakage.

Specitications

Frequency range: 500 kHz in 250 MHz ; 8 bands. RF accuracy: $\pm 2 \%$.
Resistance measurement characteristics
Resistance range: is to 100,000 . .
Resistance accuracy: $\pm\left[2+\frac{\mathrm{F}}{200}+\frac{\mathrm{R}}{5000}+\frac{\mathrm{Q}}{20}\right] \%$ $\pm 0.2 \Omega ; F=$ frequency (MHz), $R=R X$ Meter R_{n} read. ing (ohms), $Q=\omega C R \times 10^{-17}$, where $C=R X$ Meter C_{r} reading (PF).

Capacitance measurement

Capacitance range: 0 to 20 pF (extended by auxiliary coils).
Capacitance accuracy: $\pm\left(0.5+0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{-5}\right) \% \pm 0.15$ $\mathrm{pF} ; \mathrm{F}=$ frequency (MHz), $\mathrm{C}=\mathrm{RX}$ Meter C_{p} reading (p F)
Inductance measurement
Inductance range: $0.001 \mu \mathrm{H}$ to 100 mH ,
Inductance accuracy: same as capacitance accuracy.

Measurament voltage level
RF: 0.05 to 0.75 V , depending on frequency. RF level adjustable to 20 mV .
DC: $0 \mathrm{~V}_{\mathrm{i}}$ (90 mA , external dc, max. may be passed through RX moter terminals).
Accessories available: 00S15A Coax Adapter Kir. (Type " N " male connector), $\$ 75$; 13510A Transistor Test Jig, $\$ 250$.
Dimensions: $20^{\prime \prime}$ wide, $103 / 3^{\prime \prime}$ high, $1312^{\prime \prime}$ deep ($508 \times 264 \times$ 343 mm).
Weight: net, $40 \mathrm{lbs}(18 \mathrm{~kg})$: shipping, $50 \mathrm{lbs}(22.5 \mathrm{~kg})$.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 48$ to $440 \mathrm{~Hz}, 66 \mathrm{VA}$.
Price: HP 2508, $\$ 2475$.

CAPACITANCE BRIDGE
Fully automatic, 1 kHz to 1 MHz
Model 4270A

Description

A new instrument from Hewlett-Packard, the 4270A Automatic Capacitance Bridge provides a wide variety of high speed measurements of both active and passive capacity values. Five-digit readout of capacitance from full-scale ranges of 18.000 pF to $1.2000 \mu \mathrm{~F}$ is complemented by . 001 pF resolution and measurement speed of 0.5 seconds. In addition, a second in-line 4 -digit Nixie display of capacitor loss is given simultaneously in terms of parallel conductance (G) or dissipation factor (D). In the laboratory, the 4270 A will be extremely useful for examination of semiconductor junction capacities, input capacitances of amplifers and other active devices, as well as the analysis of stray capacity values, cables and simple capacitors. DC biasing, four frequencies from 1 kHz to 1 MHz and a fully guarded measurement will add to laboratory flexibility.

Specifications

Measuring circult
Float: guarded terminals of unknown are floated from ground.
L-ground: one side of known rerminals is grounded, guard is retained.
Paramaters measured: capacitance, equivalent parallel conductance and dissipation factor.
Measuring frequency: $1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz .
Range modes
Auto: range selection and balance performed automatically.
Hold: range is held on fixed position, balance begins with most significant digit. Range determined by previous AUTO or TRACK range selected or by manually stepping RANGE STEP.
Track: range held on fixed position, balance begins with last digit.
Balancing time: rypically 0.5 s .
Measuring rate: measurement cycle equals balance time plus display time. Balance time typically 0.5 s ; display times selected by MEAS RATE are $70 \mathrm{~ms}, 2$ secs. 5 secs and MANUAL.

Yest voltage across unknown

Normal: I V rms constant, at capacitance units displayed in PF or $\mathrm{nF} ; 100 \mathrm{mV}$ sms constant at $\mu \mathrm{F}$.

Low: 200 mV ims constant at p^{F} or nF .20 mV rms constant at $\mu \mathrm{F}$.
Repeatability: ± 2 digits at NORMAL TEST VOLTAGE, ± 10 digits at LOW TEST VOLTAGE.
DC blas: INTERNAL or EXTERNAL to $\pm 200 \mathrm{~V}$, in HOLD and TRACK mode.
Internal blas at float measurement
Voltage: 0 to $20 \mathrm{~V} \mathrm{dc} ; 0$ to 200 V dc ; continuously variable on front panel, monitored on rear panel.
Dial accuracy: $\pm 5 \%$ of full scale.
Source resistance: $100 \mathrm{k} \Omega$.
Polarity: LOW unknown terminal (-), HIGH unknown terminal $(+)$ in FLOAT position of MEAS CKT conrrol.
Remote: programmable by resistor with $250 \Omega / \mathrm{V}$ rate at 20 V range. $25 \Omega / \mathrm{V}$ rate at 200 V range.
Remote accuracy: $\pm 2 \%$ of fuil scale
Internal blas at L-ground: an additional connection using a blocking capacitor and a coaxial cable is necessary for
INTERNAL source.
Basic accuracy

	Fraplentiy	1 kHz \% 10 kHz	100 kHz	1 MHz
6	Basic $\mathrm{D}<1$ Aceusacy $.1<0<1$		$\begin{aligned} & \pm .3 \%=1 \mathrm{digit} \\ & \pm .0 \mathrm{I}^{2} \mathrm{~F} \\ & =.5 \%=1 \mathrm{digit} \\ & \pm .01 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \pm 100 \pm 1 \mathrm{digit} \\ & \pm .01 \mathrm{p} \\ & =2 \% \pm 1 \mathrm{O} / \mathrm{g} \mathrm{t} \\ & \pm .01 \mathrm{pFF} \end{aligned}$
6	Baslo accuracy	$\pm 1 \% \sim 10 \mathrm{digh} / \mathrm{s}$		$\pm 3 \%=10$ digits
0	Basle accuracy	$x[\%=(10+\mathrm{Cs} / \mathrm{Cx})$ digits		+3\% \pm (10 $+\mathrm{Cs} / \mathrm{Cx}) \mathrm{dIg} / \mathrm{ts}$

Outputs: 4 line BCD.
Inputs
Trigger hold off level: level must be between 10 V and 15 V.
Remote programming: eight front-panel functions can be remotely controlled by external contact closure to ground with impedance less than 400Ω. Programmable functions 2re RESET. PREQUENCY, RANGE MODE, TEST VOLTAGE, LOSS MEAS, RANGE STEP, DC BIAS, BIAS VERNIER.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 50 to 60 Hz .
Weight: net, $34 \mathrm{lb}(15,5 \mathrm{~kg})$; shipping, $48 \mathrm{lb}(21,6 \mathrm{~kg})$.
Price: HP 4270A, \$4640.
intertace kit
Interface Kits 16150A Control Card and 16151A Data Card are available for interface with Hewlett-Packard computers. Each kit includes mating cable, BCS HP 4270A driver and diagnostic tape.
Price: HP 16150A, \$1110; 16151A. $\$ 1455$.

The Hewlett-Packard Models 4350A/B High Capacitance Meters measure high capacitances from 0.02μ to 300 mF and simultaneously measure dissipation factor. Leakage current can be measured with the 4350 A . The $4350 \mathrm{~A} / \mathrm{B}$ provides analog outputs proportional to meter deflection. Combining the $4350 \mathrm{~A} / \mathrm{B}$ with the 4050A Analog Comparator increases the speed in sorting applications.

> Specifications, 4350A/B*
> capacitance measurement

Capacitance
Ranga: $1 \mu \mathrm{~F}$ to 300 mF full scale in 12 ranges.

Accuracy (\% of full scale):		
Tan 8 range	$1 \mu \mathrm{~F}$ to 10100 mF	300 mF
0 to 1	$\pm 3 \%$	$\pm 4 \%$
1 to 5	$\pm 4 \%$	$\pm 5 \%$

Tan 8
Range: 0.5 or 9 full scale in 2 ranges.
Absolute accuracy

$$
0.5 \text { full scale: }
$$

$$
\begin{aligned}
& \pm 0.025 \\
& +0.06+\frac{(\text { reading })^{2}}{20} \\
& -0.06+\frac{(\text { readiag })^{2}}{25}
\end{aligned}
$$

5 full scale:

Internal test signal
Frequency: $120 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$.
Internal dc bias
Voltage range: 0 to 6 V dc , continuously adjustable.
Response time (C and tan δ): typically 1 s .
Tans uncal
Indicates the reading of $\tan 8$ is uncalibrated when the deEection of the capacitance meter is below 10% or above 130% of full scale.
Leakage current measurement (4350A only)
Current
Range: $1 \mu \mathrm{~A}$ to 10 mA full scale in 9 ranges.
Accuracy: $\pm 3 \%$ of full scale.
DC blas voltage
Internal: up to 100 V de in 2 ranges.
External: 600 V de max.
Warning lamp
Indicates "DANGER" when de voltage across an unknown is higher than 1.5 V dac.
Aralog outputs
Capacitance
$1 \mathrm{~V} d c$ all ranges: for use with analog comparator.
1 V de or 0.3 V de full scale: for use with DVM.
Overrange: 25% of full scale.

Accurscy:		
	Capacitance Rence Full Scale	
Tan 8	$1 \mu F$ to 100 mF	300 mF
0 to 1	$\pm(1.5 \%$ of reading	$\pm 3 \%$ of full scale
	$+0.5 \%$ of full scale)	
1 to 5	$\pm(1.5 \%$ of reading $+3.5 \%$ of full scale	$\pm 4 \%$ of full scale

Loss angle (8)

Tan 8	8	Output voltage
0 ± 00.5	$0^{\circ} 10.26 .6{ }^{\circ}$	$(0+02.66 \mathrm{Vdc}) \pm 0.13 \mathrm{Vdc}$
0.5 to 5	$26.6^{\circ} 1078.7^{\circ}$	$(2.66$ to 7.87 Vdc$) \pm 0.3 \mathrm{~V} \mathrm{dc}$

Resldual noise: 40 mV p.p max.
Genera)
Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 38.5$ VA max.
Dimenslons: $7.25 / 32^{\prime \prime}$ wide, $6.17 / 32^{\prime \prime}$ high, $12^{\prime \prime}$ deep ($198 \times$ $166 \times 305 \mathrm{~mm}$).
Weight: net $11 \mathrm{lbs}(4,8 \mathrm{~kg}$) ; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Accessories furnishod: 16035 A Test Cable with four alligator clips; 16036A Test Cable with two alligator clips.
Price: HP 4350A, $\$ 955$.
HP 4350B, $\$ 845$.

Description

The Hewlett-Packard Model 4050A Analog Comparator compares the unknown voltage to preset high and low limits. Contact closures with the corresponding (HI-GO-LO) lights will operate external devices. The 4050A increases the speed at which the $4350 \mathrm{~A} / \mathrm{B}$ Hi-C Meter or 4332 A LCR Meter will operate in sorting applications.

Specifications, 4050A*

Input
Analog voltage: $0.1 .1,10 \mathrm{~V}$ full scale.
Resistance: $0.1,1 \mathrm{~V}$ range, $1 \mathrm{M} \Omega ; 10 \mathrm{~V}$ range, $100 \mathrm{k} \Omega$.
Output
Llinlt indications: HI, GO, and LO lights.
Relay contact: 3 SPST contacts, $50 \mathrm{~V} \mathrm{dc}, 0.5$ A max.
Connector: binding post.
Limit controls: 000 to 125 are set on digital dials.
Accuracy; $\pm 0.6 \%$ of full scale (ar $25^{\circ} \mathrm{C}$).
Response time: typically 0.1 s .
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power: $115 / 230 \mathrm{~V} \pm 10 \%$, 48 Hz to $440 \mathrm{~Hz}, 3.85 \mathrm{VA}$ max.
Dimensions: standard $1 / 3$ module, $63 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $8^{\prime \prime}$ deep ($155 \times 130.1 \times 203.2 \mathrm{~mm}$).
Weight: net, $6 \mathrm{lbs}, 4 \mathrm{oz}(2,8 \mathrm{~kg})$: shipping $8 \mathrm{lbs}(3.6 \mathrm{~kg})$.
Price: $\$ 500$.

[^5]
MEASURING DEVICES

ATTENUATORS \& CAPACITOR
Variable with increments of 0.1 dB or 2 pF
Models 4440B, 4436A, 4437A, 350D

Decade Capacitor, Model 4440B

The Hewletr-Packard 4440B Decade Capacitor is a high accuracy instrument providing usable capacitances from 40 pF to $1.2 \mu \mathrm{~F}$. Its 0.25% accuracy makes it an ideal aid for circuit design or as a working standard.

Use of silvered-mica capacitors in four decades of 100 pF provides higher accuracy, low dissipation factors and good temperature coefficient. An air capacitor vernier provides 100 pF ((rom 40 pF to 140 pF) with resolution of 1 pF . Capacitors are housed in a double shield in such a way that incteased
capacitance from two terminals to three terminals is held to 1 pF .

Specifications, 4440B

Capacitance: 40 pF to $1.2 \mu \mathrm{~F}$ in steps of 100 pF with a 40 pF to 140 pF variable air capacitor providing continuous adjustment to better than 2 pF between steps.
Direct reading accuracy: $\pm(0.25 \%+3 \mathrm{pF})$ at 1 kHz for three-terminal connection.
Resonant frequency: typical values of the resonant frequency are 450 kHz at $1 \mu \mathrm{~F}, 4 \mathrm{MHz}$ at $0.01 \mu \mathrm{~F}$ and -10 MHz ar 100 pF.
Dissipation factor: 0.001 maximum at 1 kHz .
Temperature coefficient: $+70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Insulation resistance: $5 G \Omega$ minimum, after 5 minures at 500 V de.
Maximum valtage: 500 V peak.
Weight: net, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Dimensions: $11^{\prime \prime}$ wide (264 mm), $6^{\prime \prime}$ deep (152 mm), $3^{\prime \prime}$ high (76 mm).
Price: HP 4440B, $\$ 340$.

Attenuators, Models 4436A/4437A

The Hewlett-Packard Models 4436A/4437A Atrenuators provide accurate steps of attenuation with 0.1 dB resolution for power-level measurements, communication system tests, and gain or loss measurements on filters and amplifiers, and similar equipment.

Specifications, 4436A
Maximum attenuation: 119.9 dB .
Attenuation increments: 0.1 dB .

Input/output impedance; 600Ω, balanced.
Frequency range: ds to 1.5 MHz (0 to 110 dB) dc to 1 MHz (0 to 119.9 dB).
Accuracy

Attenuazion	100 kHz	1 MHz	$1.5 \mathrm{MHz}^{\prime \prime}$
$0 \sim 60 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$
$60 \sim 90 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$
$90 \sim 110 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
$110 \sim 119.9 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	

Maximum input power: +30 dBm .
DC isolation: signal ground may be $\pm 300 \mathrm{~V}$ dc from external chassis.
Dimensions: $73 / 4^{\prime \prime}$ wide, $3^{\prime \prime}$ high, $6 \% / 8^{\prime \prime}$ deep ($198 \times 77 \times 167$ mm).
Weight: net, $3.3 \mathrm{lbs}(1,5 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: Model 4436A, $\$ 500$.
Specifications, 4437A
The Model 4437 A is a 600 ohms unbalanced type, and its specifications are identical to the 4436A.
Price: Model 4437A, $\$ 345$.

Attenuator, Model 350D

Two attenuator sections make up the Hewletr-Packard 350D Artenuator. One section is a 100 dB attenuator, adjustable in 10 dB steps. The other is a 10 dB attenuator, adjustable in 1 dB steps.

Specifications, 350D
Attenuation: 0 to $110 \mathrm{~dB}, 1 \mathrm{~dB}$ and 10 dB steps.
Power capacity: 600 n unbalanced; 5 W (55 V dc or rms) max, continuous duty.
DC isolation: signal ground may be $\pm 500 \mathrm{~V}$ dc from chassis.

Accuracy

10 dB section

dc to 100 kHz	$< \pm 0.125 \mathrm{~dB} / \mathrm{step}$
100 kHz 101 MHz	$< \pm 0.25 \mathrm{~dB} / \mathrm{step}$

100 dB section	0 dB	$70 \mathrm{~dB} \quad 100 \mathrm{~dB}$
$\mathrm{dct0100kHz}$	$< \pm 0.25 \mathrm{~dB}$	$< \pm 0.5 \mathrm{~dB} / \mathrm{step}$
100 kHz k 1 MHz	$< \pm 0.5 \mathrm{~dB}$	$< \pm 0.75 \mathrm{~dB} / \mathrm{step}$

Oimenslans: standard Herlett-Packard $1 / 3$ module $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high, $8^{\prime \prime}$ deep ($130 \times 159 \times 203 \mathrm{~mm}$).
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: HP 350D, $\$ 165$.

Description

456A AC Current Probe

The conventional voltmeter or oscilloscope can measure current quickly and dependably-without direct connection to the circuit under test or any appreciable loading to the test circuit. The HP 456A AC Current Probe clamps around the currentcarrying wire and provides a voltage outpur you can read on a volimeter or scope. Model 456A's 1 mA to 1 mV conversion permits direct reading up to 1 ampere ems.

Specifications, 456A

Sensitivity: $1 \mathrm{mV} / \mathrm{mA} \pm 1 \%$ at 1 kHz .
Frequency response: $\pm 2 \%, 100 \mathrm{~Hz}$ to $3 \mathrm{MHz} ; \pm 5 \%, 60 \mathrm{~Hz}$ to 4 MHz ; -3 dB at $<25 \mathrm{~Hz}$ and $>20 \mathrm{MHz}$.
Pulse response: rise time is $<20 \mathrm{~ns}$, sag $<16 \% / \mathrm{ms}$.
Maximum input: l A rms. 1.5 A p; 100 mA above 5 MHz .
Effect of de current: no appreciable effect on sensitivity and distortion from dc current up to 0.5 A .
Input impedance: (impedance added in series with measured wire by probe) $<50 \mathrm{~m} \mathrm{\Omega}$ in series with $0.05 \mu \mathrm{H}$ (this is approximately the inductance of $1 \frac{1}{2}$ " of hookup wire).
Probe shunt capacity: approx. 4 pF added from wire to ground.
Distortion at 1 kHz : for 0.5 A input at leasc 50 dB doan; for 10 mA input at least 70 dB down.
Equivalent input noise: $<50 \mu \mathrm{~A}$ rms ($100 \mu \mathrm{~A}$ when ac powered).
Output impedance: 220Ω at 1 kHz ; approximately $+1 V \mathrm{dc}$ component; should rork into load of not less than $100,000 \Omega$ shunted by approximately 25 pF .
Power: toro Mallory TR 233R and one TR 234 batteries (1420.0017 and 1420.0006): batrery life approximately 400 hes; ac porver supply optional, 115 or (230 V must be specified) $\pm 10 \%, 48$ to $410 \mathrm{~Hz}, 1 \mathrm{VA}$ max.
Dimensions: $5^{\prime \prime}$ wide, $11 / 2^{\prime \prime}$ high ($127 \times 38 \times 152 \mathrm{~mm}$), $6^{\prime \prime}$ deep; probe cable is 5^{\prime} long; 2^{\prime} output cable terminated with dual banana plug. Probe aperture: $5 / 32^{\prime \prime}(4 \mathrm{~mm})$ diameter.
Weight: net $3 \mathrm{lbs}(1,35 \mathrm{~kg})$: shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Accessory avallable: 456A-11B AC Supply for field installation; 11028A 100:1 Current Divider, $\$ 60$.
Price: HP 456 A with batteries, $\$ 250$.
Option 001: ac supply installed in lieu of batreries, add $\$ 20$.

Voltmeter Accessories

11039A Capecitive Voltage Divider
For 400 and 410 series voltmeters. Safely measures power voltages to 25 kV ; accuracy $\pm 3 \%$. Division ratio, $1000: 1$. Input capacity, is $\mathrm{pF} \pm 1$. Maximum voltage ratings (sea level) $60 \mathrm{~Hz}, 25 \mathrm{kV} ; 100 \mathrm{kHz}, 22 \mathrm{kV} ; 1 \mathrm{MHz}, 20 \mathrm{kV} ; 10 \mathrm{MHz}, 15$ $\mathrm{kV} ; 20 \mathrm{MHz}, 7 \mathrm{kV}$. Usable for dielectric heating, porer and ultrasonic voltages. Price: HP 11039A, \$250. (HP 11018A should be used to connect the 410 series voltmeter).

11074A Voltage Divider Probe

For 400 series voltmeters. Provides low-input capacitance and high-input resistance at the point of measurement. Division ratio $10: 1 \pm 2 \% \quad(400 \mathrm{~Hz}$ reference), $10: 1 \pm 2 \%$ (100 hHz reference depends on adjustment of compensating capacitor). Bandwidth, dc to 10 MHz . Maximum input voltage 1 kV rms.

Input impedance: 10 Mg shunted by 10 pF (when connected to an input impedance of $10 \mathrm{M} \Omega$ shunced by not more than 25 pF). Price: $\mathrm{HP} 11074 \mathrm{~A}, 575$.

11096 A High Frequency Probe

Converts de voltmeter with 10 Mn input resiscance to high frequency ac voltmeter. Compatible volmmeters: HP 427 A , HP 3430 A . HP 3430 A and HP 3440 A . Voltage range, 0.25 to 30 V rms; transfer accuracy $\left(10.30^{\circ} \mathrm{C}\right) \pm 5 \%, 100 \mathrm{kHz}$ to 100 MHz . Usable for relarive measurements from) 0 kHz to 1 GHz ; peak responding, calibrared to read mos value of a sine wave; input impedance, $4 \mathrm{M} \Omega$ shunted by 2 pF ; max. input, 30 V rms ac. 200 V dc; accessories provided include a straight sip, a hook tip, a ground clip, and a high frequency adapter that fis available Hewlets Packard adapters for BNC (HP 10218A); GR Type 874 (HP 10219A), Microdot connectors (HP 10220A) and that also fits a $50 n$ tee (HP 11536A).
Price: HP 11096A, 875.
11018 A Adapter: connects 410 series ac probe to dual banana plugs. Price: HP 11018A, $\$ 35$.
11036A Probe: ac probe for the 410C. Price: HP 11036A, $\$ 80$.

11040A Capacitive Volkage Divider

For 410 series voltmeters. Increases range so transmirter voltages can be measured quickly, easily. Accuracy, $\pm 1 \%$; division ratio, 100:1; input capacity, approximately 2 pF . Maximum voltage, 2000 V at 50 MHz , decreasing to 100 V at 400 MHz . Frequency range, 10 kHz to 400 MHz ,
Price: HP 11040A, $\$ 40$.

11042A Probe Coaxial "T" Connector

For 410 series voltmeters. Measures voltages berween center conductor and sheath of 505 transmission line. Maximum SWVR, 1.1 at $500 \mathrm{MHz}, 1.2$ at 1 GHz . Male and female Type N fittings. Price: HP $11042 \mathrm{~A}, \$ 60$.

11043A Probe Coaxial "N" Connector

For 410 series voltmeters. Measures at open end of 50Ω transmission line (no terminating resistor). Has male Type N Gttings. Price: HP 11043A, \$45.

11045A DC Voltage Divider

For 410 C Voltmeter. Gives maximum safery and convenience for measuring high voltages as in television receivers, erc. Accuracy, $\pm 5 \%$; division ratio, $100: 1$. Input impedance, 10 G Ω. Maximum voitage, 30 kV . Max current drain, $2.5 \mu \mathrm{~A}$.
Price: HP $11045 A, \$ 60$.

DIGITAL VOLTMETERS

Digital voltmeters

Digital voltmeters (DVM's) offer many advantages over other types of voltmeters. Among the advantages of DVM's are greater speed, greater accu. racy and resolution, reduction of operator errors, and the ability to be remotely controlled or to remotely control anorher de. vice such as a printer.
Digital volmeters display measurements as discrete numerals, rather than as a pointer deflection on a continuous scale, which is commonly used in analog devices. Direct numerical readout in DVM's reduces humian error and tedium, eliminates parallax error and increases reading speed. Automatic polarity and range-changing features reduce operator rraining, measurement error and possible instrument damage through overload.

Digital instruments are available 10 measure as and dc volrages, dc currents. resistance, and ratio. Other physical variables can also be measured by use of suitable transducers. Many DVM's have outputs which can be used to make permanent records of measurements with printers, card and tape punches, and magnetic tape equipment. With dara in digital form, it may be processed with no loss of accuracy.

Converters

The digital voltmeter is primarily a ds device, and as such requires that quantities to be measured be presented to it in the form of a dc voltage. This necessitates the use of a converter when making ac voltage or ohms measurements. A variety of converters are a vailable for use with Hewlett-Packard digital voltmerers. either as plug-in drawers, plug-in boards, or as separate instruments.
$A C$ converters designed for use with digital voltmeters can be classified ac. cording to their reponse to the inpur sig. nal. The average responding converter is relatively inexpensive and was designed primatily for measurement of sine waves having little or no distortion. This type of converter measures the average value of the rectified waveform, which is then multiplied by a scale factor to provide the rms value.
The true rms converter responds to the effective do heating value of the raveform. A thermocouple measures the heating value of the input, regardless of its distortion content. Hewlelt-Packard now has two instruments (the 3480A/B with 3484 A plug.in, pages 64.67, and $3-403 \mathrm{~A} / \mathrm{B}$, pages 62.63), that are capable of measuring ac plus $d c$; that is they
measure $\sqrt{(\mathrm{dc})^{2}+(\mathrm{ac} \text { Ims })^{2}}$. The ad. vantage of this is that ac signals can be measured all the way down in frequency to dc ; also the sum of an ac signal plus a de offset can be measured. The crue sms converter, while costing more than an a verage converter, is much more versatile. Its frequency limit is much greater than that of an average responding converter, and it gives accurate readings independent of distortion.
Ohms converters fall into three categories: two-wire, three-wire, and fourwire. The twowire converter is the most common and the most economical, but it is sensitive to lead resistance. For example, if low resistance values are being measured at a remote location, lead resistance will cause an error in the mea. surement. A three-wire converter may have four terminals on the front panel, and may even be called a four-wire converter. It is also sensirive to lead resist. ance, especially on the low side of the in. put, but it may be possible to null out the error caused by the lead resistance with an invernal adjustment. The true fourwire converter has a fully isolated current source and is insensitive to lead resistance. it makes low ohms ranges useful for remote measurements. This scheme offers the ultimate in performance for ohms measurements.

Selecting a digital voltmeter

The first consideration in selecting a DVM is to determine the requirements necessary for the measurements to be made. Then select a voltmeter that will meet these requirements. For long range use, try to anticipate all the needs for the future.

If the DVM is to be used in a data acquisition system, binary-coded decimal (BCD) ourput and remote programming capability are necessities. Compatability with the related equipment should be determined before purchase.

Hewlett-Packard offers a digital instrument for nearly every application. For example, the 3431A Digital Panel Meter (page 60) is a single range DVM designed to repiace analog panel meters where accuracy, resolution, and unambig. wous display are important.
If more than one electrical property is to be measured in the specific applica. tions, a multi-function meter is an ad. vantage. Hewlett-Packard has many multi-function digital meters with different accuracies and differenc capabilities. The 3450 A Multimeter (pages 70 . 71) with plug-in cards gives a large
variety of options including a true RMS ac digital voltmeter and a Hi-Go:Lo Comparator. The 3469A (page 61) is a portable, low cost multi-function instru. ment that provides twenty-six different range and function combinations to allow a wide variety of ac volts, dc volts, ohms, and de current measurements. High performance ac volts and ohms functions make the 3469A useful for many lab and specialty applications. An idea! systems multimeter is the $3480 \mathrm{~A} / \mathrm{B}$ with the 3484A (pages 64-67) multi-function plug.in. This unit can make up 101000 de or ohms readings per second, and also has true rms ac capability as well as BCD output. The 2402 A Integrating DVM (page 73) is a de voltmeter to which ac voltage, resistance, and frequency measurement capability can be added. Orher Hewletr-Packard digital multimeters are the 3439 A and 3440 A (pages 68-69) with multi-function plug-in drawers.
The art of de voltage measurements has reached levels of accuracy which were formerly obtained only in the standards laboratory. When selecting a volumeter to make accurate measurements in the presence of noise, the DVM must discriminate between the real signal and the noise appearing at its input. These noise signals take the form of either superimposed noise or common-mode noise.
Besides the usual external source of common-mode voltages, the measuring instrument can also contribute additional common-mode voltages. Internal double shielding is effective in eliminating the internal causes of common-mode voltages; a third shield or guard can be used to reduce the effects of external commonmode signals.
Superimposed noise upon the input voltage can also cause inaccuracies. A low-pass filter added to the input cir. cuitry of the voltmeter can solve this problem but it does cause a considerable slowing of the digitizing process. Superimposed noise rejection by integration permits high accuracy in the presence of severe noise.

If high resolution is needed, Hewlett. Packard offers the ultimate: the 3462A (page 75) has a resolution of 1 part in $1,200,000$ and a sensitivity of $1 \mu \mathrm{~V}$.
When purchasing a digital insrrument the maintenance cost should always be considered. Sometimes a DVM is selected with more accuracy than is required so that the calibration period can be ex. tended and still maintain the necessary accuracy.
seLECTION GUIDE
Teble 1．Hewlett－Packard Digital Voltmeters

Model					$\begin{aligned} & \frac{y}{0} \\ & i \\ & y \\ & y \end{aligned}$	$\begin{aligned} & \text { n } \\ & \hline 8 \\ & 0 \end{aligned}$	$\begin{aligned} & y \\ & \frac{y}{⿺} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { n } \\ & 5 \\ & 5 \end{aligned}$	$\stackrel{\circ}{5}$				$\begin{aligned} & \vec{a} \\ & \frac{\rightharpoonup}{5} \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$			$\begin{aligned} & \frac{y}{c} \\ & \frac{2}{c} \\ & \frac{5}{2} \end{aligned}$		5 $=$ E
$3431 \mathrm{~A} / \mathrm{B} / \mathrm{C}$（pg 60$)$	0.1	3	100	15		x					x	x	\times		\times		x	
34894 （ pg 61 ）	0.1	3	100	15	x	x	x	X			X							
$3430 \mathrm{~A}\left(\begin{array}{l}\text { see data）} \\ \text { sheet }\end{array}\right.$	0.1	3	60	2		\times			Opt．		x							
3403A／B （pgs 82－63）	0.2	3	90	4	$\begin{array}{\|l\|} \hline \times \text { (o88 } \\ \text { Opt. } \end{array}$	$3403 A$ only				$\begin{gathered} 3403 A \\ \text { Opt. only } \end{gathered}$	X		Opt．	$\begin{gathered} 3403 \mathrm{~A} \\ \text { Opt. only } \\ \hline \end{gathered}$			\times	
3439A（pgs 68．69）	0.05	4	5	5	。	－	－	－		．	x			－		\bullet		
3440A（pgs 68．69）	0.05	4	5	5	－	－	－	－		－	x		\times	－	x	－	x	
$\begin{gathered} 3480 \mathrm{~A} / \mathrm{B} \\ \text { (pgs } 84.67) \end{gathered}$	0.01	4	50	1000	Opr．	X		Opt．	Opt．	\times	x	x	Opt．	Opt．	x	－	\times	
$2401 \mathrm{C}\left(\begin{array}{c} \text { see data) } \\ \text { sheet } \end{array}\right.$	0.01	5	200	$1 *$		X				Opi．	X	x	X	X	X		x	
2402A（pg 73）	0.01	5	30	43	Opr．	\times		Opt．		Opt．	x	x	\times	x	X	\triangle	x	
3450A（pgs 70－71）	0.008	5	20	15	Opt．	X		Opt．	t	X	x	X	Opt．	Opr．	\times	Δ	\times	Δ
3460 B （pg 74）	0.004	5	20	15		X				x	x	x	x	x	x		X	
3462A（pg 75）	0.004	6	20	1		X				X	X	X	x	X	X		x	

－ 4 digits／ 9 readings per sec； 3 digits／50 readings per sec．
t Ratio for ac，dc，and ohms
Δ plug－in circuit cards．
－plug－in drawer．
＊Sample ana hold，and dota storage optional．

Table 2．Hewlett－Packard AC／Ohms Converters

Converter type （reter to page）	Companion HP DVM	Rangas			晨 0 0 0				Accuracy 1% of reading） $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$	
AC 10 DC										
$\begin{aligned} & 3445 \mathrm{~A} / 3448 \mathrm{~A} \\ & \text { fog 69) } \end{aligned}$	Plug－in orawar for 3439A／3440A	10 V to 1000 V 3 ranges	X	\times		X	X	x	$\begin{aligned} & (50 \mathrm{~Hz} \text { (0 } 100 \mathrm{kHz}) \\ & \pm 0.1 \% \text { to } \pm 0.3 \% \end{aligned}$	No
3450 A Opt 001 True rms（pgs 70．71）	Plug－in cerd for 3450A	$\begin{aligned} & 1 \mathrm{~V} 101000 \mathrm{~V} \\ & 4 \text { ranges } \end{aligned}$	x	X	x	\times	x	X	True rms （ 45 Hz to 1 MHz ） $\pm 0.05 \% 10 \pm 2.1 \%$	No
3484 A Opt 043 True rms（ogs 64．67）	Plug－in drawer for 3480A／B	$\begin{aligned} & 100 \mathrm{mV} \text { to } 1000 \mathrm{~V} \\ & 5 \text { ranges } \end{aligned}$	X	X	x	\times	x	x	$\begin{aligned} & \text { True rms } \\ & \text { (1 Hz to } 10 \mathrm{MHz}) \\ & +0.1 \% \\ & \hline \end{aligned}$	No
$\begin{gathered} 457 A^{*} \\ \text { (see date sheet) } \end{gathered}$		$\begin{aligned} & \hline \mathrm{V} \text { to } 1000 \mathrm{~V} \\ & 4 \text { ranges } \\ & \hline \end{aligned}$		\times					$\begin{aligned} & (50 \mathrm{~Hz} \text { to } 600 \mathrm{kHz}) \\ & \pm 0.3 \% \text { to } \pm 0.75 \% \end{aligned}$	Yes
$\begin{aligned} & 3400 A^{\circ} \text { (true rms) } \\ & \text { (pg 46) } \end{aligned}$	3439A／3440A	$\begin{aligned} & 1 \mathrm{mV} 10300 \mathrm{~V} \\ & 12 \text { ranges } \end{aligned}$							$\begin{aligned} & (10 \mathrm{~Hz} \text { to } 10 \mathrm{MHz}) \\ & \pm 0.75 \% \text { to } \pm 5.0 \% \end{aligned}$	Yes
$\begin{aligned} & 400 \mathrm{E} / \mathrm{EL} *(\mathrm{avg}) \\ & (\log 45) \end{aligned}$	3439A／3440A	$\begin{array}{\|c} 1 \mathrm{mV} 10300 \mathrm{~V} \\ 12 \text { ranges } \\ \hline \end{array}$							$\begin{aligned} & (10 \mathrm{~Hz} \text { to } 10 \mathrm{MHz}) \\ & \pm 0.5 \% \text { to } \pm 5.0 \% \end{aligned}$	Yes
$\begin{aligned} & \text { 2402A Opt } 002 \\ & (\mathrm{pg} 73) \end{aligned}$	Plug－in card for 2402A	$\begin{gathered} \hline 1 \mathrm{~V} \text { to } 1000 \mathrm{~V} \\ 4 \text { ranges } \end{gathered}$	X	\times	X	\times	\times	x	$\begin{aligned} & (50 \mathrm{~Hz} 10100 \mathrm{kHz}) \\ & \pm 0.12 \% \text { to } \pm 0.31 \% \\ & \hline \end{aligned}$	No
OHMS to DC										
3444 A （pg 69）	Plugrin drawer for 3439A／3440A	$\begin{gathered} 1 \mathrm{k} \text { a to } 10 \mathrm{mn} \\ 5 \text { ranges } \end{gathered}$		\times					$\pm 0.3 \% 10 \pm 1.0 \%$	No
$\begin{aligned} & 3450 \mathrm{~A} \text { Opt } 002 \\ & \text { (pgs } 70-71 \text {) } \end{aligned}$	Plugín card for 3450A	100 n to 10 Mn 6 ranges	\times	x	\times	x	\times	X	$\pm 0.01 \% \pm 0.02 \%$	No
$\begin{aligned} & 3484 \mathrm{~A} \text { Opt } 042 \\ & \text { (pgs 64.67) } \end{aligned}$	Plug－in drawer for 3480A／B	100 n to 10 Mn 6 ranges	X	\times	X	x	X	K	$\pm 0.01 \%+ \pm 0.02 \%$	No
$\begin{aligned} & \text { 2402A Opt } 003 \\ & \log 73) \end{aligned}$	Plug－in card for 2402A	$1 \mathrm{k} \Omega 1010 \mathrm{Mn}$ 5 ranges	X	X	X	X	X	x	$\pm 0.055 \%$	No

[^6]
MEASURING DEVICES

DIGITAL PANEL METER
 High performance meter replacement
 Models 3431A, B, C,

The Hewlett-Packard 3431A Digital Panel Meter is a single range digital voltmeter designed to replace analog panel merers where accuracy, resolution, and an unambiguous display are important. Applications for the 3431 A include such areas as medical, analytical, process control, test, optical, and data acquisition instrumentation. Instruments using digital panel meters are often very complex and expensive indicating that reliability is especially important. For this reason, the HewlettPackard DPM is designed with a low parts count and an extremely reliable GaAsP light emitting diode display. Power has also been minimized to keep heat rise low so that reliability is improved both in the panel meter and in the user's instrument. Quality and maximum usefulness has been assured by using only instrument grade components. The 3431A is the most ser. viceable, reliable, portable, flexible, and aesthetically appealing DPM available. These features are detailed in the following sections.

Design flexlbility

Hewlett-Packard's new DPM is smaller and lighter than any other on the market with a power supply. This means the 3431 A can be used with even the new small IC instruments and portable instruments. A choice of either line or low-level dc power supplies allow's use in applications where power require. ments are unusual.

The 3431 A's many electrical features offer unique flexibility. If autoranging is a goal, the 3431 A provides full scale and 10% full scale ranging signals with hysteresis. Where measure rate control is important, as in data logging applications, 5 digitally programmed rates are available between $1 / \mathrm{s}$ and $15 / \mathrm{s}$ along with programmable hold and trigger. Other programmable functions include digit blanking for indicating "illegal" or "overload". information, decimal locating, and autopolarity override for proper display of zero offset functions.

Serviceability

The 3431A can be removed through the front panel without opening the user's instrument. Once two screx's and front panel are removed, the extractors are pulled and the meter slides out of its extruded case. The operation is extremely simple and takes less than a minure.
Modular service is possible due to plug in circuit board construction. Troubleshooting through board substitution can be completed in a minimal 5 to 10 minutes even by unskilled personnel. If component level troubleshooting is desired, complete information is available in the manual.

Portability

Size, weight, power, and ruggedness are always serious considerations when designing portable instrumentation and the 3431 A is the leader in adaptability to portable applications. It is the smallest, lightest, and most rugged complete panel meter available. By using few parts and a unique power supply, size is minimal and weight is kept to only 12 oz. by eliminating the conventional bulky and heavy power transformer. A dc version of the power supply operating efficiently at battery levels between 5 V and 15 V is available on an optional basis. Without this de supply, an inverter would be required which would consume half the battery pox'et in the inverter.

Specifications**

Full scale voltage range: $\pm 1.999 \mathrm{~V}$.
Accuracy ($20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$): $\pm(0.1 \%$ reading +1 digit).
Operating temperature range: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
Temperature coetficient ($0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$): ± 0.1 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Ingut impedance: $>10 \mathrm{M} \Omega$.
Input bias current: $<35 \mathrm{nA}$.
Zero to full scale response time: < 55 ms .
Overload protection: $< \pm 60 \mathrm{~V}$.
Effective common mode rejection (with $1 \mathrm{k} \Omega$ imbalance): >90 dB at $\mathrm{dc} ;>60 \mathrm{~dB}$ at 60 Hz .
Normal mode rejection: $>35 \mathrm{~dB}$ at 60 Hz .
Floating: $\pm 500 \mathrm{~V} \mathrm{dc}$, input low to power ground.

General

Measure rates: $15 / \mathrm{s}, 8 / \mathrm{s}, 4 / \mathrm{s}, 2 / \mathrm{s}, 1 / \mathrm{s}$.
Programmable functions: measure sate, hold, trigger, decimal location, annunciators, autopolarity override, and overload digit blanking.
Output information: BCD serial character, parallel bit with character identification; flags at $>1999 .>999$, and <190; polarity data; valid data ready signal.
Weight: net, $1202(0,4 \mathrm{~kg})$: shipping, $1.5 \mathrm{lbs}(0,68 \mathrm{~kg})$.
Dimensions: $3.54^{\prime \prime}$ wide, $1.7^{\prime \prime}$ high, $2.9^{\prime \prime}$ deep ($90 \times 43 \times 7-1$ mm).
3431 options
Option 002: 3 GaAsP annunciator lamps with divider.
Option 003: input voltage range: 0 V to $\pm 19.99 \mathrm{~V}$; input impedance: $>100 \mathrm{k} \Omega$; maximum input: $\pm 100 \mathrm{~V}$.
Option 005: connector, Viking part number 000201.4238.
3431 ordering information
Note: 3-13LA, B, and C differ only in type of power supply offered.
3431A (AC supply): 90 V to $130 \mathrm{~V}, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 5 \mathrm{~W}$. 8 VA .
3431B (DC supply): 4.8 V de to $9.2 \mathrm{~V} \mathrm{dc}, 5 \mathrm{~W}$. Allowable ac ripple is $\leq 10 \%$ of supply level.
3431 C (DC supply): 8.8 V dc to $15.2 \mathrm{~V} \mathrm{dc}, 5 \mathrm{~W}$. Allowable ac ripple is $\leq 10 \%$ of supply level.
Price: HP 3431A, B, or C 1 - $9 \quad \$ 295$

$1-$	9	$\$ 295$
$10-$	49	$\$ 275$
$30-$	99	$\$ 250$
$100-249$	$\$ 225$	
$250+$ on request		

HP 3431 optlon 002 (GaAsP annunciator lamps), add $\$ 7$. HP 3431 aption 003 (19.99 V input range), no charge.

[^7]
Description

The Hewlett-Packard 3469 B is a versatile, low cost digital multi-function meter. Twenty-six difterent range and function combinations allow a wide variety of measurements of ac volts, dc volts, ohms, and de current. High performance ac volts, ohms, and de current functions make the instrument useful in many lab, bench and specialty applications.

Digital ac voltmeter

High sensitivity (2 mV to 500 V full scale) wide bandwidth (20 Hz to 10 MHz), and high accuracy ($\pm .6 \%$ to 5%), offer unique value to users in communications, broadcast, and audio applications areas.

Digital milliohmmeter

The 1 milliohm sensitivity of the 3469 B allows fast and accucate measurements of contact resistances, components, and plated-through circuit board hole resistances. A unique twoterminal input permits direct measurments with varying probe lead lengths while eliminating errors introduced by cable resistance or EMF offsets. Once the leads ace attached to the instro. ment, the operator simply shorts the ends and makes an adjustment to zero out the lead resistance. A 60 Hz square wave ac current source is used on the 1 ohm range to eliminate the possibility of problems due to thermal offsets.

DIgital dc ammeter

High current sensitivity ($2 \mu \mathrm{~A}$ to 200 mA full scale) allows current measurement capability approaching electrometer type performance at a modest price. The extra sensitivity and floating capability of the 34698 make it a natural choice to measure capacitor and semi-conductor leakage currents.

DC voltmeter

With the fast dc measure rate (1 s samples per second), good sensitivity (200 mV to 1000 V full scale), and good accuracy ($\pm .2 \%$ to $\pm .3 \%$), the 34698 is an especially usetul in. strument for production applications where measurement time and clarity are prime concerns. Producion trouble shooting is also enhanced by the full multimeter capability of the 34698 .

Specifications ${ }^{\text {st }}$

AC voltmeter
Ranges: $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ (500 V max input).
Accuracy \pm ($\%$ reading $+\%$ range $)$,
$20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
1 mV range (0.3 mV and above):

20 Hz	100 kHz			4 MHz
	+ 0.75	$2.5+$		
10 mV to 1 V ranges:				
$20 \mathrm{~Hz} \quad 100$	100 kHz		1 MHz	10 MHz
$0.5+0.5$	$0.3+0.3$	$1+1$	$2.5+2.5$	

$10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges:
$20 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \quad 100 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 4 \mathrm{MHz}$

$$
\begin{array}{|l|l|l|l|}
\hline 1+0.5 & 0.4+0.3 & 1+1 & 2.5+2.5 \\
\hline
\end{array}
$$

Input Impedance: $10 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$. Input common connected to chassis.
Overload protection: 500 V at frequencies $\leq 60 \mathrm{~Hz}$.
Residual noise: <75 $\mu \mathrm{V}$.

DC voltmeter

Ranges: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$

100 mV range: \pm (0.2% reading $+0.1 \%$ range $)$.
$1 \vee$ to 1000 V ranges: $\pm(0.1 \%$ reading $+0.1 \%$ range $)$.
Input impedance: $10 \mathrm{M} \Omega$.
Response time: 70 ms .
Overload protection: 1000 V .
Normal mode rejaction
$60 \mathrm{~Hz}: 40 \mathrm{~dB}$.
Common mode reiection
DC: 60 dB .
$60 \mathrm{~Hz}: 40 \mathrm{~dB}$.
Floating voitage: $\ddagger 500 \mathrm{~V}$ max.

Ohmmeter

Ranges: $1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$
1Ω range: $-(0.25 \%$ reading $+0.5 \%$ range $)$.
10Ω range: \pm (0.3% reading $+0.2 \%$ range $)$.
100 n to $10 \mathrm{M} \Omega$ range: \pm (0.2% reading $+0.2 \%$ range $)$.
Open circult voltage: 10 V negative with cespect to common
(common connected to chassis).

Response time

10Ω to $20 \mathrm{M} \Omega$ ranges: 70 ms .
DC Input protection: $\pm 100 \mathrm{~V}$ max.
AC input protection; 130 V ims max.
DC ammeter
Ranges: $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right): \pm(0.2 \%$ reading $+0.2 \%$ range).
Full scale voltage drop: 100 mV .
Response time: 70 ms .
Overload protection: 5 times full scale.
Floating voltage: $\pm 500 \mathrm{~V}$ max.

General

Sample rate: $15 / \mathrm{s}$.
Overrange: 100%.
Display: GaAsP light emitting diodes.
Out of range and illegal range indication: 3 least significant digits blank.
Polarity: automatic.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Warmup: 10 min .
Power: 115 V of $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 10 \mathrm{VA}$.
Dimensions: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$).
Weight: net, $7 \mathrm{lbs}(3,15 \mathrm{~kg})$; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Prlce: HP 3469B, 8595.
"Refer to data sheet for complete specifications.

Description

The Hewlett-Packard 3403A and 3403B are companion instruments which cover a broad range of ac measurement applications. Both are true rms, 3 -digit voltmeters which provide bench and systems capability. The 3403 B provides six tanges of ac measurement and the 3403 A adds five ranges of $a c+d c$ for low frequency capability and five ranges of dc.

In addition to the systems options such as BCD output and remote control, a dB display option is a vailable to permit mea. surements directly in dB . Autoranging is also available as an option for the 3403 A .

Features

The de and 2 Hz to 100 MHz bandwidth of the 3403 A and 25 Hz to 100 MHz bandwidth of the 3403 B will allow usage throughout the frequency spectrum. The $3403 \mathrm{~A} / \mathrm{B}$ are not only general meters for audio and low. RF use, bur they also can be used in the upper RF and IF bands. The 3403A. in addition, is a low frequency measurement instrument and a five range do meter.

True RMS

The $3403 \mathrm{~A} / \mathrm{B}$ are true rms responding instruments utilizing the Hewlerr-Packard thermopile as the ims sensing element. Theit rms capability enables the $3403 \mathrm{~A} / \mathrm{B}$ to make meaningful measurements of noise, multiplexed signals or other complex or distorted waveforms as well as providing the assurance that any general purpose measurement will be made accurarely.

Wide voltage range

The 3403 A and 3403 B have six ac voltage ranges from 10 mV full scale 101000 V full scale, enough to satisfy an extremely wide range of applications. In addition, the 3403 A provides five de canges and five de + ac ranges for de and jow frequency measurement capability. This wide measuring span covers virtually any ac requirement and makes the in. struments truly general purpose devices.

dB display

The dB display option provides readings directly in dB , a major convenience to ac users. The dB reference to which the measurement is made is conveniently adjustable from the front
panel both to provide referenced dB measurements or to provide a convenient means to adjust the reading to 0 or the nearest 10 dB , and then 10 measure deviations from this established level.

Systems

A full complement of systems options is available, both iso. lated and nonisolated, to insure systems comparibility.

3403A specifications

Ranges

Full range display: 10.00 mV (ac only); $100.0 \mathrm{mV}, 1.000 \mathrm{~V}$, $10.00 \mathrm{~V}, 100.0 \mathrm{~V}, 1000 \mathrm{~V}$.
Overrange: $>90 \%$ on all ranges except as limited by max input voltage.
Ranging information: front panel annunciators indicate overrange (approximately 190% of full range) or under. range (approximately 17% of full range) conditions.

Performance

AC trequency range Slow response: 2 Hz to 100 MHz . Fast response: 25 Hz to 100 MHz
Response time
Fast response: 1 s .
Slow response: 10 s .
Instrument reads final reading $\pm 0.1 \%$ of inpuc change in stated response time.
Display rate Fast response: 4 readings per s Slow response: 1 reading pers.
Functions
DC: responds to dc component of input signal.
AC: responds to true tms value of ac coupled input signal. $A C+d c$: responds to true ms value of $d c$ and ac inpur signal; reading is $\sqrt{(\mathrm{dc})^{2}+(\mathrm{ac} \text { rms })^{2}}$
Temperature coetficient: $\pm 0.1 \times$ reading accuracy $* /{ }^{\circ} \mathrm{C}$ ourside the $29^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range. * data from accuracy charts.

Accuracy: 90 days $\left(25^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C},<95 \% \mathrm{RH}, 17 \%\right.$ of range 10190% of range).

CAUTION frequencies and ranges in this area may result in invalud readings without fanquing indication.

- DC + AC FUNCTION ANÓ SLOW RESP. TIME ONLY

Input characteristics

Input impedance: $<10 \mathrm{MHz}$.
1 V to 1000 V range: $10 \mathrm{M} \Omega \pm 10 \%$ sbunted by 19 pF $\pm 10 \%$.
10 mV and 100 mV range: $20 \mathrm{MR} \pm 10 \%$ shunted by 16 $\mathrm{pF} \pm 10 \%$.
10 MHz to 100 MHz the following table gives maximum loading due to input shunt impedance across a terminated source.

System \}mpedance	Frequancy	
(source and losd)	10 MHz	100 MHz
50Ω	1\%	10\%
75 n	2\%	20\%
Crest factor		
2 Hz to 25 Hz	2.1 at	a input.
$>25 \mathrm{~Hz}$	L0.1 at	einput.

MaxImum input voltage
Hito Lo:
1000 V rms, 1500 peak or $10^{9} \mathrm{~V} \cdot \mathrm{~Hz}$ on any range. Maximum de voltage in ac mode: 500 V dc.
Lo to chassis:
$\pm 300 \mathrm{~V} \mathrm{dc}$, when floated with special banana to BNC adapter.

3403B specifications

The 34038 specifications are identical to those of the 3403 A with the following exceptions:

AC frequency range: 25 Hz to 100 MHz except 10 mV range. 10 mV range 50 Hz min.
Response time: 1 s .
Functionsi ac volts, ac dB (optional).
Input: BNC grounded to chassis-non-floating.
The 3403 B is available with: Option 002 -digital output.
Option 006-dB display.

Options

Autoranging (3403A Option 001)

Automatic ranging: uptange at approximately 190% of full range; downranges at approximately 17% of full range.
Autorange time: fast response: 15 per range change. Slow response: 10 s per range change.
Digital output (3403A/B Option 002)
The digital output option provides data outputs in digital form for printer and systems applications. In addition, inpur lines are included for external triggering of the instrument. isolated digital output (3403A Option 004)

In addition to the features of Option 002 isolated digital out. put provides isolation between the measurement input terminals
and digital output lines. Output lines and programming input lines are referenced to earth ground (instrument chassis) and are well isolated from the measurement terminals. Instrument will maintain all normal and common mode rejection specifications when the data and control lines ate utilized.
Remote control + digital output + autoranging (3403A Op. tion 003)
Option 003 provides all features of digital output and autoranging (Options 001 and 002) plus remote programming of all front panel functions.
Isolated remote control + digital output + autoranging (3403A Optlon 005)
In addition to the features of Option 003, Option 005 provides the same isolation characteristics as isolated digital output (Option 004).
dB display (3403A/B Option 006)
Measurement range: $108 \mathrm{~dB}(-48 \mathrm{~dB}$ V to $+60 \mathrm{~dB} \mathrm{~V})$. Accuracy: 90 days ($25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$).

Calibrated dB reference: $0 \mathrm{~dB}=1.000 \mathrm{~V}$; reference level may be set for 0 dBm (600Ω) by adjusting front panel dB calibration adjustment.
Varlable dB reference: refereace level may be shifted downward from calibrated position by $>13 \mathrm{~dB}$.
dB recorder output: outpur voltage: 200 mV for 20 dB . Ourput resistance: $1 \mathrm{k} \Omega \pm 500 \Omega$.

General

Operating conditions
Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Humidity: <95\% RH.

Recorder output

Output voltage: 1 V de open circuir for full range inpur.
Output resistance: $1 \mathrm{k} \Omega \pm 10 \%$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $140 \mathrm{~Hz}, 35 \mathrm{VA}$ max. (including all options).
Input terminals: BNC froot panel connector standard for Lo and Hi terminals: rear panel connector available by internally reversing position of ac converter module.
Net weight: including all options: $11 \mathrm{lbs}(5 \mathrm{~kg}$).
Shipping welght: including all options: $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Accessorles furnished: floating adapter-banana to BNC.
Price: HP 3403A, $\$ 1400$; ${ }^{* *}$ HP 3403B, $\$ 1150$; Option 001 autoranging, add $\$ 125$; Option 002 digital output, add $\$ 150$; Option 003 remote control + digital output + autoranging. add $\$ 290$; Option 004 isolated digital output, add $\$ 290$; *Option OOS isolated remote concrol + digital output + autoranging, add $\$ 450$; *Option 006 dB display, add $\$ 250$.

[^8]

Description

The 3480 is a high performance 4 .digit DVM designed for bench or systems use. The 2070A Data Logger is a $1 / 2$ module 3-180A DVM combined with a digital recorder into one portable package. A wide range of measurement capability is available using combinations of any of four plug-in units, any of three mainframes and any of four mainframe options. This capability covers anything from simple ac/dc/ohms measurements to multichannel dara logging.
DC or ohms measurements may be made with 4 -digit precision at speeds up to $1000 / \mathrm{s}$. Troo true rms as converters are available: one able to measure as signals down to 1 Hz and the other able to make 10 readings/s. Both converters are able to measure $\& 6$ plus $d c$, a unique measurement for multifunction DVM's.

Up to 50 dc inpurs may be scanned at up to 1000 channels $/ \mathrm{s}$. Single scan, continuous scan, step and random modes are avail. able. Remote control is available to allow random selection of any channel or de range.

Sample-and-hold option for any mainframe turns the 3480 or 2070A into a lon-cose A.to-D convercer able ro digitize a variety of low frequency wave shapes. Sample and Hold may also be used for peak readings and ransient analysis.

Data storage is able to store up to 50 complere readings at up to $1000 / \mathrm{s}$ for output on a digital recorder at 10 lines/s. Data storage makes it possible to scan up to 50 channels ar 1000 channels/s or take readings at $1000 / \mathrm{s}$, yet employ a lowcost printer to output the data.

Plug-In Units				
Sppecifications*	3481A	3482A	34844	3485A
Functions DC	Standard	Standard	Standard	Standaro
True RMS AC Fast True RMS AC Ohms			Option 043 Option 044 Option 042	
Ranges DC True RMS AC Fast True RMS AC Ohms	$\pm 10,000 \mathrm{~V}$	$\pm 100.00 \mathrm{mV}$ to $\pm 1000.0 \mathrm{~V}$	$\begin{gathered} \pm 100.00 \mathrm{mV} \text { to } \pm 1000.0 \mathrm{~V} \\ \pm 100.00 \mathrm{mV} \text { to } \pm 1000.0 \mathrm{~V} \\ \pm 100.00 \mathrm{mV} \text { to } \pm 1000.0 \mathrm{~V} \\ \hline 100.00 \Omega 1010.000 \mathrm{MR} \end{gathered}$	$\pm 100.00 \mathrm{mV} 10 \pm 10.000 \mathrm{~V}$
Overrange	50\%, $\pm 1200 V_{\text {max }}$.			50\% , $\pm 15 \mathrm{~V}$ max.
Measuring Speed Reading Rate	Menual; internal, 1 to $40 \mathrm{rdg} / \mathrm{s}$; external, 0 to $1000 \mathrm{rdg} / \mathrm{s}$			Manual, 3 rdg/s; internal using 6 selecrable chan. nel delays: external 0 to $1000 \mathrm{rdg} / \mathrm{s}$
Response Time DC Filter Out Filter A or Filter B True RMS AC $\vee A C$ (AC) VAC (DC)	1 ms	$\begin{gathered} 1 \mathrm{~ms} \\ 200 \mathrm{~ms} \\ 1 \mathrm{~s} \end{gathered}$		$\begin{gathered} 1 \mathrm{~ms} \\ 250 \mathrm{~ms} \end{gathered}$
		$\begin{gathered} 1 \mathrm{~s} \\ 15 \mathrm{~s} \end{gathered}$		
Fast True RMS AC VAC (AC) VAC (DC) Ohms $\begin{aligned} & 100 \Omega \mathrm{to} 100 \mathrm{k} \Omega \\ & 1000 \mathrm{k} \Omega \\ & 10 \mathrm{~m} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 100 \mathrm{~ms} \\ 1 \mathrm{~s} \end{gathered}$		
		$\begin{gathered} 1 \mathrm{~ms} \\ 200 \mathrm{~ms} \end{gathered}$$2 \mathrm{~s}$		
Inpuz Channels	Single input channel			Uo to 50 floating input channels using FET switches, purchasable in blocks of 10 channels
Accuracy DC 100 mV		$\pm(0.01 \% \mathrm{rdg} .+0.02 \%$ range $)$		$\begin{aligned} & \pm(0.01 \% \text { rdg. }+0.04 \% \\ & \text { range }) \end{aligned}$
$\begin{aligned} & 1000 \mathrm{mV} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm(0.01 \% \text { rdg. to.01\% } \\ & \text { range) } \end{aligned}$	$\pm(0.01 \%$ rdg. $+0.01 \%$ range $)$		$\begin{aligned} & \pm(0.01 \% \text { rdg. }+0.01 \% \\ & \text { renge) } \end{aligned}$
100 V and 1000 V				
Acouracy ${ }^{1}$ True RMS AC ${ }^{2}$ DC Component AC Component ${ }^{4}$ 100 mV and 1000 mV (1 H2 to $10 \mathrm{MHz}_{2}$) 10 V and 100 V (1 Hz to 1 MHz) 1000 V (1) Hz to 100 kHz) Fast True RMS AC2 DC Component AC Component 5 100 mV and 4000 mV (20 Hz to 10 MHz) 10 V and 100 V $(20 \mathrm{~Hz}$ to MHz) 1000 V (20 Hz to 100 kHz) Ohms 1000Ω to $1000 \mathrm{k} \Omega$ 100Ω 10 Mn			1% of reading	
			$\pm 0.1 \%$ of reading to 3 $\pm 2 \%$ of reading	
			$\pm 0.1 \%$ of reading 10^{3} $\pm 1 \%$ of resding	
			$\pm 0.1 \%$ of reading 10^{3} $\pm 1 \%$ of reading	
			1\% of reading	
			$\pm 0.1 \%$ of reading 10^{3} $\pm 2 \%$ of reading	.
			$\pm 0.1 \%$ of reading to ${ }^{3}$ $\pm 0.4 \%$ of reading	
			$\begin{aligned} & \pm 0.1 \% \text { of resding to } 3 \\ & \pm 0.2 \% \text { of reading } \end{aligned}$	
			$\begin{aligned} & \pm(0.01 \% \text { rdg }+0.01 \% \text { rge } \\ & \pm(0.02 \% \text { rdg }+0.05 \% \text { rge }) \\ & \pm(0.1 \% \text { rdg }+0.01 \% \text { rge }) \end{aligned}$	

* For complete specifications, refer to data sheers

1. Accuracy specifications applies for 90 dovs, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 95 \% \mathrm{RH} 5 \mathrm{VAC}(\mathrm{DC})$ mode used below 300 Hz .
2. Accuracy for 60% to 150% of range.
3. Accuracy depends on frequency.
4. VAC (DC) made used below 10 Hz .

MEASUAING DEVICES cmiminesl

DYM and Data Logger
Models 3480A/B and 2070A

Plug-in Units

Spasifications (Conc'd)*	3481 A	3482A	3484A	30854
$\begin{array}{r} \hline A C \text { Response } \\ \text { VAC }(A C) \\ V A C(D C) \end{array}$			True rms value of ac coupled function True rms value of ac and de input signal Reading equals: $\sqrt{(\mathrm{dc})^{2}+\left(a c _m\right)^{2}}{ }^{2}$	
Crest Factor True RMS AC Fast True RMS AC			7:1 at full scale, dev reted linearly from 35 Hz to $2.2: 1$ at 5 Hz . $7: 1$ at full scale, derated linearly from 100 Hz to $7.2: 1$ at 30 Hz .	
Input Characteristics Input Resistance DC 100 mV and 100 mV 10 V 100 V and 1000 V AC Front Term. Rear Term.	$>10^{10} \Omega$		$\begin{aligned} & 1010 \Omega \\ & 109 \\ & 0 \pm 0.1 \% \\ & \hline 2 \mathrm{M} \pm 1 \% \text { 45 } \pm \mathrm{pF} \\ & 150 \mathrm{nH} \text { in es. lead } \\ & \hline 2 \mathrm{M} \pm 1 \% \text { } 45 \pm 5 \mathrm{pF} \\ & 150 \mathrm{nH} \text { in ea. lead } \\ & \text { plus } 20 \mathrm{pF} \text { shunt cap. } \\ & \text { acity and } 200 \mathrm{nH} \text { in } \\ & \text { each lead. } \end{aligned}$	$\begin{aligned} & >10^{7} \Omega \\ & >10^{7} \Omega \end{aligned}$
Common Mode Rejection	$>80 \mathrm{~dB}$, dc to 60 Hz with 1 k ¢ n either lead			
Normal Mode Re. jection Filter Out Filter A Or in Filtar B	0 d8	$\begin{aligned} & 0 \mathrm{~dB} \\ & >27 \mathrm{oB} \text { at } 50 \mathrm{~Hz} ;>30 \mathrm{~dB} 60 \mathrm{~Hz} \text { and sbove } \end{aligned}$		
Prices (Basic Unit) Ohms AC Fast AC 10 Channels	5350	\$700	$\$ 900$ Option 042 $\$ 200$ Option 043 $\$ 900$ Option 044 $\$ 1000$	$\$ 1300$ Option 051 to 055 \$100 increments

*For camplete specifications refor to data sheets.

Remote	3481A	3482A	3484A	3485 A
Non-Isolated Remote Measure Filter Range Function Flag	Yes	Siandard Yes Yes Yes Yes	Standard Yes Yes Yes Yes Yes	
Isolated Remote Measure Filzar Range Function Flag Program Program Initiate Program Execute Program Acknowledge Scan Madas Channel Select Scan Inhibit Reset		$\begin{gathered} \hline \text { Option } 021 \\ \text { Yes } \\ \\ \text { Yes } \end{gathered}$	Option 041 Yes Yes Yes Yes Yes Yes Yes	Option 057 Yes
Price		Add \$200	Add S200	Add \$300

Mainframes			
	3480A	3480B	20704
Size	$\begin{aligned} & 1 / 2 \text { Module } \\ & 6.3 / 32^{*} \mathrm{High} \end{aligned}$	Full rack width 3.3:8" High	Full rack width 6-3/8" High
Output	BCD (optional)		Digital Recorder
Power	$\begin{gathered} 115 \mathrm{~V} \text { or } 230 \mathrm{~V} \pm 10 \% \text {, swichable } \\ 40 \mathrm{~Hz} \text { to } 440 \mathrm{~Hz} \\ 60 \mathrm{VA} \text { max. } \end{gathered}$		$\begin{aligned} & 115 \mathrm{~V}+10 \% \\ & 40 \mathrm{~Hz} 10440 \mathrm{~Hz} \\ & 115 \mathrm{VA} \text { max. } \\ & 230 \mathrm{~V} \pm 10 \% \text { optional } \end{aligned}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to 550C		
Price (Excluding Options and Plug-ins)	\$800	\$900	52675

Sample-and-hold Option 001

Acquisition time: time to respond to a plus or minus full scale step input to within $\pm 0.01 \%$ of final value.

ACOUISiTION TIME:						Plag-Sn Unit			
Range	3481 A	3482 A	3484 A	3485 A					
$\pm 100.00 \mathrm{mV}$		100 us	100 us	100 us					
$\pm 1000.0 \mathrm{mV}$		70 us	70 us	70 us					
$\pm 10.000 \mathrm{~V}$	25 us	70 us	70 us	70 us					
$\pm 100.00 \mathrm{~V}$		25 us	25 us						
$\pm 1000.0 \mathrm{~V}$		25 us	25 us						

Maximum dV/dT: 10% of range/ μs, sample-and hold enabled.
Modes of operation (selection, manually or remotely)

Sample-and-hoid

On: sample-and-hold enabled.
Off: normal 3480 operation.
Remote: remore control.

Delay

On: $105 \mu \mathrm{~s}$ delay added before hold.
OHf: no delay.
Remote: remore control over delay,
Aperture time: time from command to take a reading to when the signal is actually held: $110 \mathrm{~ns} \pm 20 \mathrm{~ns}$.

Note: a delay of $105 \mu \mathrm{~s} \pm 10 \mu \mathrm{~s}$ may be added prior co aperture time by using delay on.
Accuracy: (90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$) for any mode.

ACCURACY:	Plug to Unit			
Range	3481 A	3482A	3484A	3485A
$\pm 100.00 \mathrm{mV}$		$\pm 10.01 \%$ of rdg $+0.1 \%$ of range) ${ }^{\prime}$		
$\pm 1000.0 \mathrm{mV}$		$\pm(0.01 \%$ of $\mathrm{rdg} \boldsymbol{+ 0 . 0 1 \%}$ of range)		
$\pm 10000 \mathrm{~V}$	$\pm(0.01 \%$ of reading $+0.01 \%$ of range $)$			
$\pm 10000 \mathrm{~V}$		$\pm 10.01 \%$ of reading $+0.01 \%$ of range)		
$\pm 1000.0 \mathrm{~V}$				

- I mproves to $\pm(0.01 \%$ of reading $+0.02 \%$ of range $)$ when there is no Delay and the trigger is issued to the Sample.and.Hold ir igger inout.

Analog output: sample-and-hold outpur for use with an oscilloscope for the measurement and display of repetitive wave. forms. Full scale inputs equal $1 \mathrm{~V} \pm 2 \%$; source resistance $1 \mathrm{k} \Omega \pm 2 \%$.
Sample-and-hold trigger: initiates hold mode and encoding. Actuated by "Low" state for $>1 \mu 5$. Line must be "High" $>20 \mu s$ prior to "Low" state. Used in place of measure to eliminate $105 \mu \mathrm{~s}$ delay.

Mainframe Options

	Digital Outpus 10ption 003)	Isolated Dightal Output (Option 004)	Data Storage (Option 005)
BCD Output Columns 5 Measurement 1 Function 1 Polarity 1 Range 2 Channel I.D.	$\begin{gathered} 3481 \mathrm{~A}, 3482 \mathrm{~A}, 3484 \mathrm{~A}, 3485 \mathrm{~A} \\ 3482 \mathrm{~A}, 3484 \mathrm{~A} \\ 3481 \mathrm{~A}, 3482 \mathrm{~A}, 3484 \mathrm{~A}, 3485 \mathrm{~A} \\ 3482 \mathrm{~A}, 3484 \mathrm{~A}, 3485 \mathrm{~A} \\ 3485 \mathrm{~A} \end{gathered}$		
2 Storage I.D.			For all plug.in units
Control Lines Measure Flag Printar Kold-off Internal Measure Intibit	Yes Yes Yes Yes	Yes Yes Yes Yes	Yes Yes Yes Yes
Storage Limit Storage Flag Status Flag Cycla Hold Jump Preset Yrigger			$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
Storage Capacity			Up 1050 readings
Input Rate			$1000 \mathrm{readings} / \mathrm{s}$
Output Rase		dings/s	50,000 readings/s
Isolation From Input Terminals	None	Yes, maintains al	ion specifications
Price	Add \$200	Add \$375	Add \$1000

Interchangeable plug-ins increase voltmeter versatilly

The Hewletr-Packard Models 3439A and 3440A are versatile multi-function digital voltmeters. The choice of automatic rang. ing, remote, and manual operation is obtained by using the $3441 \mathrm{~A}, 3442 \mathrm{~A}, 3443 \mathrm{~A}, 3444 \mathrm{~A}, 3445 \mathrm{~A}$ or 3446 A plug-ins, which are interchangeable with any 3439 A or 3440 A . The basic volt. meter is solid-state with easy-to-service plug-in circuic cards.

DC voltages up to 999.9 V of cither polarity are displayed in four significant digits with an accuracy of better than $=0.05 \%$ of reading -1 digir and with the polarity of the applied signal indicated automatically. Modes of range selection available for the plug-ins include manual, remote, and automatic. Refer to Table 1 for data. The bright, easy-ro-read display reduces oper. ator fatigue. A polarized light filter reduces the reflection of external light so that a good contrast results when the digits are lighted.

Feature	HP 3439A	HP 3440A
Sample rate:	3/s fixed	"HOLD" and variable $1 / 5$ to $5 / \mathrm{s}$
DC inpur floaring:	500 V above chassis ground	500 V above chassis ground
Printer output:	None	$\operatorname{BCD}(1-2.2 .4)$ for dera, polarity, function, print command and decimal. BCD (1-2.4-8) Opt HO2
Overrange	5\%	
Power	115 or $230 \mathrm{~V} \pm 10 \%$. 48 to 440 Hz , approx 20 to 30 W depending on plug-In (45 VA max)	
Operating temperâture	$+0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$	
Weight:	Net $18 \mathrm{lbs}(8 \mathrm{~kg})$; shipping $24 \mathrm{lbs}(10,8 \mathrm{~kg})$.	
Dimensions:	$\begin{aligned} & 163 / 4^{\prime \prime} \text { wide } \times 57 / 32^{\prime \prime} \mathrm{high} \times 111 / 4^{\prime \prime} \text { deeo } \\ & (425.5 \times 132.5 \times 285.6 \mathrm{~mm}) \end{aligned}$	
Price:	\$1075	\$1300

Table 1. Features Chart.

Plug-in units
Table 2 illustrates the features obcained by using the 34.41 A , $3442 \mathrm{~A}, 3443 \mathrm{~A}, 344 \mathrm{~A}, 3445 \mathrm{~A}$ or 3446 A plugers with any 3439 A or 3440 A .

Performance

The opcrator can instantly verify the accuracy of the 3439 A and 340 A by pressing a front-panel button. Typical perfor. mance on the 3440 A internal calibration source is better than $0.002 \% /{ }^{\circ} \mathrm{C}$ TC with stability typically better than $\pm 0.05 \%$ over a three-month period. The linearity is approximately $\pm 0.01 \%$ for the $10: 100$, and 1000 V ranges with 0.03% linearity full scale for the 100 mV and 1000 mV range. The stability of reading is approximately ± 1 count.

Plug-in function chart						
Plug-in*	3441A	3442A	3443 A	3444A	3445 A	3446A
AC volts 10 V 10100 V	*	**	. ${ }^{\text {a }}$	**	X	X
DC valts 10 V 101000 V	X	X	X	X	X	X
OC volts 100 mV to 1000 V			X	X		
DC amps				X		
Ohms				X		
Manual ranging	X	X	X	X	X	X
Autoranging		X	X		X	
Floating inpur	X	X	X	X	X	X
Remoteranging		X	X		X	X
Remata function						X
-3439A and 3440A require a plug-in to operate. - Average response measurements: 100 uV to $300 \mathrm{~V}, 50 \mathrm{~Hz}$ to 500 kHz use HP $457 \mathrm{~A}: 1 \mathrm{mV}$ to $300 \mathrm{~V}, 10 \mathrm{~Hz}$ to 10 MHz use HP $400 \mathrm{E} / \mathrm{EL}$. True rms measurements: 1 mV to $300 \mathrm{~V}, 10 \mathrm{~Hz}$ to 10 MHz , use HP 3400 A .						

Table 2, Plug-in Function Chart.

- Refer to data sheer for complete specifications.

3450A

General description

The Hewlett-Packard Model 3450A Multi-Function Meter is a five-digit, integrating digital voltmeter. The basic instrument measures dc voltage and dc voltage ratios. Added measurement capability is achieved by the addition of plug. in options.

Optlonal Functions

$A C$ and ac ratio
Ohms and ohms ratio
Limit test
Digita! ourput
Remote control
Rear terminals
Option 001
Option 002
Option 003
Option 004
Option 005
Option 006

Specifications ${ }^{\text {rax }}$ DC Voltages

Ranges

Full range display: $\pm 100.000 \mathrm{mV} ; \pm 1.00000 \mathrm{~V} ; \pm 10.0000$ $\mathrm{V} ; \pm 100.000 \mathrm{~V} ; \pm 1000.00 \mathrm{~V}$.
Overranging: 20% on all ranges

Performance

Accuracy: 30 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

Range	Specifitation
1 V thru 1000 V	$\pm(0.008 \%$ of reading
	$+0.002 \%$ of range $)$
100 mV	$\pm(0.008 \%$ of reading
	$+0.01 \%$ of range $)$

Measuring speed: 380 ms ($1 / 10 \mathrm{~s}$ gate); $65 \mathrm{~ms}(1 / 60)$.

Input characteristics

Input reslstance: 100 mV through 10 V ranges, $10^{10 \mathrm{n}: 100}$ $\mathrm{V}, 1000 \mathrm{~V}$ ranges, $10 \mathrm{M} \Omega$.
Normal mode rejection: extremely high rejection at har. monics of gate time.
Effective common mode rejection: extremely high rejection at harmonics of gate time. Specified with $1 \mathrm{k} \Omega$ unbalance. Applies to dc and ohms.
DC Ratio
Ranges
Fufl range display: $\pm 1.00000 ; \pm 10.0000 ; \pm 100.000 ;$
$\quad \pm 1000.00$.
Pertormance

Accuracy: 30 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right), \pm[0.01 \%$ of readings" $+0.002 \%$ of ratio range $+(Y$ range $/ Y$ voltage) x $0.003 \%]$
*Add 0.005% of reading for X inpur $>100 \mathrm{~V}$.
Measuring speed: 840 ms ($1 / 10 \mathrm{~s}$ gate); $210 \mathrm{~ms}(1 / 60 \mathrm{~s})$.
Input characteristics
Input configuration: isolation f-terminal, guarded. No common ground necessary between signais.
input resistance: same as do voltage for X and Y inputs.

AC Voitage Option 001

(True RMS-Responding, 45 Hz to 1 MHz)
Ranges
Full range display: 1.00000 V : $10.0000 \mathrm{~V}: 100.000 \mathrm{~V}$; 1000.00 V .

Overranging: 20% on all ranges (1500 V p on 1 kV).

Performance

Accuracy: 90 day ($29^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$).
Depends on: frequency, input, amplitude, \% of full scale. Mid-band accuracy: $\pm(0.04 \%$ of reading $+0.01 \%$ of range).
Measuring speed: 2.7 s ($1 / 10 \mathrm{~s}$ gatc).

Input characteristics

Input impedance: front terminals, $2 \mathrm{M} \Omega$ shunted by 90 ± 10 pF in series with $0.1 \mu \mathrm{~F}$; rear terminals, 2 M ! shunced by $135 \pm 15 \mathrm{PF}$ in series with $0.1 \mu \mathrm{~F}$.

AC Ratlo Option 001
(True RMS-Respanding)

Renges

Full range display: $1.00000 ; 10.0000 ; 100.000 ; 1000.00$.

[^9]
Performance

Accuracy: 90 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right), \pm(0.02 \%$ of reading $+0.01 \%$ of ratio range + sum of measurement accuracy of each input).
Measuring speed: $8.1 \mathrm{~s}(1 / 10 \mathrm{~s}$ gate).
Input characteristles
Ingut conflguration: isolated 4 .terminal, guarded.
Input Impedance: same as ac voltage for X and Y .
Interterminal capacitance between X and Y : $<10 \mathrm{pF}$.
Crest factor: 7:1 (f $>1 \mathrm{kHz}$, bandwidth $=1 \mathrm{MHz}$).
Maximum input voltage: same as de voltage, except $< \pm 1000 \mathrm{~V}$ dc offset voltage on X terminals.

Ohms Option 002

Ranges

Full range dlsplay: 100.000Ω; $1.00000 \mathrm{k} \Omega ; 10.0000 \mathrm{k} \Omega$; $1000.00 \mathrm{k} \Omega ; 10000.0 \mathrm{k} \Omega$.
Accuracy: 30 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$. Depends on reading, $\%$ of scale and range. Accuracy for $1 \mathrm{k} \Omega-100 \mathrm{k} \Omega$ ranges is $\pm(0.01 \%$ of reading $+0.002 \%$ of range).
Measuring speed: 380 ms ($1 / 10 \mathrm{~s}$ gate); 65 ms ($1 / 60 \mathrm{~s}$ gate). 165 ms on $10 \mathrm{M} \Omega$ range.
Input characteristics
Input conflguration: 4-wire, guarded.
Current through resistance.

Range	Signal Currant
100 n	
1 kn	1 mA
10 kn	
100 kn	10 uA
1000 kn	1 uA

Effective common-mode rejection (ECMR): same as de voltage.
Normal-mode rejection: same as dc voltage.
Overload protection: $\pm 200 \mathrm{~V}$ p for X or Y input.
Ohms Ratio Option 002

Ranges

Full range ratio display: $1.00000 ; 10.0000 ; 100.000 ; 1000.00$. Performance

Accuracy: 30 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ at terminals): $\pm(\%$ of ratio range error $+\%$ of ratio reading error) where $\%$ of ratio range error $=+\left(0.004 \%+\frac{Y \text { range }}{Y \text { resistance }}\right.$ $\times 0.002 \%$) ; \% of ratio reading error is the greater percentage given below for either the X or Y resistance.

- 0.01% for ratlos between 0.95 and 1.05 if X and Y are between 10 k and 500 k .
Measurling speedi 840 ms ($1 / 10 \mathrm{~s}$ gate): $210 \mathrm{~ms}(1 / 60 \mathrm{~s}$ gate).
Input characteristics
Input configuration: isolated 4-terminal, guarded. Two wires per resistor.
Current through X and Y resistance: same as ohms function.
Effective common-mode rejection (ECMR): same as dc vol. rage for X input.
Normal-mode rejectlon: same as de voltage for X input.
Overload protection: $\pm 200 \mathrm{~V}$ p for X or Y input.

Limit Test Option 003

Capability
Applicable to: dc, de ratio, ac, ac ratio, ohms, and ohms ratio. No degradation in performance of above six functions.
Limit selection
Two 4 -digit limits (with 20% overcanging), including polarity, are selectable in 1-2-4-8 BCD form.

Digital Output Option 004
4-line BCD (1-2-4-8) " 1 " state positive, 9 columns: 2 columns for function and polarity, 1 column for range, 6 columns for data.
BCD levels

State	12 V Level	Output Characteristics
" 0 "	$+0.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	12 mA max sink curren:
"1"	$+17.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	12 knsource resistance
State	5 V Level"	Output Characteristics
"0"	$+0.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	20 mA max sink current
" $1 "$	$+4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	12 kn saurce resistance

" 5 V level may be selected by moving jumper wire on Digital Out. put PC board.
BCD reference levals

Ref Level	12 V Leval	5 V Leval	Source Resistance
Negetive	+1 V	+0.4 V	$3 \mathrm{k} \cap$
Positive	+6 V	+3 V	$10 \mathrm{k} \Omega$

Holdoff on intarnal trigger or print command may be selected by moving jumper wire.

Remote Control Option 005

All remore control lines are selected by an external closure to ground through $<3 \mathrm{k} \Omega$ (2.8 mA max) or application of -0.5 V to +2.5 V for the " 0 " state as shown below.

State	12 V Laval	5 V Lavel"
'" 0 "	-0.5 V to 2.5 V	$-0.5 \mathrm{~V} 10+1.0 \mathrm{~V}$
"1"	$+5.5 \mathrm{~V} 10+12 \mathrm{~V}$	2.5 V to 5.0 V

" 5 V level may be selected by moving jumper wire on Remote Contral PC board.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, unless otherwise specified. Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V}=10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 110 \mathrm{VA}$ max (including all options, normal environmental conditions).
Dlmensions: 16 3/4" wide, 3 15/32" high, 21 3/8" deep (425 $\times 88 \times 542 \mathrm{~mm}$).
Weight
Basic instrument: net 31 lbs ($14,1 \mathrm{~kg}$); shipping 41 lbs $(18.5 \mathrm{~kg})$.
Including all options: net 36 lbs (16.3 kg); shipping 49 lbs $(22,1 \mathrm{~kg})$.
Accessories avallable: HP 11133 A Rear input Cable assembly, \$30: HP 11112A Limit Selector, \$175. The standard HP sOSOB Printer is compatible with the 3450A. The HP sO50B Opt. H089 Printer is equipped with special alphameric wheels for use with the 3450 A . The following accessory numbers are for ordering optional capabilities not included with initial purchase: HP 11077A Ohms Converter, \$425: HP 11078A AC Converter, $\$ 1250$; HP 11079 A Limit Test, 8375: HP II080A Digital Output, \$225; HP 11099A Remore Control, $\$ 260$.
Accessories furnished: rack mounting kit; lamp replacement kit; extender kit for Option 001; connector kit for Option 003; connector kit for Option 004; HP 1:133A Rear Input Cable assembly for Option 006.
Price: HP 3450A (includes dc and dc ratio), $\$ 3300$, HP 3450A Option H50, Optimum Noise Rejection for 50 Hz line, add s60; HP 3450A Option H01. Optimum Noise Rejection for 60 Hz line with programmabie filter, add $\$ 300$; HP 3450 A Option H13, Optimum Noise Rejection for 50 Hz line with programmable filter, add $\$ 360$; Option 001 AC Converter (adds ac, ac ratio), add \$1250; Option 002 Ohms Converter, add $\$ 425$; Option 003 Limit Test (adds limit test capability), add $\$ 375$; Option 004 Digital Output (adds BCD output. 1.2 .4 .8 code), add $\$ 225$; Option 005 Remote Control (zdds remore control capability). add $\$ 260$; Option 006 Rear Input Terminals (adds front/rear selector switch and sear terminals), add \$70.

Accurate bipolar, low-level dc V-to-F conversion Model 2212B

The HP 2212 B is a compact Voltage-ro-Frequency Converter, well suited to low level signal applications. Low input drift and high common mode rejection (124 dB at 60 Hz) are achieved without a chopper by differential circuits. The VFC produces an ourput pulse rrain with a rate directly proportional to the magnitude of an applied de voltage. Pulse rate rises linearly and instantaneously from 0 to 100,000 pulses per second as the dc input level is increased from zero to full scale. The 2212B provides outstanding linearity, stability and noise immumity.

The output of the HP 2212B, when connected to an electronic counter provides a convenient method of making digital measurements of de voltages; the converter provides a polarity signal. This converter-counter combination can be connecred directly to a digital printer or through an output coupler to other common digital recording devices.

The converter-counter combination integrates $d c$ voltages over any period of time and can therefore be used to read the average of the input over a selected sample period, or over an externally-controlled period. This provides accurate do measurements in the presence of noise superimposed on the signal. Combining the VFC with an HP 5321 B all.JC Counter, provides an Integrating DVM with $01,1,1$ and 10 seconds sample periods.

The modular package with self-contained power supply allows the 2212B to be used in both bench and syserems applications. An inexpensive combining case is available to mount 10 instruments side-by-side in only $51 / 4^{\prime \prime}$ of $19^{\prime \prime}$ rack panel space.

Specifications

Specifications include $\pm 10 \%$ line voltage variation, hold for 1 kn max. source resistance, any unbalance, and assume daily calibration after specified warmup.
DC voitage ranges: 3 sanges; 0 to $10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}$. Vernier option 002 (10 -turn potentiometer) extends range to x 3.5 . for any setring. Overrange: to 250% of full scale, all ranges. Instrument is sensitive to positive and negative inputs; polarity indication and output signal provided.
Accuracy; 'Worst case' accuracy of pulse rate over l-second sample period with respect to the source used for calibration is as follows:

	.01 V		.1 V	

Internal calibration source: 1 V standard for self-calibration. Accurate to within $\pm 0.02 \%$ for six months; temp. coeff of $\pm 0.005 \%$ per ${ }^{\circ} \mathrm{C}\left(0^{a}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$.
Differentlal input Impedance: $1000 \mathrm{M} \Omega$ shunted by $0.001 \mu \mathrm{~F}$.
Common mode rejectlon: 120 dB at $\mathrm{dc} ; 114 \mathrm{~dB}$ at 60 Hz .
Common mode return: From input common to output common, 1 megohm, max
Normal mode rejection: More than 40 dB at 55 Hz with 1 second sampie period; increases 20 dB per decade increase in noise frequency. Infinite rejection cusp every cycle.
Slewing: $10^{\circ} \mathrm{V} / \mathrm{sec}$ rti (referred to input) with de offset caused by slew limiting less than 0.1% of peak ac, provided 250% of full scale is not exceeded.

Maximum input signal: $\pm 11 \mathrm{~V}$, signal plus common mode. Combined input up to $\pm 20 \mathrm{~V}$ will not damage instrument.
Output (dc coupled): 0 to 100 kHz fs, overranging to 250 kHz ; 5 mA available; short circuit will not damage instrument.
Satling time: 100μ s to within 0.01% of final pulse rate.
Overload recovery: 200 as to 0.01% of final pulse rate for signal to 10 times full scale. Less than 5 ms for signal plus common mode input up to 20 V .
Polarity Indication: electrical and visual for + and - .
Operating conditions: Ambient temperatures from 0° to $55^{\circ} \mathrm{C}$; relative humidity to 95% at $-10^{\circ} \mathrm{C}$.
Warmup: operates immediately after curn-on, but requires $11 / 2$ hours in free air, 30 minutes in portable case or combining Case (plus I hour additional warmup for each $10^{\circ} \mathrm{C}$ difference between storage temperature and operating ambient) for specified accuracy and zero drift.
Reliablity: predicted MTBF (with 90% confidence) is 10,000 hours when operated at $25^{\circ} \mathrm{C}$ ambient.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Dimenslons: $19 / 6^{\prime \prime}$ wide, $47 / 8^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($39.7 \times 123.8 \times$ $381 \mathrm{~mm})$.
Weight: net $4 \mathrm{lb}(1,8 \mathrm{~kg})$, shipping $61 / 2 \mathrm{lb}(2,9 \mathrm{~kg})$
Accessories available: mating rear connector; mating rear connector with power cord, input/output cable; combining case: holds up to 10 instruments in $51 / 4^{\prime \prime}$ of $19^{\prime \prime}$ rack space (mating connectors furnished), includes power cord and fan; portable case: holds two VFC's (mating connectors furnished) and includes power switch, pilot light. power cord and fan.
Price: HP 2212B, $\$ 1325$; option 002 (Vernier) add $\$ 100$.

Description

The 2402A Integrating Digital Voltmeter combines 43 mea. surements per second sampling rate and the precision and measurement fexibility expected from a laboratory instrument with the programming and electrical output features necessary for data acquisition systems use both computerized and non-compurerized. It achieves high speed and high accuracy at low levels, without preamplifiers.

High accuracy in a DVM is of little practical value unless this accuracy can be maintained in the presence of noise and under the far from ideal conditions of everyday use. The 2402A is average-reading, which greatly reduces the effects of superimposed noise. A foated and guarded input circuit eliminates common mode noise error. Combined, these techniques yield effective common mode noise rejection greater than 126 dB (2 million to l) at any frequency, including dc.

AC voltages to 750 V peak can be measured on four ranges from 1 V to 1000 V when the 2402A is equipped for optional ac volkage measurement. Resistance measurements to 13 meg. ohms can be made on five ranges from $1 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$ when the 2402 A is equipped with this option. The 2402A may be equipped for frequency measurements to 199.999 kHz . Fre. quency measurement is a plug-in option.

Specifications \dagger
 DC voltage measurement

Noise rejection: overall effective common mode rejection: (ratio of common mode signal to its effect upon readings): 160 dB at $\mathrm{d} c$, decreasing to 126 dB above 30 Hz (infinite rejection cusp gives 168 dB effective cmr at $60 \mathrm{~Hz} \pm .25 \%$). Overall rejection combines common mode rejection and supeximposed noise rejection.
Ranges: 100 mV and $1,10,100$, and 1000 V full scale selected by front panel switch, external programming or autoranger. Internal calibration standard: (independent of measuring circuit). Derived from stabilized reference diode operating in a constant temperature oven; maintains specified accuracy for 6 months.
Accuracy: 6 months $\left(25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right) .1 \mathrm{~V} \cdot 1000 \mathrm{~V}$ range: $\pm(0.01 \%$ reading $+.003 \%$ F.S. $): 100 \mathrm{mV}$ range: $\pm(0.01 \%$ reading $+.005 \%$ F.S.).
Measurement speed: to 43 measurements per second when rriggered externally.

AC voltage measurement option

Input Impedance: $1 \mathrm{M} \Omega \pm 1 \%$ shunted by 200 pF (maximum). AC only operation: frequency range: 50 Hz to 100 kHz .

Ranges: 1, 10, 100, and 1000 V ful) scalc, selected by front panel switch, external programming or autoranger.
Accuracy: midband $\pm(0.06 \%$ reading $+.03 \%$ F.S. $)$.
Measurement speed: to 1.9 externally-triggered measurements per second.
Resolution: 1 part in 130,000 on 6 -digit dispiay; $10 \mu \mathrm{~V}$ on 1 V range.

Resistance measurement option

Noise rejectlon: measurement circuit enclosed in same guard as dc circuit, reducing effect of ac common mode noise when guard is connected to low side of test resistance.
input clrcuít: guarded, modified four-terminal circuit, unknown resistor can be either grounded or floating.
Ranges: $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$, and $10 \mathrm{M} \Omega$ full scale, selected by front panel switch, external programming or optional autoranger.

Absolute accuracy

Resistance range	1 k		10 kn 100 kn / Mn			10 Mn	
Measurement durrent	1 mA		1 mA	$100 \mu \mathrm{~A}$	10 nA	$1 \mu \mathrm{~A}$	
Accuracy	$\pm(\% \mathrm{rdg}$ - \% fs)		\pm (0.013\% $\mathrm{cdg} \pm 0.003 \% \mathrm{fs})$			$4 \%^{2} \mathrm{rag} \cdot \mathrm{\%} / \mathrm{ts}$]	
at $25^{\circ} \mathrm{C}$	0.016	0.003				0.025	0.005
Temperaturg * effect	$\pm 10.004 \%$ rag $\cdot 0.0003 \%$ is per ${ }^{\circ} \mathrm{C}$ difference of ambient with respect $1025^{\circ} \mathrm{C}$ over 10 to $50^{\circ} \mathrm{C}$ range						

* Calobration of 2402A against internal standard at operaing temperature decregses \% rag temperature affect to 0.0015% oer ${ }^{\circ} \mathrm{C}$, 100.0025% rog per ${ }^{\circ} \mathrm{C}$.
Measurement speed: to 8 externally triggered readings per second.
Resolution: 1 past in 130,000; 0.01Ω on 1 k Ω range.

Frequency measurement optlon

Frequency pange: 5 Hz to 199.999 kHz .
Gate time: 1 second; provides 1 Hz resolution.
Accuracy: \pm (1 count + time base stability) ; time base aging rate: 2 ppm per week over 20 to $30^{\circ} \mathrm{C}$: time base ternpera. ture effect: 100 ppm over range 10 to $50^{\circ} \mathrm{C}$.
Input
Amplitude ranga: 0.1 to 100 V cms.
Pulse or square wave input: negative 1 to 100 V amplitude, $2 \mu \mathrm{~s}$ minimum duration, 50% maximum duty cycle.
Impedance: $1 \mathrm{M} \Omega$ shunted by 150 pF .
Maximum voltage: 150 V peak dc plus ac or pulse

Autorange optlon

Range seiection: dc voltage ranges; each time autoranger is programmed, it starts on 1 V range to take advantage of fast up-ranging. While autoranging is continuously programmed, autoranger starts at range selected for previous reading, sequences to higher or lower range as required. $A C$ voltage range: auroranger starts at 1000 V range, sequences to lower range as required. Up-ranges at 136% of full scale. down-ranges at 10.2%.

General

Display and system interface: 6-digit display, BCD output and program inputs. Polarity, decimal, measurement units, calibration, and overload conditions indicated automatically and included in ouput as function and decimal digits.
Operating conditions: specifications apply for ambient temperarures 10 to $50^{\circ} \mathrm{C}$, relative humidity to 90% at $40^{\circ} \mathrm{C}$, altitude to 15,000 feet.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , 150 VA max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep behind pane! ($425 \times 133 \times 404 \mathrm{~mm}$); hardware furnished for $19^{\prime \prime}$ wide rack mount.
Welght: net 49 lbs ($22,2 \mathrm{~kg}$); shipping $56 \mathrm{lbs}(25.4 \mathrm{~kg}$).
Price: 2402A for DC measurements, $\$ 5950$; AC , add $\$ 675$: re. sistance, add $\$ 775$: frequency, add 8350 ; autoranging, add $\$ 265$.
\dagger Refer to data sheet for complete specifications,

The Hewlett-Packard Model 3460B is a full five-digit digital voltmeter which combines in one insirument the benefits of high accuracy, high speed, and high noise rejection. The unique method by which the potentiometric and integrating lechniques are combined in this instrument is primarily responsible for this combination of outstanding features. A unique two-sample system enables 15 independent readings to be made in one second at this accuracy, Integration during the serond of these two samples plus guarding results in excellent effecive common-mode rejection and ac normalmode rejection characteristiss. Voltage ranges and integration periods can be selected by contact closures to ground.

DC Voltage Specifications*
 Ranges

Full range display: $\pm 1.00000 \mathrm{~V} ; \pm 10.0000 \mathrm{v}$; $\pm 100.000 \mathrm{~V}$; $\pm 1000.00 \mathrm{~V}$.
Overranging: 20% on all ranges.
Range selectlon: manual, automatic or remote.

Performance rating

Accuracy (accuracy applies over a temperature range of $25^{\circ} \mathrm{C}$ $\pm 9^{\circ} \mathrm{C}$):
90 day calibration cycle; $\pm(0.004 \%$ of reading $+0.002 \%$ of sange).
180 day calibration cycle: $\pm\{0.007 \%$ of reading $+0.003 \%$ of range).
Stabillty: $\pm(0.002 \%$ of reading $+0.001 \%$ of range) 24 hr , constant temperature $\pm 1^{\circ} \mathrm{C}$.
Temperature coefficient: $\pm(0.0002 \%$ of reading $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$ (from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$).
Reading perlod
10, $100,1000 \mathrm{~V}$ ranges: $<66 \mathrm{~ms}$; 1 V range: $<150 \mathrm{~ms}$.
Integration period: $1 / 10$ s ($1 / 60$ s selectable by excernal contact closure to ground on 10,100 and 1000 V ranges).
Response time; reads within specified accuracy when eriggered coincident with step input voltage.
Autorange time: 33 ms per range change. Remote ranging time: 8 ms.

Input characteristics

Input resistance: i V and 10 V ranges, $>10^{10} \Omega$ within $\pm 3 \%$ of null, otherwise $10 \mathrm{M} \Omega \pm 0.03 \%$; 100 V and 1000 V range, $10 \mathrm{M} \Omega \pm 0.03 \%$.
Isolation parameters: floated and guarded input terminals; guard can be operated up to $\pm 500 \mathrm{~V}_{\mathrm{P}}$ with respect to chassis ground, low can be operated up to $\pm 50 \mathrm{Vp}$ with respect to guard.
Noise relection: overall effective common-mode rejection (ratio of indicated error voltage to common-mode voltage) 145 dB at all frequencies (0.1 s sample period); common-mode rejertion 160 dB at $\mathrm{d} c, 120 \mathrm{~dB}$ at 60 Hz with 10000 berween low side of input and the point where the guard is connected; superimposed noise rejection; $>20 \mathrm{~dB}$ at 55 Hz for 0.1 s sample period increased 20 dB per decade of (requency; infinite rejection ar frequencies divisible by 10 (0.1 s sample period) or 60 ($1 / 60 \mathrm{~s}$ sample period).
"For complete specifications refer to Data Sheet.

Remote control

Range selection: remote: all ranges can be selected by a contact closure to ground with impedance of <1008 for a period >100 $\mu \mathrm{s}$. Automatic: automatic mode of range selection can be programmed by a contact closure to ground with impedance <100 ?.
D/A converter reset: contact closure to ground of $<100 \Omega$.
Trigger hold-ott: hold-off voltage is +3 to +10 V with a maximum current of 6.3 mA (provided by an external device).
Input resistance: $10 \mathrm{M} \Omega \pm 0.03 \%$ can be programmed by coniact closure to ground of <1000.

Recorder data

BCD outputs: 4-line $B C D$ (1-2-4-8) " 1 " state positive, 9 columns of information: function, decimal, overload, and 6 of digit data.

General

Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless otherwise specified.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
RFI: conducted and radiated leakage limits are below those specified in MIL-I-0181D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $60 \mathrm{~Hz}, 90 \mathrm{VA}$ max.
HP 3460 B is available on special order for operation with powerline frequencies berween 50 Hz and 400 Hz .
Dimensions: $163 / 4^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $193 / 8^{\prime \prime}$ deep ($425 \times 133 \times$ 492 mm).
Weight: net, $38 \mathrm{lbs}(17,6 \mathrm{~kg})$; shipping, $55 \mathrm{lbs}(24,8 \mathrm{~kg})$.
Accessories furnished
HP $11065 \mathrm{~A} 6-\mathrm{ft}$ rear input cable, guarding preserved; $\$ 20$.
HP 11085A remote control cable, \$30; rack mount kit for $19^{\prime \prime}$ rack.
Accessories available: HP 562A/AR Digital Recorder; HP 5050 A Digital Recorder.

Optional Filter

An optional programmable filter can be added (as indicated in the table below) to increase the ac normal-mode rejection by 26 dB at 60 Hz (24 dB at 50 Hz). With this added rejection the 3460 B accoromodares ac nommal-mode signals up to 100% of range (peak value).

When using the filter, 725 ms is added to the reading period and 363 ms is added to the auto-range time listed in the 3400 B specifications.
Price: HP 3460B, 1-2-4.8 BCD "1" scace positive, $\$ 3850$.

Oplions	$\begin{gathered} \text { BCD Dodt } \\ \text { ("fl'slati posftwo) } \end{gathered}$		*81A Compaliblitity	Fiter	Addithan Prices
	1-2-4-8	1-2.2-4			
001		X			N/C
002	X		X		\$150
008		X	X		\$150
604	X			X	5250
0 OE		X		X	\$250
006	X		X	X	4400
067		X	X	X	$\$ 400$

HP 3460 B option Hso, optimum noise rejection for 50 Hz line frequency (3460 B Options in chart apply).

Description

The solid-state Model 3462A, 6-digit DVM, offers a resolution of 1 part in $1,200,000$ at 20% overrange-four times more resolution than any other digital voltmeter in its price range. Accuracy is $\pm(0.004 \%$ of reading $+0.0002 \%$ of range) over a $10^{\circ} \mathrm{C}$ temperature variation for a period of 90 days.

Null measurements can be performed with $1 \mu \mathrm{~V}$ sensitivity. A front-panel, high-resolution zero adjust is provided to compensate for any thermals in connections to extemal circuitry, BCD outpur capability permits recording of data, and remore programmability permits system applications.

Specifications*
 Ranges

Full range display: $\pm 1.000000 \mathrm{~V} ; \pm 10.00000 \mathrm{~V} ; \pm 100.0000$; ± 1000.000.
Overranging: 20% on all ranges.
Range selection: manual, automatic, or remore.

Periormance

Accuracy (90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<50 \% \mathrm{RH}$): $\pm(0.004 \%$ of reading $+0.0002 \%$ of range).
Accuracy (90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$): $\pm(0.004 \%$ of reading $+0.0004 \%$ of range).
Stability (constant temperature $\pm 1^{\circ} \mathrm{C},<\mathbf{5 0} \% \mathrm{RH}$) 24 hr : \pm (0.0015% of reading $+0.0002 \%$ of range) . 180 day: $\pm(0.006 \%$ of reading $+0.0004 \%$ of range $)$.
Temperature coefficient ($0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$): $\pm(0.0002 \%$ of read. ing $+0.00002 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Measuring speed

Range	Infegration Interval	Reading Parlod (w) thout range change)	Aute- range Tlme	Reamate Range Tlma	Polarly Solestion Thme
$\begin{array}{r} 1 \mathrm{~V} \\ 10 \mathrm{~V} \\ 100 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	1 s	1.15	60 ms	8 ms	$\begin{gathered} \text { no } \\ \text { delay } \end{gathered}$

Rangs	Spachicatlons
1 V and 10 V	$10^{10} \Omega$ within $\pm 5 \%$ of null, otherwise $10^{\prime} \Omega \pm 0.03 \%$
100 V and 1000 V	$10^{\prime} \Omega \pm 0.03 \%$

Effective common-mode rejection: 160 dB at dc ; extremely high at harmonics of power line.
Normal mode rejection: $>100 \mathrm{~dB}$ at 60 Hz ; extremely high at harmonics of power line.

Remate contral

Range selection

Automatic: pushburton selector or a switch closure to ground through <100s provides autorange operation. 60 ms is required per range change, 180 ms max.
Remote: a switch closure to ground through $<100 \Omega$ for a period $>100 \mu 5$ selects range desired.
Manual: pushbutton selector.
Voltmeter reset: switch closure to ground through $<100 \Omega$ assures minimum reading period.
Trigger hold-off: hold-off level is +3 V to +10 V with max current of 6.3 mA (provided by an external device).
Input resistance: 10 n $\pm 0.03 \%$ can be programmed by conract closure to ground of $<100 \Omega$.

Recorder data

ECD outputs: 4 -line $\mathrm{BCD}(1-2-4 \cdot 8), 9$ columns, consisting of polarity and decimal location, overload, and 7 digits of data (HP 3462A Option 001 is available for 1-2-2-4 BCD).

General
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless specified otherwise.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $60 \mathrm{~Hz}, 90 \mathrm{VA}$ max. Available on special order for operation with powerline frequencies betrveen 50 Hz and 400 Hz .
Dimensions: $163 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep ($425 \times 127 \times$ 543 mm).
Weight: net, $38 \mathrm{lbs}(16 \mathrm{~kg}$); shipping, $55 \mathrm{lbs}(24,8 \mathrm{~kg})$.
Accessorles furnished
HP 11065 A 6 -ft rear input cable, guarding preserved, terminated end mates with 3462A, $\$ 20$; HP 11085 A remore control cable, $\$ 30$; HP rack mount kit.
Price: HP 3462A, $\$ 4995$; HP 3462A Option 001 (1-2.2.4 BCD output), \$4995; HP 3462A Option H50 (optimum noise rejection for 50 Hz line frequency), add $\$ 60$.

[^10]

The Model 8330A Radiant Flux Meter and Model 8334A Radiant Flux Detector combine to form a complete, multipurpose optical radiometer system ideally suited for use in a wide variety of exacting applications involving the accurate measurement of radiant power density in the ultraviolet, visible and infrared regions of the electromagnetic spectrum.

Direct readout in absolute units

The complete system is fully calibrated and reads directly in absolute radiometric units of watts per cm^{2} at any wavelength and at any power level within the range of the detector. The uniform, flat spectral response of the detector eliminates the need for inconvenient spectral calibration curves, thus enabling the convenient measurement of monochromatic radiation as well as the accurate measurement of spectrally-distributed (non-monochromatic) radiation from optical sources such as thermal blackbody radiators.

Thin-film Thermopile Detactor

Key to the exceptionally high performance of the complete system is the unique, Hewlett-Packard-designed and manufactured thin-film thermopile detector. This multijunction thermocouple-type detector exhibits a combination of flat spectral response, fast rise time and mechanical ruggedness not found in conventional designs.

Convenient to use

The instrument is particularly convenient and easy to use compared with previously available optical radiometers. The front panel meter can be automatically zeroed by simply depressing the front-panel MODE switch. No manual zero knob adjustment is needed. A pushbutton-operated, built-in electrical substitution-type calibrator keeps the fully integrated system operating at maximum accuracy at all times.

Applications

The $8330 \mathrm{~A} / 8334 \mathrm{~A}$ system is useful in a wide range of laboratory, industrial and field applications in a number of different areas such as optical science and engineering, process control, biological science and many others.

Specifications, 8330A/8334A

Dynamic range: irradiance measured in 10 overlapping (1:3:10 sequence) ranges from $3 \mu \mathrm{~W} / \mathrm{cm}^{2}$ to $100 \mathrm{~mW} / \mathrm{cm}^{2}$ full scale.
Accuracy: absolute measurement uncertainty of broadband irradi. ance is less than $\pm 5 \%$ of full scale on any range.
Spectral range and flatness: standard version of Model 8.334 A is equipped with Infrasil quartz optical window and responds from at least 0.3 to more than 3.0 microns, flar to within $\pm 3 \%$ or less (measured with grating monochromator with better than 0.1 micton resolution). Spectral range is extendable beyond these limits using specified alternate optical window materials. Windows are not interchangeable.
Response thme, $\mathbf{1 0 - 9 0 \%}$: measured at recorder/DVM output is: $<70 \mathrm{msec}$ on $3,10,30,100 \mathrm{~mW} / \mathrm{cm}^{2}$ ranges; $<0.7 \mathrm{sec}$ on 100 , $300 \mu \mathrm{~W} / \mathrm{cm}^{3}$ and $1 \mathrm{~mW} / \mathrm{cm}^{*}$ ranges, <2.7 sec on $3,10,30 \mu \mathrm{~W} /$ cm^{2} ranges.

Zero drift: rypically less than $3.0 \mu \mathrm{~W} / \mathrm{cm}^{3} / \mathrm{hr}$ in laboratory environ. ment with reasonably constant ambient temperature.
Recorder/DVM output: 0-1 volt de. BNC connector.
Power requirements: $115 / 230 \mathrm{~V}$ ac $\pm 10 \%, 50.400 \mathrm{~Hz}, 2.5$ watts.
Weight: $8330 \mathrm{~A}:$ net, 6 lbs 15 oz ($3,2 \mathrm{~kg}$); shipping, 9 lbs 14 oz $(4,6 \mathrm{~kg}) \cdot 8354 \mathrm{~A}$: net, 1 lb 5 oz ($0,8 \mathrm{~kg}$): shipping, 1 lb is oz (1 kg).
Dimensions: (approximate), S330A: $61 / 2^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep $(165 \times 130 \times 285 \mathrm{~mm}) .8334 \mathrm{~A}$: (including stand) $61 / 4^{\prime \prime}$ high. $43 / 4$ " wide. $5^{\prime \prime}$ long ($160 \times 121 \times 127 \mathrm{~mm}$).
Accessories furnished: $71 / 2^{\prime}(2,3 \mathrm{~m})$ power cable. Adjustable height stand and $3 / 8$ " diameter suppori rod (pin mount) for detetior.
Price: Model 8330A, \$650. Model 8334A, \$450 with Infrasil quartz window; detectors with alternate types of optical windows can be supplied on special order at extra cost.

Description

The HP 4470B Transistor Noise Analyzer evaluates accurately transistor noise voltages (e_{n}), noise currents (i_{n}) as weil as direct measurement of noise figure (NF).
This Noise Analyzer performs "spot" frequency measurements at 9 frequencies between 10 Hz and 100 kHz . Noise is carried by the spot frequency "pilot" signal in sidebands at 10 Hz above and below the pilot frequency. Total noise measured, equivatent to transistor noise at the spot frequency, is the average of the noise in the two sidebands.

Specifications

Noise parameters measured

Voltage noise: (e_{n}) referred to the inpur of the transistor under test, in boch bipolar and FET's.
Current noise: (i_{a}) referred to the input of transistor under test, in bipolar transistors.
Spot noise figure: (NF) for both bipolar and FET.

Avaliable ranges

Voltage nolse: $3 \mathrm{nV}, 10 \mathrm{nV}, 30 \mathrm{nV}, 100 \mathrm{nV}, 300 \mathrm{nV}, 1 \mu \mathrm{~V}$ and 3μ V F.S. at 1 Hz bandwidth. Two meter scales of 0 to 3,0 to 10 and X1, X10, X100 muldipliers. Ranges as a function of spot frequency are: all ranges at 10 and $30 \mathrm{~Hz}, 3 \mathrm{nV}$ to $1 \mu \mathrm{~V}$ at 100 and $300 \mathrm{~Hz} ; 3 \mathrm{nV}$ to 300 nV at I k and $3 \mathrm{kHz} ; 3 \mathrm{nV}$ to 100 nV at 10 k and $30 \mathrm{kHz} ; 3 \mathrm{nV}$ to 30 nV at 100 kHz .
Current noise: refer to chart for applicable noise current measurement limits (Referred to 1 Hz bandwidth). Max. freq. for each curcent noise range is shown in chart.

Spot noise figure: (NF) 0.40 dB ; meter scaled from -5 dB to +10 dB .
Ranges are: -3 dB to +10 dB ; +5 dB to $+20 \mathrm{~dB} ;+15 \mathrm{~dB}$ to $+30 \mathrm{~dB}:+25 \mathrm{~dB}$ to +40 dB .

Noise level below the heavy line is measurable for the bipolar transistor. Noise level below the broken line is measurable for FET.
Spot frequencies: $10 \mathrm{~Hz}, 30 \mathrm{~Hz}, 100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}$, $10 \mathrm{kHz}, 30 \mathrm{kFz}$, and 100 kHz .
Nolse bandwidth: 4 Hz . Noise is measured in pilor signal side. bands centered at $\pm 10 \mathrm{~Hz}$ from spot frequency. Sidebands are 4 Hz wide. Pilot signal equals spot frequency except at 10 and 30 Hz where 100 Hz carrier is used.
Collector/Drain power supplies: cursents of $1,3,10,30,100 \mu \mathrm{~A}$, $0.3,1,3,10$ and 30 mA are provided with continuous adjustoment berween values. Voltages of 0 to 15 Vd d , concinuously variable. Both supplies are independent of each other. Current supply seeks desired setting.

Translstor types: bipolar NPN and PNP, P-channel or N-channel FET noise may be analyzed.
β-Range: Bipolar Transistors with hes from 10 to 1000 are measurable. gm-Range: See chart:

Source resistance
Values provided for use when measuring Noise Figure are 50Ω, $100 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1$ $\mathrm{M} \Omega, 5 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$.
Meter response: Time for meter fluctuation to be averaged is determined by the Response switch seting and will vary from a fast response of 4 s to a slow response of $>24 \mathrm{~s}$.
Translstor bias/supply outputs; Collector/Drain current, Collector/Drain Voltage, Base/Gate Voltage.
Racorder output: proportional to merer defection. 0 to $1 \mathrm{~V} \mathrm{dc}, 1$ $\mathrm{k} \Omega$ ourput resistance.

Accuracies

Collector/Draln voltage: $\pm 3 \%$ at monitor jack; $\pm 10 \%$ at front panel; $\pm 3 \%$ at calibrated front panel settings except i $\mu \mathrm{A}$ where sccuracy is $\pm 5 \%$.
Collector/Drain current: $\pm 3 \%$ at monitor jack; $\pm 3 \%$ at cali. beated front panel sertings.
Spot freq.: $\pm 3 \%$. Noise bandwidth: $\pm 3 \%$. Toral accuracy: $<$ $\pm 1 \mathrm{~dB}$.
(NOTE: accuracy for NF measurements on bipolar devices is unspecified if the product of base current and source resistance exceeds β volts and for e_{n} and NF if V_{g} exceeds $\pm 12 \mathrm{~V}$ on FET's).
Transistor socket configurations: 6 sockets provided.
Power required: $115 / 230 \mathrm{~V} \mathrm{ac}, \pm 10 \%$, 50 or $60 \mathrm{~Hz}, 66 \mathrm{VA}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $631 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425 : $177 \times 467 \mathrm{~mm}$).
Weight: net, $32 \mathrm{lbs}(14,5 \mathrm{~kg}$) ; shipping, $41 \mathrm{lbs}(18,5 \mathrm{~kg})$.
Accessories provided: power cord, Transistor socket kit (includes six sockets.)
Accessories avaflabe: transistor socket kit including six modular sockers. HP No. 16009 A , $\$ 80$.
Modular sockets: $\$ 10$ each.
Price: HP 4470B. $\$ 4390$.

MEASURING DEVICES

Model 5525B Laser Interferometer
The Model 5525 B is a precise linear and angular displacement measuring instrument. It measures and displays distance and fatness to a resolution of 1 microinch, velocity to a resolution of $.01 \mathrm{in} / \mathrm{min}$, and pitch/yaw to a resolution of 11 are-second. It consists of three parts-the 5500 laser head, 5505 display chassis and 10550 retroreflector. The 5525B is self tuning and has instant warm-up. Using a unique method of optical heterodyning, the 55258 is an A.C system, quite superior to D.C systems used in other laser interferometers. It functions well in adverse environments such as a machine shop. Even the small vibrations which perturb the ordinary interferometer can be averaged out if desired.
Applications of the 5525B: It is ideal for calibration of precision metrology instruments and step-and-repeat cameras, parts inspection, and machine tool calibration. Back-panel BCD output allows easy computer interfacing or use in closed-loop servo systems. Further applications include vibration analysis, when used in conjunction with an HP 5452A Fourier Analyzer.
Options available include bending optics to facilitate use in tight places, a digital recorder, and quadrature/up-down real-time pulse output. A custom error-plotting scheme using the HP 7035B X-Y recorder is ideal for operational machine tool certification. A resolution extender offers an order of magnitude increase in resolution.

Mode! 10565A Remote Interferometer

When the Model 10565A is inserted into the bearn of the 5S29B, only movement of the retroreflector with respect to the remote interferometer is measured. This makes possible a great reduction in the measurement path and allows the laser source to be removed some distance from the measurement area. With the addition of a few simple optical components, the 10565 A can be used to measure pitch, yaw, straightness/flatness, and make differential or non-contacting measurements.

Model 5510A Automatic Compensator

The Model 5510 A provides the 5525B Laser Interferometer with continuous, on-line automatic compensation for
the effects of air temperature, pressure and humidity on the wavelength of light with one Ppm accuracy. It also compensates for the effect of material temperature on measured dimensions. Sensor values and other compensation factors may be read out on the interferometer display.

Specifications, 5525B

Accuracy: 5 parts in $10^{7}, \pm 1$ counk.
Resolution: (English/Metric units selected by front panel switch). Normal and smooth modes: $0.000,01$ in (0.1 microns).
X10 mode: $0.000,001$ in (0.01 mirrons).
Velocity: $0.000 .1 \mathrm{in} / \mathrm{sec} ; 0.01 \mathrm{in} / \mathrm{min}$ ($0.001 \mathrm{~mm} / \mathrm{sec} ; 0.1 \mathrm{~mm} /$ min).
Max. operating range: distance: 200 fo (60 m) ; velocity: $720 \mathrm{in} /$ $\min (300 \mathrm{~mm} / \mathrm{sec})$.
Power requirements: 115 or $230 \mathrm{~V} \pm 10 \%$; 50 to 60 Hz . Power consumption: 150 watts.
Overall dimensions: display: $5.53^{\prime \prime}$ high x $16.75^{\prime \prime}$ wide $\times 13.25^{\prime \prime}$ deep ($141 \mathrm{~mm} \times 436 \mathrm{~mm} \times 337 \mathrm{~mm}$)
Interferometer head: $5.00^{\prime \prime}$ high x $7.00^{\prime \prime}$ wide $\times 20.70^{\prime \prime}$ long
($127 \mathrm{~mm} \times 179 \mathrm{~mm} \times 526 \mathrm{~mm}$).
Weight: display: 24 fbs ($10,9 \mathrm{~kg}$).
Interferometer head and retrorefiector: $19.5 \mathrm{lbs}(8,94 \mathrm{~kg})$.
Specifications, 5510A
Accuracy: $\pm 1.0 \mathrm{ppm}$.
Temperature: $\pm 0.2^{\circ} \mathrm{F}\left(0.1^{\circ} \mathrm{C}\right)$, range of $55.105^{\circ} \mathrm{F}\left(13.40^{\circ} \mathrm{C}\right)$.
Pressure: ± 0.03 in $\mathrm{Hg}(0.75 \mathrm{~mm})$, range of 22.31 in (560.790 mm).
Humldity: $\pm 10 \%$ RH, range of $10.100 \% \mathrm{RH}$.
Laser Interferometer/automatic compensator system accuracy: $\pm 1.5 \mathrm{ppm} \pm 1$ count in least significant digit (2 counts in metric).
Coefficient of expansion range: $\pm 29.9 \mathrm{ppm} /{ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$.
Power requlrements: power supplied by 5505A Laser Display.
Dlmenslons: $6.25^{\prime \prime}$ high $\times 7.75^{\prime \prime}$ wide $\times 11^{\prime \prime}$ deep ($150 \mathrm{~mm} \times 197$ $\mathrm{mm} \times 280 \mathrm{~mm}$)
Weight: $10.8 \mathrm{lbs}(4,9 \mathrm{~kg})$.
Price: 5525B Laser Interferometer

add	$\$ 350$
add	$\$ 700$
add	$\$ 1685$
add	$\$ 1210$
add	$\$ 595$
add	$\$ 800$
	$\$ 3750$
	$\$ 2450$

DISTANCE METER
 Direct readout-lightweight Models HP 3800A, HP 3800B

MEASURING DEVICES

Description

The HP Models 3800A and 3800B Distance Meters are low cost, direct readout, electro-optical distance measuring instruments employing an infra-sed "light" source. The Distance Meter combines a range of 10,000 feet or 3,000 meters, high accuracy and ease of operation into one lightweight, rugged instrument. The use of graphic symbol notation on the operating panel serves as a constant reminder of the measurement sequence. A short demonstration is all that is necessary for operator training. Visual display of the total measured distance, corrected for atmospheric conditions, is accomplished in less than two minutes. Because of the Distance Meter's unique circuitry, momentary interruptions of the beam will not affect the distance readout. The compact power unit with atmospheric correction dial and built in charger gives long operating time and provision for operating from an external 12 V de source. One Model 3800 plus 3801 power unit and passive reflector comprise the measuring package. The versatile Model 3800 Distance Meter is suited for such applications as hydrographic,boundary, subdivision, construction, control, geophysical and mine surveys. When connected to a recorder the distance meter can be used to continuously monitor movements of structures or other objects.

Model 3800A, Direct Readout in Feet. Model 3800日, Direct Readout in Meters.

Range:

10,000 feet/ 3,000 meters with triple prism assembly. (During favorable conditions).
7,500 feet $/ 2,300$ meters with triple prism assembly. (During average conditions).
Favorable conditions are those found when heat shimmer is minimal (at night or on overcast days) or when measuring between elevated points (e.g. Erom hilltop to hilltop). Average conditions ate those found during the day when heat shimmer is quite evident and the line of sight generally parallels the ground.

Accuracy: 3800 A
$\pm(.01$ feet +0.01 feet per 1000 feet)
Mean square error
(0) $+15^{\circ} \mathrm{F}$ to $+105^{\circ} \mathrm{F}$
$\pm(.02$ feet +.04 feet per 1000 feet $)$ Mean square error
(a) $-5^{\circ} \mathrm{F}$ to $+15^{\circ} \mathrm{F}$ and
$+105^{\circ} \mathrm{F}$ to $+130^{\circ} \mathrm{F}$
Accuracy: 3800 B
\pm ($5 \mathrm{~mm}+7 \mathrm{~mm}$ per km) Mean square error
$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
$\pm(1 \mathrm{~cm}+33 \mathrm{~mm}$ per km$)$ Mean square error
(a) $-20^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ and
$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

Specifications

Readout: 0000.00 to 9999.99 feer/meters.
Least count: 0.002 feet- 2 mm .
Aiming scope: internal focus, $18 \mathrm{x}, 1: 100$ stadia cross hairs.
System power consumption: 12 watts.
Power unit 3801A/3801B
(Model $3801 \mathrm{~A} / 3801 \mathrm{~B}$ is required for operation of Model 3800A/3800B).
Internal battery and battery charger, provision to operate from external 12 volt de source.

General

Dimensions

Instrument HP 3800A ($13^{\prime \prime} \times 10.3^{\prime \prime} \times 5.8^{\prime \prime}$)
HP $3800 \mathrm{~B}(33 \mathrm{~cm} \times 26.2 \mathrm{~cm} \times 14.7 \mathrm{~cm})$
Power Unit HP 3801A (6.9" $\left.\times 6.9^{\prime \prime} \times 8.6^{\prime \prime}\right)$
HP $3801 \mathrm{~B}(17.5 \mathrm{~cm} \times 17.5 \mathrm{~cm} \times 21.8 \mathrm{~cm})$
Tift range:
$\pm 30^{\circ}$.
Weight:
Instrument HP $3800 \mathrm{~A} / \mathrm{B}$, net, $17 \mathrm{lbs}(7,71 \mathrm{~kg})$; shipping, $39 \mathrm{lbs}(17,6 \mathrm{~kg})$.
Power Unit HP $3801 \mathrm{~A} / \mathrm{B}$, net, $13 \mathrm{lbs}(5,9 \mathrm{~kg})$; shipping, $21 \mathrm{lbs}(9,5 \mathrm{~kg})$.
Measuring time: less than two minutes.
Price: HP 3800A, $\$ 3550$; HP 3801A, $\$ 560$; HP 3800B, $\$ 3550$.

THE IC TROUBLESHOOTERS
The Clip-and-read IC tester
Model 10529A Logic Comparator

Troubleshooting TTL and DTL IC's often calls for specialized measurements. Spotting 25 nanosecond transients, tracing pulse activity through complex systems, trying to see exactly what an IC is doing, or determining if an IC is actually working are common problems in design, production, and service. These measurements do not require expensive equip. ment-not if the equipment is designed for the task!

The three HP IC Troubleshooters are a new breed of test equipment: handheld, low cost instruments designed specifically for the job of easing your troubleshooting burdens. The IC Troubleshooters each isolate a characteristic of digital circuits-an attribute-and then display this atrribute. For example the 10525A Logic Probe (next page) captures pulse activity to 20 MHz and indicares this activity by a light at your finger tips; the 10528A Logic Clip (next page) attaches to an IC package, borrows power from it, and gives state indication -logic high and low-for each of the 14 or 16 pins; the 10529A Logic Comparator can isolate faulty $\mathrm{IC}^{\prime} \mathrm{s}$ without removing them from their circuit and then display the failed pins.

The IC Troubleshooters are the vanguard of a new era of instrumentationinstruments designed for IC troubleshooting. Don't let their small size and low price mislead you: the IC Troubleshooters are rugged, quality instruments.

Model 10529A Logic Comparator

- In-circuit IC testing (no unsoldering or removal of IC required)
- No controls, no adjustments-not even a power cord
- Dynamic errors captured and stretched for visual observa. tion
- TTL/DTL compatible

Simply attach the 10529A Logic Comparator to the IC to be tested and slip a reference IC in the Comparator's drawer. That's all there is to testing IC's these days! The inputs to the "IC under test" are paralleled with the "reference IC"-the reference sees the same signal pattern as the IC in the circuit. If any outputs differ, an IED corresponding to the bad pin is lit on the Logic Comparator's display! No fancy equipment, no dificult set-ups, no unsoldering or breaking traces; DTL and ITL IC's can be rested in the circtuit with this hand-held instrument. You save hours of troubleshooting and frustration in servicing, designing, or production. No controls, no settings, no power cables, no adjustments: an IC is tested in seconds.

Dynamic errors as short as 200 nanoseconds are stretched for a visual display. A power ON indicator tells you that the clip is on properly. A self-test-board is included which automatically tests all 16 comparators, the stretchers, the EED display, and the cable continuity. All this for \$295. Quantity discounts available.

Model IOS29A Logic Comparator with reference IC drawer open. Snap in a good ic and tester's ready for use.

THE IC TROUBLESHOOTERS
 Test IC logic at a glance
 Model 10525A Probe, 10528A Clip, 5010A Kit

MEASURING DEVICES

Model 10525A Logic Probe

- 25 nanosecond pulse detector
- High-low logic level indicator at end of probe
- High input impedance with overload protection
- Response to 20 MHz and higher

Tracing pulse activity and logic levels through IC circuitry for troubleshooting in design, production, and service becomes easy with HP's Model 10525A Logic Probe. When the probe tip is touched to a high level, a band of light appears around the tip; when touched to a low level, the light goes out. No ambiguity, no question whether the level is high of low-the indication is right at your finger tips. There is no need to look away from your circuit. Pulse activity to 20 MHz and higher is indicated by the light blinking, allowing you to trace pulse activity while operating at speed.

Pulses as narrow as 25 nanoseconds-high or low goingare captured by the Logic Probe and stretched for a visual dis. play. If you touch the tip to the wrong spot, there's no prob. lem because it's protected to 200 voiks. Power requirements are simple, just any s volt supply.
With no adjustments needed and with an indicator at your finger tips, the 10523A Logic Probe will free you to concentrate on your problem rather than measurement rechnique. Quite a bargain for \$95. Quantity discounts available.

Model 10528A Logic Clip

- Displays all states of the IC
- No porer cords, no cables, just clip and observe all pins
- No adjustments, no controls

16 voltmeters clipped onto a single IC? HP's Model 10528A Logic Clip is 16 binary voltmeters that attach to any 14 or 16 pin dual in-line TTL or DTL IC. An LED corresponds to each pin and lights cotresponding to a logic high or doesn't light if the pin is low. Thus all states of an IC may be viewed with a single glance. Are the input signals right? Are the outputs correct? Is the IC operating? All these questions and more are answered by the Logic Clip.

The Clip has no cables or controls. What's more it operates on any pin configuration. Ir actomatically seeks $\mathrm{V}_{\text {ce }}$ and ground no matter what pins they are. The display is obvious: two rows of 8 LED's-it's like looking into the IC to see how it's operating. The intuitive relationship of the pin logic level to the light display greatly simplifies the troubleshooting procedure. You are free to concentrate your atrention on your cir. cuit rather than on measurement technique. Any way you look at the clip, it's quite a buy at $\$ 125$. Quantity discounts are available.

Model 5010A Logic Troubleshooting Kit

The IC Troubleshooters are really a synezgistic urio. The static readout of all 14 (or 16) pins with the Clip, the probing capability of the Logic Probe and its high speed pulse catcher, and the error detection of the Comparator make the combination of all three a viable Troubleshooting Kit. The Model 3010A gives you a place to keep all your Troubleshooters together and lets you save a few dollars 100 . Price for the 5010 A Logic Troubleshooting Kit is $\$ 495$; quanrity discounts are available.

Sensors of linear motion and velocity

Linear Displacement (DC excitation), Model 7DCDT/24DCDT

The 7DCDT and the 24DCDT linear displacement transducers are extremely convenient to use for measuring, monitor. ing or controlling mechanical displacement. No external car. rier system is required nor are phase shift and balancing adjustments necessary. Each DCDT has a built-in carrier oscillator and demodulator which produces a high-level dc output voltage proportional to the linear displacement of the
core. Both series have extremely high resolution, zero hysteresis and non-linearity less than $\pm 0.5 \%$ of the total stroke. The 24DCDT's bave approximately three times the sensitivity of the $7 D C D T s$ and an operating temperature to $120^{\circ} \mathrm{C}$ (7DCDT. $60^{\circ} \mathrm{C}$). Excitation of 7DCDT models is 5 to 7 voles de; for 24DCDT models, 20 to 28 volts dc.
OEM discounts are available on all models.

Modal		Madel 7 Ocat /ra DEDT					
		-060	-100	-260	-8*0	-1000	-3000
Stroke (in.)		± 0.05	-0.1	± 0.25	± 0.5	$=1$	± 3
Output, (vofts f.s.)	1 DCDT 24 DCDT	$\begin{aligned} & 1.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 3.3 \\ 12.5 \end{array}$	$\begin{array}{r} 4.8 \\ 18.0 \end{array}$	$\begin{array}{r} 5.0 \\ 13.0 \end{array}$
Dutpul impedance	$\begin{aligned} & 7 \text { DCDT } \\ & 24 \text { DCDT } \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{H} \\ & 2.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{k} \\ & 3.5 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{k} \\ & 5.2 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.3 \mathrm{k} \\ & 5.5 \mathrm{k} \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{k} \\ & 5.6 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 5.0 k \\ & 5.8 \mathrm{k} \end{aligned}$
Dimensions. dismeter	$\left.\begin{array}{r} 70 C O T \\ 24000 T \end{array}\right\}$	$0.75 \mathrm{ln} .(19.2 \mathrm{~mm})$					
length	$\begin{aligned} & 7 \text { DCOT (in) } \\ & \text { (mm) } \\ & 24 \text { OCDT (in.) } \\ & \text { (mim) } \end{aligned}$	$\begin{aligned} & 0.81 \\ & 20.6 \\ & 0.87 \\ & 22.2 \end{aligned}$	$\begin{aligned} & 1.06 \\ & 27.0 \\ & 1.12 \\ & 28.5 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 76.2 \\ & 3.21 \\ & 81.8 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 89.2 \\ & 3.71 \\ & 94.2 \end{aligned}$	$\begin{aligned} & 4.50 \\ & 115 \\ & 4.71 \\ & 120 \end{aligned}$	$\begin{gathered} 10.50 \\ 267 \\ 10.52 \\ 286 \end{gathered}$
Weight (sm)	Almalura Assembly net shipping	$\begin{aligned} & 1.6 \\ & 23 \\ & 84 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 28 \\ & 84 \end{aligned}$	$\begin{gathered} 3.4 \\ 68 \\ 168 \end{gathered}$	$\begin{gathered} 3.8 \\ 78 \\ 168 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 100 \\ & 196 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 210 \\ & 308 \end{aligned}$
Price	7 DCDT 24 DCDT	$\begin{aligned} & \$ 115 \\ & \$ 165 \end{aligned}$	$\begin{aligned} & \$ 120 \\ & \$ 170 \end{aligned}$	$\begin{aligned} & \$ 140 \\ & \$ 190 \end{aligned}$	$\begin{aligned} & \$ 150 \\ & \$ 200 \end{aligned}$	$\begin{aligned} & \$ 160 \\ & \$ 215 \end{aligned}$	$\begin{aligned} & \$ 185 \\ & \$ 240 \end{aligned}$

Linear Velocity (no excitation), Model LV syn Series

LVsyn Linear Velocity Transducers are designed for sensitive measurements of relative velocity. The basic design eliminates the need for external excitation and makes the transducers easy to set up and use. DC voltages are generated by moving a high fux-density permanent magnet in the bore of differentially wound coils. Voltage amplitude is proportional to core velocity. Resolution of an LVsyn output is nearly un-
limited-sensitivity over the rated stroke range is constant within 5%-temperature range is from $-46^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$. Linearity is better than 1%. LVsyn's can be operated singleended or push-pull; while immersed in non-corrosive fuids; without end stops or displacement limits. Each transducer is supplied with a calibration record.
OEM discounts are available on all models.

Modal	SLVAE	ILV1	6LV1	8LV2	8LVs	61V4	TLV8	7LV8
Sensitivity ($\mathrm{mV} / \mathrm{in} / \mathrm{sec}$)	$\begin{aligned} & 120 \\ & 100^{*} \end{aligned}$	$\begin{aligned} & 90 \\ & 35^{*} \end{aligned}$	$\begin{aligned} & 500 \\ & 250+4 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 * \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 350 \\ & 150^{*} \end{aligned}$	$\begin{aligned} & 350 \\ & 150^{*} \end{aligned}$
Rosislance (kohrms)	2	2.5	13	19	25	32	11.5	17
Inductanco (hencys)	0.085	0.065	1.6	2.9	3.2	4	1.69	2.8
Stroxe Inches (mm)	$\begin{gathered} 0,5 \\ 13 \end{gathered}$	$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{gathered} 2 \\ 51 \end{gathered}$	$\begin{gathered} 3 \\ 78 \end{gathered}$	$\begin{gathered} 4 \\ 10 . \end{gathered}$	6	$\begin{gathered} 9 \\ 229 \end{gathered}$
Dimensions diamater: (in.) (mm) langth: (in.) (mm)	$\begin{gathered} 0.37 \\ 10 \\ 3.16 \\ 80 \end{gathered}$	$\begin{gathered} 0.37 \\ 10 \\ 4.22 \\ 108 \end{gathered}$	$\begin{gathered} 0.63 \\ 16 \\ 5 \\ 128 \end{gathered}$	$\begin{gathered} 0.83 \\ 16 \\ 7 \\ 178 \end{gathered}$	$\begin{gathered} 0.83 \\ 16 \\ 9 \\ 230 \end{gathered}$	$\begin{gathered} 0.53 \\ 16 \\ 11.25 \\ 275 \end{gathered}$	$\begin{gathered} 0.75 \\ 19 \\ 15.75 \\ 110 \end{gathered}$	$\begin{gathered} 0.75 \\ 19 \\ 22.75 \\ 580 \end{gathered}$
Welght (gm) zrmature assembly coil core sinippling	$\begin{gathered} 3.5 \\ 2.5 * \\ 20 \\ 3.5 \\ 84 \end{gathered}$	$\begin{gathered} 4.5 \\ 3.8^{*} \\ 25 \\ 4.5 \\ 84 \end{gathered}$	$\begin{gathered} 11 \\ 10^{*} \\ 120 \\ 11 \\ 224 \end{gathered}$	15 14* 159 15 252	$\begin{gathered} 17 \\ 17 * \\ 200 \\ 17 \\ 308 \end{gathered}$	$\begin{gathered} 22 \\ 23^{*} \\ 250 \\ 22 \\ 336 \end{gathered}$	$\begin{gathered} 34 \\ 495 \\ 420 \\ 54 \\ 544 \end{gathered}$	$\begin{gathered} 69 \\ 66 * \\ 810 \\ 69 \\ 756 \end{gathered}$
Price	\$65	\$ $\$ 5$	$\$ 65$	\$65	\$65	\$ $\$ 5$	\$100	\$115

*With non-breakabla magnel cores, Opition 01. Prices same as standard models.

DISPLAYS

These displays are representalive of Hewlett-Packard's selection available to you,

Hex'lett-Packard's X.Y and graphic displays will complement the perfor. mance and appearance of any OEM con. sole or system.

Investing in a display from HewlettPackard assures you of a high quality, commercially manufactured product. This will allow you to concentrate your valuable time on the design of your system. These displays are complete units with self-contained cathode-ray rube, vertical and horizontal deflection amplifiers, video inpur, and all power supplies needed for operation.

Selection available

Displays from Hewlett-Packard offer a selection in borh size and type of CRT. This provides a choice which lets you match the display to your application.
Available are display sizes from $8 \times$ 10 cm up to big-screen sizes of 14. 17 , or 19-inches (diagonal measurement). All can be adapied for a free-standing (desktop) use or for standard 19 -inch racks or special-purpose cases.

Hewlett-Packard displays are satisfying a variety of requirements around the
world. These diverse uses include: medical diagnostic systems, vibration analyzers, fourier analyzers, pulse height ana. lyzers, spectrum and network analyzers, computer graphic systems, and process control equipment.

Special requirements

If you have a special requirement for a display which is different from the standard models shown in this catalog, check with your Hewlett-Packard field engineer. He specializes in solving measurement problems and can advise you on how a display can be tailored to fit your needs.

External appearance can be modified to give you special graticules or phosphors on the CRT, special paint, special knobs, or special panels and enclosures. Electrical performance can be altered to your needs if necessary to do the job.

HP contributions in displays

Hewlett-Packard has pioneeed in the development of X•Y and graphic displays which are last, bright, compact, and lightweight. Other performance char-
acteristics have also been significandly improved by Hewlett-Packard.
All Hewlett-Packard displays have solid-state circuitry. This provides greater reliability and ensures a longer instrument life. It has also reduced porer requirements, contributing to reliability and reduction of maintenance costs. Weight and bulk are likewise considerably reduced.
Hewlett-Packard storage displays bring all of the unique advantages of such a technique, but, in addition, have HewlettPackard's variable persistence. This fea. ture is especially useful to eliminate Aicker on low rep-rate information.
Another area where Hewletr-Packard CRT technology has benefitred you is in large-screen displays. Here, a Hervlett. Packard-developed expansion-mesh has resulted in larger display size with substantially shorter CRT's and smaller instrument packages.
Hewlett-Packard will service your display wherever your console or system goes throughout the world.
And remember, OEM discounts are available on Hewlett-Packard X.Y and graphic displays.

COMPUTER GRAPHIC DISPLAYS

1μ Large Step Jump Time
Models 1310A. 1311A

Advanced display performance

Models 1310 A and 1311 A are directed beam, high speed $19^{\prime \prime}$ and $14^{\prime \prime}$ graphic displays that offer unexcelled dynamic performance. For the first time, a display matches speed with computer generated graphic information. This speed is made possible through significant advances in large screen cathode-ray tube design. The electrostatic CRT provides a crisp, small spot anywhere in the large quality area of the CRT. Also, the CRT has a more rectangular shape than previous displays and information can be written anywhere in this large viewing area. Bright, easy-to-see displays result from the 28.5 kV accelerating potential while X•ray emissions are unmeasurable, ensuring a safe operating environment.

Computer-generated graphics courtesy of The Boeing Company.

High writing speeds
Linear writing speed is an unsurpassed 10 inches per microsecond which allows character strokes to be written in less than 100 nanoseconds. Maximum slew rate of the electronics is 100 inches per microsecond. The large-srep jump and settle time is 1 us. This offers tremendous programming simplicity since characters and vectors can be plolted in random fashion from anywhere in the display area. Point ploting time for small steps is less than 200 as per point thus, matrix rype displays are written in minimal time.

Electrostatic deflection

Electrostatic deflection repiaces deflection coils needed by magnetic CRTs and the high powered circuits to drive the coils. Power consumption of these displays is a scant 100 watts which climinates noisy fans and bulky mechanica! cooling assemblies. Elecrrostatic deflection ends the need for major and minor deflection systems with multiple input connections. The single differential input for each axis significantly reduces the effects of common mode signals. Input RC is 10 kohms shunted by 40 pF with switchable 50 ohm terminations available when required

Modular construction

Internal construction is modular, rugged, and very serviceable. Plug-in circuit cards reduce calibration or rouble shooting time. Also, a board exchange program assures minimum down time since fully tested circuit boards are air-parceled from the HP patts center.

These displays are supplied with open frame construction for mounting in a standard 19 -inch rack or in your custom designed enclosures. Covers and a tilt stand are available for free standing applications. Refer to Options and accessories in the specifications for listings of the standard iterns that are available. Contact your HP Field Engineer for information about items not contained in this catalog.

Specifications, 1310A, 1311A

Vertical and horlzontal ampliflers
Risetime: $70 \mathrm{~ns}, 10 \%$ to 90% points for full sereen defiection or Jess.
Bandwidth: de to 5 MHz (3 dB down at S MHz) with 3.5 in. deflection in 1311A and 5 in. defection in 1310A.
Phase shift: $<0.1^{\circ}$ to 50 kHz and $<1^{\circ}$ to 250 kHz for full screen signals.
Linear writing time: < $100 \mathrm{~ns} / \mathrm{inch}$.
Linear writing speed: >10 inches $/ \mu \mathrm{s}$.
Disgonal settling time: signal settles to within 1 spor diameter of final value in $<1 \mu$ s for any on screen movements.
Sequential polnt plotting time: signal setces to within 0.01 in. of final value in <200 ns for any 0.1 in . step.
Repeatability: < 0.15% of full screen error for re-addressing a point from any direction on screen.
Crosstalk; <0.015 inch with one input shorted and the other input excited by 500 kHz .

Deflection factor*

Model	Vertioal	Horlzonlal
1310 A	1 volt for 11 in . deflection	1 volt for 15 in . deflection
1311 A	1 volt for $81 / 2 \mathrm{in}$. deflection	1 volt for 11 in . deflection

-Horizental and vertical dellection factors adjustable from front panel control with atteruation of $1.7 \mathrm{~s}_{1} 1$.

Spot jitter and motion: < 0.025 inch.
Position: zero input can be set to any on screen position.
Polarity: positive vertical input moves beam up; positive horizontal inpur moves beam right. Polarity can be reversed by changing in. ternal lead connections.
Input RC: driven side 10 k ohms shunted by $<40 \mathrm{pF}$. Shield input is 47 ohms to ground. This can be replaced with 10 k ohms for differential input. A swirchable 50 ohm cermination berween shield and senter conductor is also provided.
Maximum input: $\pm 50 \mathrm{~V}$ (dc + peak ac) with 10 k ohm internal termination $\pm 5 \mathrm{~V}$ (dc + peak ac) with 50 ohm internal termsnation
Linearity: 1% of full scale display along maior axes,
Drift: 0.05 in . hr and 0.10 in, in 24 hr with covers installed.

Z-axis amplifler

Risetime: < 14 ns
Sensitivity: I V provides full blanking or intensity
Input polarity: internal switch selects polarity (switch is normally sel so negative voltage unblanks signal).
Gaín adjust: imernal, adjustable over 2.5:1 atrenuation ratio.
Balance: internal adjustment provides $\pm 1 \mathrm{~V}$ offset.
Input RC: approx 10 k ohms shunted by approx 60 pF .50 ohm termination may be selected with internal switch.
Maximum input: $\pm 50 \mathrm{~V}$ (dc T peak ac) with 10 k ohm internal termination, $=5 \mathrm{~V}(\mathrm{dc}+$ peak ac) with 50 ohm internal termination.

Cathode-ray tube

Vlewing area: Model 1310A (19 in.), 11 in. high, 13 in. wide; Model 1311 A (14 in .), $81 / 2$ in high. 11 in . wide.
Type: postaccelerator, 28.5 kV accelerating potential, P31 alumi. nized phosphor is standard (refer to options for other phosphors). Ejectrostatic focus and deflection.
Resolution: 67 lines/inch using shrinking raster method.
Brightness: at leasr $50 \mathrm{fr}-\mathrm{L}$. measured at $0.1 \mathrm{in} . / \mu \mathrm{s}, 60 \mathrm{~Hz}$ rate, with spor size of 0.020 in . in 1310A and 0.015 in . on 1311A.
Contrast ratio: 4:1 or greater.
X-ray emission: CRT emission nol measurable, with Victoreen Model $440 \mathrm{RF} / \mathrm{C}$, in background noise.

Spot size

Model	Spot Size In Quality Area	Slze of Qually Ares
1310 A	0.020 inch	$11^{\prime \prime} \times 11^{\prime \prime}$
1311 A	0.015 inch	$812^{\prime \prime} \times 81 / 2^{\prime \prime}$

Implosion protection: rim and tension banding prevents implosive devacuation.
Phosphor protection: circuiz detects absence of deflection and limits beam current. (Protection is designed for P31 phosphor).

General

Front panel controls: Knob, intensiy; Screwdriver adjustments, focus, astigmatism, vertical position, horizonta! position; Screw. driver adjustments (behind front panel mask), trace align, vertical gain, horizontal gain, orthogonaliry.
X, Y, and Z input connectors: BNC type mounted to rear panel
Weight: Model 1310 A , net 93 lb (24 kg), with covers 59 lb (26,8 kg) ; shipping, $71 \mathrm{lb}(32,2 \mathrm{~kg}$). Model 1311 A , net 40 lb (18.1 kg), with covers $45 \mathrm{lb}(20.4 \mathrm{~kg})$; shipping, $62 \mathrm{lb}(28,!\mathrm{kg})$
Dimensions: dimensional drawings are roo numerous for presentation in this catalog. Contact your loca! HP Field Engineer for a data sheet with these drawings
Power: 115 V ac $\pm 10 \%$ or 230 V ac $\pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz . maximum power 115 VA .
Environment: temperature. 0° to $+55^{\circ} \mathrm{C}$ operating, $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ non-operating; Humidity, up to 95% relative humidiry to $40^{\circ} \mathrm{C}$: Alritude, up to $15,000 \mathrm{ft}$. operating; up to $25,000 \mathrm{ft}$, nonoperating: Shock, 30 g level with 11 ms duration and $1 / 2$ sine wave shape; Vibration, vibrated in three planes for 15 min each with 0.010 inch excursion, 10 to 55 Hz .

Price (OEM discounts are available.)
Model 1310A: 19-inch Display 53000.
Model 1311A: 14 -inch Display $\$ 2875$.
Accessories supplied: rack mount adapter kit, frone parel mask.
Options (order by option number)
003: rop and bottom covers with tilt stand, add $\$ 100$. (Rack mount adapter not supplied with Option 00: instruments.)
005: neutral-density contrast screen improves trace contrast for easier vierwing. Add $\$ 40$ for 1310 A or $\$ 30$ for 1311 A .
604: P4 aluminized phosphor in lieu of P31, no charge.
607: P7 aluminized phosphor, with amber fiter, in lieu of P31, no charge.
639: P39 alunninized phosphor in lieu of P31, no charge.

Accessories

Cover kits: feld installation of rop and boum corers. For stand alone nperation, a tilt stand is required since the covers are not designed to support an instrument.
Price: Model 1310A Corer kit
(HP Part No. 01310-68703)
Price: Model 1311A Cover kit
(HP Part No. 01311-68703)
$\$ 60$.
Tilt stand kits: field installation of tift stand for stand alone op. eration. Price. Model 1310A Tile Stand kir (HP Part No. 01310.68702) $\$ 50$; Price, Model 1311A Tilt Stand kit (HP Part No. 01311.68702) $\$ 50$.
Rack mounting kits: rack mounting adapter kits are supplied with standard instruments on initial order or may be ordered later as a kit. Price, Model 1310A Rack Mount Adapter kit (HP Pare No. 01310.68701) \$10; Price, Model 1j11A Rack Mount Adapter kit (HP Part No. 01311-68701) $\$ 10$
Chassis slide kits: fixed slides, HP Fart No. 01310-68704 for 1310A or HP Parr No. 01311-6S70á for 1311A, Price $\$ 100$; pwot slides for 1311A only, HP Part No. 01311.6870s, Price $\$ 120$.

Description, 1330A, 1331A, 1331C

Models 1330A, 1331A, and 1331C Displays are compact half-rack size instruments for displaying analog computerprocessed data and real time information. The high frequency response of these instruments make them extremely useful read-our devices in applications such as system display moni. tors, graphic displays, nuclear spectrometer, serni-conductor curve tracer, swept-frequency measurements, frequency ratios, phase shift measurements, raster displays, and amplitude versus time displays.

The 5 MHz X -axis bandwidth provides sharp. high resolution displays in raster and directed beam applications. Differential input amplifiers on vertical and horizontal inputs reduce noise common to the inner and outer conductors of the input cables. Careful design of the solid-state X and Y amplifiers provides stable operation, long-term reliability, minimum mainte. nance, and low porver consumption.

Storage displays

Model 1331A has front panei controls for convenient manual operation of X-Y position and storage or vatiable persistence controls where spot deflection and dot writing speed varies. Model 1331C has rear panel operating controls and remorely
programmed inpurs needed for computer or graphic display systems.

Both instruments write and store shades of gray, which adds a third dimension to the display. Full spot blanking is obtained with -1 V , and +1 V turns beam full on with in-between voltages providing shades of gray.
Model 1331C remote programming functions are DTL and TTL comparible which allows the display to interface directly with most systems. If desired, transfer from WRITE to VIEW modes and erase may be accomplished by contact closure to ground at the remote program plug. Transition from STORE to Write and back to STORE, including dot writing time, can be made in approximately $7 \mu s$. This effectively increases the "store time" by allowing the display to take advantage of the inherent longer storage time offered by the vien mode between writing commands.
The Hewlett-Packard developed mesh type storage tube in these displays eliminates the need for memory devices to constantly refresh the display. Other advantages of this cype tube which makes it ideal for system applications are: bright stored displays which allows viewing in high ambient light conditions; long life, comparable to standard CRT rube life, with no reduction in storage characreristics or brightness; and use in the storage mode docs not reduce tube life.

Specifications, 1330A, 1331A, 1331C
(Unless othervise noted, specifications apply to all models.)
Vertical and horizontal amplifiers
Bandwldth; ds to 1 MHz (3 dB down at 1 MiHz).
Phase shift: $<1^{\circ}$ to 500 kHz .
Settling time: signal settles to within 1 spot diameter of final ralue in $<1 \mu$ s, for any on-screen movement.
Deflection factor
Vertical: 1 V for 8 div defection. Internally adjustable from 0.09 $\mathrm{V} / \mathrm{div}$ to $0.14 \mathrm{~V} / \mathrm{div}$.
Horizontal: 1 V for 10 div defection. Internally adjustable from $0.09 \mathrm{~V} / \mathrm{div}$ to $0.14 \mathrm{~V} / \mathrm{div}$.
Common mode rejection ratio: 40 dB to 10 kHz for differential input of 3 V maximum betreen outer and inner coaxial input leads.
Maximum input: $\pm 50 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac).
1nput: differential between center conductor and shield, shield may be grounded with incemal connection.
Input RC
SIngie ended: 100 k ohras shunsed by approx 80 pE 10 ground. Differential: 200 k ohms shanted by approx 80 pF .
Recommended source impedance: $\leq 20 \mathrm{k}$ ohms between center conductor and shield and $\leq 1 \mathrm{kohm}$ from shield to ground.

1330A cathode-ray tube and controls

Type: mono-accelerator, 3 kV accelerating potential; P31 phosphor standard (refer to options for other phosphors).
Graticule: 8×10 div internal graticule, 1 div $=1 \mathrm{~cm}$. Subdivisions markings of 0.2 div on major horizontal and vertical axis.
Display Inearity: horizontal, $<5 \%$ difference berween any two div: Vertical, < 5% difference between any two div.
Beam finder: returns beam to screen regardless of setting of horizonral, vertical, or intensity controls. Reas panel switch.

1331A/1331C cathode-ray tube and controls

Type: post-accelerator storage tube 10.5 kV accelerating potential, aluminized P3i phosphor.
Gratleule: 8×10 div internal graticule. 1 div $=0,95 \mathrm{~cm}$. Subdivisions of 0.2 div marked on major axis.
Storage writing speed: >20 div/ms.
Dot writing time: $<4 \mu \mathrm{~s}$.
Display llnearity: horizontal, $<5 \%$ difference between any two div; vertical, $<s \%$ difference berween any two div.
Information storage rate: 200 thousand dots per second.
Brightness: > 100 foot lamberts.
Storage time: writing mode, 1 minute miniroum; store mode, 15 minutes minimum.
Varlable persistence (Model 1331A): variable from 0.2 s to 1 min . Erase time: <1s.
Beam finder: returns beam to screen regardless of setting of X and Y position controls. Rear panel switch.
Model 1331C programmable functions (write, store, erase)
All program Inputs are TTL/DTL compatible.
Input levels: high state is +2.0 V or greater, low state is +0.8 V or less for all program plug inputs. For high state $=2.4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{x} \text { Ink }}=0.4 \mathrm{~mA}$ max. For low state $=0.4 \mathrm{~V}, \mathrm{I}_{\text {sourct }}$ is $<1 \mathrm{~mA}$.
Remote arase: low state for 10μ s minimum initiates crase cycle.
Remote mode transfer: high state is Viev Mode, low state is Write Mode.
Doting writing using mode transfer: dot may be written by transferring to Write Mode for 7 as per dot. No degradation of View /Storage time occurs.
Erase Verify: indicates end of erase cycle. The ourpur voltage is high approx 125 ms after start of erase cycle. Voltage then drops to low stace and remains low to the end of the erase cycle. High state is 2.4 V minimum with $\mathrm{E}_{\text {soure }}=80 \mu \mathrm{~A}$ maximum. Low state 0.4 V maximum with $\mathrm{I}_{\mathrm{sink}}=3.2 \mathrm{~mA}$ maximum.

Genera)

Input connectors
X, Y, and Z inputs: rear panel BNC.
Modet 1331C program connector: Cannon Model 1SP.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz , approx 60 watts at normal line.
Weight: ner, $191 / 2 \mathrm{lbs}(8,85 \mathrm{~kg})$; shipping, $25 \mathrm{lbs}(11,34 \mathrm{~kg})$.

Dimenslons: refer to outline drawing.
Price: OENC discounts are a vailable for all models.
1331A X.Y Display . $\$ 800$.
1331A or 1331C X.Y Storage Displays $\$ 1575$

Options

002 (1330A): P2 phosphor in lieu of P31no charge.
003: 5 MHz bandwidth X and Y amplifiers Add $\$ 150$.
007 (1330A): P7 phosphor with amber filter in lieu of P3I

Note: beam finder intensification function is removed from Option 011 displays.
631: non-internal graticule CRT with P31 phosphor.... Add $\$ 20$ for 1330 A and add $\$ 30$ for 1331 A or 1331 C .
Special order: a Model 1330A is available with a post-accelerator
CRT to provide a brighter display for application in high andbient light locations. Add $\$ 100$. (Order 1330A option H02.)

Options for 1331 C

016: provides direct connection of the 1331 C to a 125SSA inter. face kit for displays using HP computers Add $\$ 150$.
HO1: variable persistence controlled with analog voltage through a rear panel connector. 0 V de provides minimum persistence and +10 V de provides minimum persistence Add $\$ 100$.
H02: variable persistence controlled by analog voltage through a rear panel connector. 0 V de provides minimum persistence and -10 V dc provides maximum persistence Add $\$ 100$.

Accessories

Rack adapter: allows two Models 1331's to be mounted side-byside in a standard 19-inch rack, HP Part No. 5060.0797. Price: $\$ 25$.
Fller panel: covers half of the Rack Adapter when only one Model 1331 is in the Rack Adapter, HP Part No, 5050-0794. Price: $\$ 7$.
Camera adapter: Model 103668 adapter alloars mouncing of HP Model 195A, 197A, or 198A camera.
Price: Model 10366B, $\$ 10$.

Description, 1300A

The extremely wide de to 20 MHz bandwidth of the Model $1300 \mathrm{~A} \mathrm{X}, \mathrm{Y}$, and Z ampliners provide capabilities for display. ing both alphanumeric and graphic data as well as analog system monitoring. An 8×10-inch viewing area with a bright display provides high resolution readouts needed for many system measurement applications.

Fast 20 ns risetime, 200 ns setrling time, and 80 ns point plorting time allow rapid switching of input data without ficker. This, coupled nith less than 0.15% repeatability error and 1% linearity, provides accurate, stable graphic displays even with several unsynchronized multiplexed inpurs. Resolu. tion and plotting speed is such that 2000 well defined characters may be written within the 8×10 inch viewing area in 40 rows of 50 columns.

Specifications, 1300A

X-Y ampliflers

Bandwidth (8 -inch raference at 50 kHz): dc-coupled, de to 20 MHz ; ac-coupled, 2 Hz to 20 MHz .
Risetime: <20 ns (10% to 90% points).
Deflection factor: at least $0.1 \mathrm{~V} / \mathrm{in}$.; gain control allows defiection factor to be adjused between approx $0.1 \mathrm{~V} / \mathrm{in}$. and $0.25 \mathrm{~V} / \mathrm{in}$.
Drift: $<0.5 \%$ of full screen/hr after $1 / 2 \mathrm{hr}$ warmup; $<1 \% / 8 \mathrm{br}$.
Jitter and movement: <0.01 io.
Settllng time: (jump scan time) <200 ns to within a trace widih of final value for any on screen movement.
Repeatablity: <0.is\% error for re-addressing a point from any direction from a source impedance of $\angle 4 \mathrm{k}$ ohms.
Input RC: 1 megohm shunted by approx 20 pF .
Input: single-ended; maximum input $\pm 500 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac).
Linearity: over $8 \times 10-\mathrm{in}$. screen, $\pm 1 \%$ of full screen; any in. with respect to any other in., within 10%. Includes geometric distortion caused by pincushion, symmetry, and orthogonality.
Phase shift: 0.1° to 50 kHz , up to 100 -inch signal; 1° to 1 MHz , up to 10 -inch signal.
Cross talk: 40 dB at 20 MHz with full scale input signals; imperceptible below 5 MHz .

Z axis amplitier

Arralog input: do to 20 MHz bandwidth over the 0 to 1 V range; +1 V for full blanking, -1 v for full intensity; gain concol allows deflection factor to be adjusted between approx $0.1 \mathrm{~V} / \mathrm{in}$. and $0.25 \mathrm{~V} / \mathrm{in}$. balance adjustment allows intensity reference level adjustment of $\pm 1 \mathrm{~V}$, maximum input $\pm 500 \mathrm{~V}$ (de + peak ac) ; differential delay with either X or Y amplifier, $\pm 2 \mathrm{~ns}$.
Rise time: <20 ns (10% to 90% points).
Sweep blank input; digital de blanking with <1 k ohm source and -0.7 V to +5 V ; unblanking with $>20 \mathrm{k}$ ohm source and 0 V to -5 V . Repetition rates to 1 MHz .
Chop blank lnput: ac-coupled blanking, +50 V blanks CRT. input grounded when not in use.
Calibrator: line frequency square wave of $0.5 \mathrm{~V} \pm 2 \%$.

Cathode-ray tube

Viewing area: 8×10-inches.
Accelerating potential: $>20 \mathrm{kV}$.
Writing speed
Photographic: $>20 \mathrm{in} / \mu \mathrm{s}$. Using Polaroid(1) CU. c camera and 3000 speed film.
Visual (for 3 ft lamberts brightness at 60 Hz refresh rate): vector, >2 inches/ μ; dot writing time, 40 ns .
Sequential point plotting time: <80 ns for 3 fo lamberts brightness at 60 Hz refresh rate.
Brightness: 30 ft lamberts line brightness ac $0.1 \mathrm{inch} / \mu \mathrm{s}$ refireshed at 60 Hz rate.
Spot size: <30 mils throughour 8×10-inch screen az 30 ft lam-

berts light output; nominally 20 mils at center screen (shrinking raster).
Phosphor and graticule: aluminized P31 phosphor with 1 -inch grid and 0.2-inct subdivisions on major axis of internal gracicule. Other phosphors are available, refer to Options; other graticules are available on special order. A light gieen filter supplied with Model 1300A provides increased contrast.

Control and input locations

Front panel: intensity, focus and on-oft switch. Astigmatism and trace align are recessed screwdriver adjustments.
Rear panel: X-Y-Z inputs, calibrator, X-Y gain, position and ac-dc input switches, Z axis gain and balance.
Dlmensions: $163 / 4^{\prime \prime}$ wide, $12-7 / 32^{\prime \prime}$ high, $197 / 9^{\prime \prime}$ deep overall $181 / 2^{\prime \prime}$ behind panel rack mount ($425,310,505,470 \mathrm{~mm}$).
Weight: net, $45 \mathrm{lbs}(20,41 \mathrm{~kg})$; shipping, $66 \mathrm{lbs}(29,94 \mathrm{~kg})$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$; 48 to 440 Hz ; approx 175 W .
Price: Model 1300A, X.Y monitor, $\$ 2300$. OEM discounts are available.
Options (order by option number)
001: neutral density contrast filter with light uransmission of $\approx 30 \%$ add $\$ 15$.
002: P2 aluminized phosphor in lieu of P31, no charge.
004: P4 aluminized phosphor in lieu of P31, no charge.
007: P7 aluminized phosphor with amber filter in lieu of P31, no charge.
011: P11 aluminized phosphor in lieu of P31, no charge.
631: non-internal graticule CRT with P31 aluminized phosphor, add $\$ 20$.
Accessories
Antireflection filters: consists of nylon mesh attached to a colored contrast filter to reduce reflections from the large screen CRT. Model 10181A, amber for P7 phosphor, \$35. Model 10182A, green for standard phosphors, $\$ 35$.
Chassls slldes: Gxed slides, HP Part No. 1490.0714, \$32.50; pivor slides, HP Part No. 1490-0718, $\$ 40$.
Slide adapter klt: one adaptet kit required for mounting one pair of slides, HP Parl No. 1490.0721, $\$ 40$.

Special arder

A number of special modifications are available. They include: front panel X and Y inputs and controls, Xio preamplifer fos $10 \mathrm{mV} /$ in X and Y deffection factors, binary Z axis to provide eight gray scales, attenuators for X and Y amplifiers. Contact your loca! Hewlett-Packard Field Engineer for details about these or any other special requirements you may have. DISPLAYS

Specifications, 1208A/B

Vertical and horizontal ampliffers

Bandwidth: do 10600 kHz when de-coupled; 20 Hz to 600 kHz when ac-coupled. (3 dB down from 8 -div reference signal.)
Deflection factor: continuously variable from $<0.1 \mathrm{~V} / \mathrm{div}$ to >1 V/div.
Input: differential or single-ended.
Input coupling: front pancl selection of ac or dc.
Input RC: approx 100 k ohms shunted by approx 70 pF .
Maximum input: $\pm 200 \mathrm{~V}$ (dc + peak ac).
Common-mode
Rejection ratio: 40 dB (100:1).
Signal maximum: up to $\ddagger 4 \mathrm{~V}$ (dc + peak ac $)$.
Frequency: de to 10 kHz .

Phase shift

Same X and Y deflection factor (with + inputs): $<1^{\circ}$ to 500 kHz tor defection factors below $0.2 \mathrm{~V} / \mathrm{div},<1^{\circ}$, to 100 kHz for deflecrion factors above $0.2 \mathrm{~V} / \mathrm{div}$.
Different X and Y deflection factors (with + input, - input. or differentlal): <3 3^{6}, to 100 kHz

Cathoderay tube and controls
Typa: monoaccelerator, 3 kV accelerating potential; P3i phosphor standard (see options for other phosphors) : etched safery glass faceplate reduces glare.
Graticule: 8×10 divisions, internal graticule. 0.2 -div subdasision markings on major axes. 1 div $=1 \mathrm{~cm}$. Front panel recessed screwdriver adjust aligns trace with graticule.
Beam finder: returns trace to CRT screen regardess of sesting of horizontal, vertical, or intensity controls.
Intensity modulation: +2 -rolt signal blanks trace of normal
intensity: +8 -vole signal blanks any intensity. DC-coupled input on rear panel; amplifier risetime approx 200 ns ; input R is 5 k ohms.

Calibrator

Type: line frequency square wiave.
Output: 1 vole $\pm 1.5 \%$, front panel connector (banana plug).

General

Weight

Model 1208A (cabinet): ner, $211 / 2 \mathrm{Ibs}$ (9.8 kg): shipping. 31 ibs $(14,1 \mathrm{~kg})$.
Madel 1208B (rack): net, $201 / 2 \mathrm{lbs}(0,3 \mathrm{~kg}$) ; shipping, 33 lbs ($15,0 \mathrm{~kg}$).
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz , approx 35 watts.
Dimensions
Cabinet: $\$-5 / 17^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$ high, $18 \frac{1}{/^{\prime \prime}}$ deep ($211,1 \times 298,5 \times$ $474,4 \mathrm{~mm}$).
Rack: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $167 / 8^{\prime \prime}$ deep over-all (483, 132.5. $428,6) 153 / 8^{\prime \prime}(390,5)$ behind front panel.
Prlee: Model 1208A or 1208B X.Y display, $\$ 390$.
Optlans (specify by option number)
002: P2 phosphor, no charge.
006: (1208B) rear input terminals wired in parallel with front panel inpus terminals. Increases input shunt capacitance to apprax 120 pF . Add sss.
007: P7 phosphor, no charge.
011: P1 phosphor, no charge. Beam finder inrensification is removed from Option 011 displays.
Specials: special versions available with deflection factor ranges to either $5 \mathrm{mV} /$ div or $100 \mathrm{\mu V} / \mathrm{div}$. Consult your Hewletr. Packard feld engineer for larest information.

DISPLAYS

DIRECTED BEAM DISPLAY
Unexcelled brightness
Model 6610A

Description, 6610A

Model 6610A is a large seceen, directed beam, graphic dis. play used to output computer and instrument generated graphic information. Extremely fine spot resolution combined with superior brightness provide a high quality, easy-to-interpret display. The 6610A has a large 17 inch diagonal CRT but uses only an average of 140 watts power and can operate indefinitely while defected off screen in any direction. The low power requirement eliminates noisy fans and allow's opera. tion on line frequencies from 48 to 440 Hz . The display is available in the standard open frame model or an optional cabinet model.

Specifications", 6610A

Vertical and horizontal ampliflers

Linear writing speed: $>0.3 \mathrm{in} / \mu \mathrm{s}$.
Diagonal setting time: beam settles to within 0.010 in . of final value in < $40 \mu 5$ for full screen jump scan movement.
Sequential polnt plotting time: beam setties to within 0.010 in. of final value in $<1.2 \mu \mathrm{~s}$ for any 0.10 inch step.
Repeatability: <0.020 inch error for re-addressing a point from any position on screen.
Crosstalk: <0.010 inch with no signal on one input and full linear operation of other input.
Deflection factor: $0.2 \mathrm{~V} / \mathrm{inch}$; adjustable over $2: 1$ range by means of independent X and Y sear panel attenuation controls.
Spot jitter and motion: < 0.010 inch.
Posltlon: zero input can be set 10 any on-screen position.
Polarity: positive vertical input moves beam up; positive horizontal input moves beam right. Polarity can be reversed by changing internal input connections.
input characteristics: single ended, 10 k ohms, dc-coupled.
Maximum input: $\dot{=} 35 \mathrm{~V}$ (dc + peak ac) with 10 k ohm intermal termination.
Display stability, position, and size: beam will return to original position on CRT screen within 0.020 inch $\pm 0.2 \%$ of displace. ment $/{ }^{\circ} \mathrm{C}$ when measuted over an 8 hour period.
Offset operation: will operate indefnitely with full offset.

[^11]
Z-axis amplifier

Rlsetime: 40 ns.
Video rasponse: de to $10 \mathrm{~N}(\mathrm{~Hz}$ (3 dB down)
Sensitivity: 1 vole provides foll blanking or intensirs:
Input polarity: polarity reversal switch on rear panel.
Gain control: rear panel concrast control adjustable over 6:1 at. tenuation ratio.
Input characteristics 10 k ohms single ended (unbalanced), dccoupled, input shicld is grounded.
Maximum input: $\pm 35 \mathrm{~V}$ ($\mathrm{dc}+\mathrm{fe}^{2 k} \mathrm{ac}$) with ro k ohm internal termination.
Delay: 50 ns matched to $x-y$ amplifiers.

Cathode-ray tube

Viewing area*: 10 in , high $\times 13 \mathrm{in}$. wide usable, 17 in . diagonal.
Type: $70^{\circ}, 12 \mathrm{kV} . \mathrm{P4}$ phosphor is standard.
Foces: electrostatic.
Deflection: magnetic,
Spot size: 0.015 inch.
Brightness: ar least 150 ft . L measured at $0.15 \mathrm{in} . / \mu \mathrm{s}, 60 \mathrm{~Hz}$ rate, spot size at 0.015 in., P4 phosphor.
Implosion protection: bonded CRT faceplate
Phosphor protection: desects beam speed and protects by overriding the z-axis. Also protects during line on/off cycles and in the quiescent stare.

General

\mathbf{X}, Y, and \mathbf{Z} input connectors: BNC rype mounted to rear panel.
Weight: net, $85 \mathrm{lbs}(38,6 \mathrm{~kg}$) ; shipping, $100 \mathrm{lbs}(45,4 \mathrm{~kg}$).
Dimensions: open frame model, $141 / 8^{\prime \prime}$ high, $17^{\prime \prime}$ wide, $227 / 8^{\prime \prime}$ deep ($358,6 \times 431,8 \times 581,2 \mathrm{~mm}$).
Power: 115 V ac $\pm 10 \%, 208 \mathrm{~V}$ ac $上 10 \%$. $230 \mathrm{Vac} \pm 10 \%$; 48 to $440 \mathrm{~Hz}, 140 \mathrm{~W}$ average, 280 W max.
Operating temp range: $0^{\circ} \cdot+55^{\circ} \mathrm{C}$.
Price: Model 6610A Display, open frame model, $\$ 2700$.
OEM discounts available.
Accessories supplied: rack mount adapter kit.
Options (order by option aumber)
003: rounded corner cabinet model, add $\$ 100$.
004: chassis slides; for open frame model only, add $\$ 100$.

[^12]
PRECISION RASTER DISPLAY
 Unexcelled picture quality
 Model 6947A

$\sqrt{75}$ DISPLAYS

The HP Model 6947A is a monochrome precision raster display that employs new circuit concepts and techniques. In this unique design. special consideration is given to the display's resolution, frequency and phase response, sweep linearity, and stability. Extensive use of feedback throughout the circuitry reveals results in a high degree of performance stability over a wide rànge of environmental conditions.

Specifications

Model 6947A conforms to ElA standards RS-170, RS.330, and RS. 343 .

Vldeo circuits

Input circuit: 75 ohms unbaianced to ground: 124 ohms balanced. Return loss greater than 40 dB from de to 4.5 MHz . Protection for up 10100 V peak craosients appearing on the input balanced line. Input impedance (unterminated) : 12 K ohms.
Input connectors: BNC with loop-through facility.
Input level: 0.5 to 4 V p.p for 85 -volt signal at kinescope.
Rise time: less than 40 ns for a step change inpur viewed at the picture sube modulating grid.
Input polarity: differenrial input; black can be positive or negative.
Frequency response: fat up $108 \mathrm{MHz}(\pm 0.5 \mathrm{~dB}$): less than -1 dB at 10 MHz decreasing smoothly to -3 dB at 18 MHz . Los frequency tilt is less than 2% for a 60 Hz squarewave.
Signal-to-nolse ratlo: rms visible noise is grenter than 50 dB below p-p signal present ar picture tube when 2 0.5 V sinusoid is applied to the input.
Sine-squared response: overshoot symmerry is betrer than 1% on a 62.5 ns input pulse appcaring on the picture tube control grid. Maximum overshoot is less than 3% of pulse amplitude.
DC restoration: keyed back-porch elamp.

Horizontal deflection circuits

Horizontal AFC: standard unit lacks on either EIA $525 / 60 \mathrm{~Hz}$ or CCIR 625/50 Hz line systems. Horizontal sync is maintained with a composite picture signal-to-noise ratio of 24 dB .
Horizontal width: more than 5% overscan of the usable visible area of the kinescope. Horizontal width conerol range is 25% of horizontal dimension.

Vertical deflection clrcuits

Field rate: vertical lock and interlace is automatic. Front panel switch maintains the piccure aspect ratio for either 50 or 60 Hz feld rate. Vertical sync is maintained with a composice picture signal-to-noise ratio of 12 dB .
Vertical helght: more than 5% overscan of the usable visible area of the kinescope. Vertical height cuntrol range is 25% of vertical dimension.

Display

Display slze: 14" diagonal; may be swruthed berween full and reduced size.
Fuil size mode: vertical and horizontal independently adjusiable between -10% and -15% of normal raster size.
Reduced size mode: rertical and hosizontal independently adjust. able between -15% and -30% of normal rasier size.
Geometric raster distortion: less than 1.5% overall; less than 1% in safe title area (center 80% of full picture).
Interlace: 2:1.
Interlace tactor: unity (equal spacing benveen raster lines), maintained with a signal-to-noise ratio of 24 dB .
Pulse cross display: enables inspection of the relative phasing and duration of the synchronizing information transmitted with the video signal. The vertical interval is expanded so that the

individual scanning lines may be observed and measured easily. A front panel switch activates the pulse cross circuit located within the monitor.
Spot size: less than 0.010 (10 mils) at 30 footlamberts. Piciure cube and safety glass: standard unit has clear safety glass and rectangular tube with medium short persistence P-A phosphor, aluminized.

General

External sync inputs: in addition to composite video input, the SYNC swich EXT position allows the following external imputs: 3 cable: video-horizontal-vertical.
2 cable: video-horizontal and vertical.
Sync input must be negative, from -1 V to -8 V . Separate verical sync input must be negative, from -3 V to -5 V .
Temperature ratings: operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; storage: $-40^{\circ} \mathrm{C}$ $10+75^{\circ} \mathrm{C}$.
Altitude: operating: up to $15,000 \mathrm{ft}$; storage: up to $50,000 \mathrm{ft}$.
Controls: front-panel off-on ac switich, conerast, brigheness, focus, height, widch, sync, $50 / 60 \mathrm{~Hz}$ held rate switch, size switch, pulse cross display switch, and video inpur selector switch.
input power: switrhable between 115 and $230 \mathrm{Vac}+10 \%$. 48 -440 $\mathrm{Hz}, 75 \mathrm{~W}$ at 115 Vac .
Weight: net, $45.8 \mathrm{lbs}(19,8 \mathrm{~kg}$) ; shipping, $64.5 \mathrm{lbs}(29,2 \mathrm{~kg})$.
Rack mounting: rack mounting kit, consisting of avo angle brackers, is provided with each unit.
Dimensions: $17.1 / 16^{\prime \prime}(43,3 \mathrm{~cm}) W \times 101 / 2^{\prime \prime}(26,6 \mathrm{~cm}) \mathrm{H} \times$ 20-9/16" ($52,2 \mathrm{~cm}$) D.
Price: $\$ 1250$.
Options
033: UHF input connectors, add $\$ 30$.
034: circulariy polarized laminated safery glass, add $\$ 50$.
High line rate options
The standard display will operale at either $525 / 60$ or $625 / 50$ line rates. Models can be ordered with optional higher line rates from 675 to 1029 . The held rate for these higher line rates is $60 \mathrm{~Hz}_{\text {, }}$ and the 10 mil CRT spot size and video amplifier response are compatible with the number of lines. Add $\$ 200$.

Option	001	002	003	004	005
Lines	675	729	875	945	1029

If you are thinking about buying an oscilloscope or display, the more than 60 pages in this catalog should help you make the choice. You'll find a complere line of Hewlett-Packard oscilloscopes which will mett your tequirements in a wide variety of measurement applica. tions.

SCOPES ARE CHANGING. ARE YOU?

What do we mean by that?
First, it's recognition of the fast-mov. ing technological advances in oscilloscopes, many of which have been pioneered by Hewlett-Packard (to name just a ferv: internal graticule CRT, beam finder, expansion-mesh CRT, general. purpose sampling, time domain reRectometry, and variable persistence storage).

Second, Hewiett-Packard understands how important a scope is to your job. It's the screwdriver of the clectronics in. dustry. Because we recognize the fact that you need 10 change as your job and the world around you are changing,

Hewletr-Packard stands ready with the scopes designed to help you make the change-easily.

What can HP offer you?

Practically every known measurement problem which can be solved by an oscilloscope can be solved with a scope from Hewlett-Packard.
These caralog pages present as comprehensive a picrure of Hewlett-Packard scopes as space will allow. But these's more. Technical data sheers and demonstrations by Hewlett-Packard field engineers around the world will complete the picture.

The oscilloscopes shown in Figure 1 are representative of Hewlett-Packard's full line. Perhaps ic will help you make a decision about looking furcher. A de. scriptive selection chart, Tablc 1. may also help.

Other benefits in HP scopes?

increasingly complex measurement requirements have evolved new techniques and tools to cope with the requirements.

Figure 1. Representative oscilloscopes and displays from Hewlet-Packard's product line.

CRT displays are bigger and brighter, bandroidths are up, sweep speeds are faster, operating controls are simpler, In general, the most versatile of all electronic test instrumentation-the oscillo. scope has, by popular demand, become even more versatile.
These changes in requirements and the scopes to do the job have made the business of selling and servicing scopes a bit more complex, too. Here Hewlett.Packard's cumulative experience, technological Ieadership in many fields, and worldwide sales/service organization can be focused on your specific needs.

Special modificatlons

We welcome the challenge of your special requirements in scopes. It's that simple. Whather it be a special panel paint or a substantial electrical modification, we'd like to do it for you.

Applications assistance

Solving your measurement problems is what Hewlert-Packard field enginecrs have built their excellent reputation on. Our field engineers attend frequent seminars which keep them abreast of latest developments. Oscilloscope application notcs and technical data sheets are readily available from Hewlett-Packard

Service and repalr

Herulett. Packard scopes are designed to perform faithfully for extended periods of time and to be easily and inexpensively serviced when required. You have the assurance that your scope will perform as expected for years to come because of Hewlett-Packard's world-wide customer service organization. Replatement parts and service assistance are available at a Hewlett-Packard field office near you.

Tralning aids

Training on new scopes and new applications has a high priority at HewlettPackard. We can help you learn morc abour our measurement capabilities, how so operate or use a scope, and hor to properly repair or calibrate our products. In the Hewlett-Packard library of video tapes are hours of valuable information to hring you and others in your organiza. tion to almost any desired level of com. perence.

How do you select an oscilloscope?

Today's choice of an oscilloscope should be a pleasant one for the objective individual who recognizes the technologi. cal progress made recently and the wide range of price and performance now availahle.

Start with the immediate measurement application for which you are consider. ing purchase of a scope. Using that as a reference point, look to the past as well as to the future.
Here are some questions which should help narrow your selection:
-Will it be used as a general-purpose scope in the lab or on a production line, or on a short-term project?
-What are the operating environment requirements?
-ls wide bandwidth (fast risetime) required, such as for designing or testing state-of the-art computers?
-Will the new oscilloscope be in use five hours or 24 hours a day?
-It it to be carried around in a ve. hicle or aboard a commercial jet?
-Will the display be viewed from up close or from perhaps ten feet away?
Of course, there are many other pertinent subjects to explore, such as relia. bility, company reputation, availability of service and parts, and value-added considerations like training seminars and rechnical literature.

Baslc types of scopes

When you examine essentially all of the possible measurement requirements fulfilled by oscilloscopes, there are really perhaps only four types. In somewhat broad categories, these are: (1) plug.in/ mainframe, (2) nonplug-in, (3) portable, and (4) monitor (or display). Following are some characteristics and typical applications for each type. Figure 2 shows representative scopes.

Mainframe/plugins

Here is where a first-order decision is usually made: Do you need plug in capability? Mainframe and plug-ins can be selected for the combination closest to each porential application, and characteristics can be changed to accomplish varying tasks. If a mainframe is selected carefully, it will allow'upgrading through newer plug-ins as they become available and as the job requires them.
Genera! purpose laboratory scopes (i.e., mainframe and plug-ins) are used
in basic circuit design for almost every electronic product. Choosing a scope to do only roday's job in the lab may be unvise since its useful life will likely be diminished.
Available plug-ins might include bandwidths up to at least 100 MHz ; differential/dc offset; two or four channels; standard, delayed of mixed sryeep operation; sampling at bandwidths to 18 GHz ; and time domain reflectometry. These give specialized measurement capability without investing in a whole new scope!
Hewlert-Packard offers such general. purpose laboratory oscilloscopes and is therefore commitred to anticipating your future design needs and to having the plug-ins there when you need them.

Nonplug-In

Nonplug-in scopes are frequently re. ferred to as "dedicated." They are often dedicated to one specific rask because the performance characteristics can petform that task for the useful life of the scope. As an initial investment, a nonplug-in instrument will cost less for comparable capability than a plug-in type.

By far the most common nonplug-in scopes are low frequency. Such a low frequency scope will have a bandwidth of perhaps 500 kHz (some extend to a few megahertz). High sensitivity low frequency scopes are used in applications in many different engineering and scientific disciplines.

Hevelett-Packard has made many significant contributions in nomplug-in low

Table 1. Oscilloscope Selection

1300 Series X-Y Displays

Standard size CRT and large-screen X-Y or graphic displays. Both standard CRT and storage/variable persistence models. Large-screen graphic displays with up to a 19 -inch CRT have bright traces and the speed to keep up with a computer. OEM discounts are available.

See Page 83

180 System High Frequency Plug-in Scope

The one plug-in instrument to solve nearly any general-purpose laboratory or production line measurement problem. Bandwidths of $500 \mathrm{kHz}, 35 \mathrm{MHz}, 50 \mathrm{MHz}$, $75 \mathrm{MHz}, 100 \mathrm{MHz}, 250 \mathrm{MHz}$, or $>600 \mathrm{MHz}$. Standard, storage/variable persistence, or big-screen. Sampling to 18 GHz .

See Page 96

1700 Series Portable Scopes

Rugged, light-weight instruments adequate for almost any field service or laboratory application. Bandwidths of $35 \mathrm{MHz}, 75 \mathrm{MHz}$, and 150 MHz . Scorage with variable persistence at 35 MHz bandwidth. Operation from ac line, dc line or source, or from an oprional battery. Economically priced, too. See Page 120

140 System General-Purpose Piug-In Scope

A valued performer for Hervlett-Packard customers around the world. Standard and storage/variable persistence models and a mainframe with 8×10 inch display area. Real-time plug-ins to 20 MHz , sampling to 18 GHz . TDR, swept frequency, and spectrum analyzer plug-ins.

See Page 130

1200 Series Low Frequency Scopes

Low frequency, non-plug-in scopes of proven, all-solid-state circuit design. Many operating features normally found only on much wider bandwidth, more expensive scopes. Bandwidths of 500 kHz or 7 MHz in standard or storage/ variable persistence. Defection factors as low as $100 \mu \mathrm{~V} /$ div. See Page 135

Oscilloscope Accessories

Supporting accessories to get the most out of your scope investment. Cameras and adapters, testmobiles, active and passive probes, and cables and adapters to meet most any need.

See Page 140

Figure 2. Hewlett-Packard scopes of four basic measurement types.

Figure 3. Typical oscliloscope block diagram,
frequency scopes. Hewlett-Packard's low frequency seopes are all solid-stare instru. ments which provide laboratory quality, accuracy, and reliability-at competirive prices.

Portables

Portable oscilloscopes are a category which usually refers to whether or not the instrument was designed to be handcarried from one measusernent location to anothec.
Most portable scopes are nonplug.in, with performance characteristics selected at purchase time to remain adequate for the life of the instrument. Prudent selec. tion of options will still make a portable scope invaluable for years to come.

Most often, a porrable scope is used for field scrvice work, such as maintaining a computer. However, because of lab option packages available, a portable scope may still provide a good buy for design work.

Onc should carefully consider the characteristics inherent to the word portable: weight, size and form factor, rug. gedness, power requirements, and relia. bility.
Hewlett-Packard has economically priced portable scopes to meet pactically any requirement. In addition, HewlettPackard's portable line can be operated from an ac. dc, or battery (optional) source.

Monitors (displays)

Most monitors, or displays, are perma. nenrly locared in a console or system, and dedicated to displaying a given sig. nal or set of signals. Most do not contain a time base.

Displays come in all sizes. You can purchase a display having a standard size oscilloscope CRT with an $8 \times 10 \mathrm{~cm}$ display area. There are many intermediate sizes and the large-screen versions range up to about 19 inches (measured diagonally).

Physical size and power requirements vary, especially among large-screen displays. This is largely determined by
whether electromagnetic or electrostatic CRT deflection is used.
Most displays can be adapted for either a free-standing (desktop) or rack use. External appearance can usually be modfified by the manufacturer to obtain special graticules or phosphors on the CRT, special paint, special knobs, or special panels and enclosures.

Hewlert-Packard has pioneered in the development of displays (e.g., largescreen electrostatic defection CRT's and variable perisistence coupled with stor. age). For help in solving any of your dísplay problems, consult Hewlett-Pack. ard.

Oscilloscope basics

Because the oscilloscope can display electrical signals which vary with time, it has become today's most widely used electronic measuring instrument. It produces a visual display of any physical quantity which can be represented as a voltage. This permits precise measurement and analysis of the phenomenon represented by the voltage.
The block diagram in Figure 3 show's the essential parts of an oscilloscope. In addition a 36 -minute video tape on "Oscilloscope Basics" (HP I.D. 2800360) may be useful. A copy of oscilloscope terms and definitions is available from Herwlett-Packard.

The cathode-ray tube

A CRT produces an electron beam whose movement is controlied by the vertical and horizontal amplifiers and by the power supplies which form, shape, and accelerate it. This electron beam strikes a phosphor screen and a visible glow results as the beam is moved around.
Since the beam defection can be calibrated againse a grid (graticule) on the CRT face, amplitude and time measure. ments can be made. All Hewlett-Packard graticules are internal and in the sarne plane as the phosphor, eliminating paral. lax.
Hearlett-Packard manufactures all its orn CRT's and technological leadership
has accompanied this.
An expansion mesh, used first by Hew. lett-Packard in 1962 , with a voltage on it produces an electrostatic field which bends the beam after its initial defection at the electron gun structure. By controlling mesh radius. Hewlett-Packard CRT designers have produced increasingly larger display areas while simultaneously reducing the over-all length of the tube.

Storage scopes are now available from Hewlert-Packard with variable persisrence (the time it takes for the trace to fade to 10% of its original brightness). This is made possible by use of a storage mesh immediately behind the phosphor. Control circuits then determine the rate at which a display fades away after being stored as a charged pattern on the mesh. Herrlett-Packard storage scope theory is further explained in a 29. minute video tape, HP L.D. \$800449.
Ask for a copy of Application Note 115, covering CRT's and scope photog. raphy.

Vertical deflection system

Since the CRT is limited as to the range of deflection voltages which can be applied, a vertical amplifier and attenuafor are used. These are accurately calibrated to provide a deflection factor related to the graticule (e.g., $5 \mathrm{mV} / \mathrm{di}$ vision).

A sharing of amplifier rechnology between Hewletr-Packard engineers in different design labs directly sesulted in the use of monotithic ransistor arrays in an integrated circuit package for HP's 250 MHz real-time scope introduced in mid. 1969.

Hewlect-Packard vertical deflection systems have been made more useful with simplifed, yet functional, controls. As betrer circuits have been designed, adjust. ments previously adding to front panel confusion have been eliminated or located inside for use only in periodic calibration. A recent example of func. tional and innovative amplifier design by Hewlett-Packard is a selectable input im. pedance, either 50Ω or high Z.

Horizontal deflection system

To defect the electron beam horizontally, an amplifier and sweep generator are used. A sawtooth waveform generator sweeps the beam at a selectable uniform rate. With such a linear rate of sweep, calibration to the graticule is possible (e.g., $1 \mathrm{~ms} /$ division).

For meaningful displays, the horizontal defection system must provide synchronizing circuits to stant the sweep at a specific instant with respect to the mea. sured wavefom. Automatic triggering on Hewlett-Packard scopes makes starting of the sweep a quick, easy step. And preset adjustments produce synchronized

Flgure 4. Power supply module can be operated outside the malnframe to facilitate maintenance.
sweeps with little or no knob adjusment.
A recent improvement on HewletrPackard time bases now gives stable, oneknob triggering on signals to beyond 500 MHz .

In addition to a direct-reading ex. pander control, which minimizes errors, one new time base in the HP 180 System also features a X100 sweep expansion. This allows detailed examination of selected portions of a display, a feature normally found only on more expensive delaying lime bases.

Power supplles

Scopes contain lorv and high voltage power supplies and determine, with the CRT, the maximum capability of a scope, especially of a mainframe.

Low voltage power supplies give operating power to scope circuits such as the vertical and horizontal amplifers. The high voltage power supply forms and controls the CRT electron beam.

Hewlett-Packard has made contributions in porer supplies, too, and two examples will show their significance:

1. The new 1700 Series portable scope has an advanced design LVPS. It is highly efficient and has a newly designed ds-to-dc converter. The result is a scope which consumes approximately 25 w'atts and operates from ac line, dc line or source, or optional battery.
2. Nervest mainframes in the 180 System have a more reliable LVPS which, when repair may be required, can be removed from the instrument in a fully operating status; refer to Figure 4. Repair or calibration time is greatly re. duced.

Input probes

Probes are often used to transfer a signal from a circuit or device under test to the vertical input of a scope. Because of differing impedances and frequency effects, a variety of voltage and curtent probes have evolved.

Proper selection of well-designed probes will minimize circuit loading ef. fects and provide the most accurate and useful waveform information. Improper
matching of probe to circuit measure. ment point or of probe to scope will cause risetime errors in pulse measure. ments and cause both amplitude and phase errors in CW measurements.

The effects of resistive loading have been recogniżed for some time. High in. put impedances have been used to reduce the voltage division between circuit and measuring device. This technique will cause minimal error if measurements are at low frequencies and the circuir test point has a low impedance.

When these probing requirements are not met, inaccuracies result for one big reason: CAPACITANCE. And the ef. fects of capacitance in the probe or scope input change drastically because of fre. quency.

Obviously, the answer arould be to eliminate capacitance. This is not possible with present technology, but it can be reduced greatly. Borrowing a technique from microwave and sampling instrumentation, high frequency measurements become even more accurate.

This rechnique is a $50.0 h m$ transmission system. It eliminates capacitive effects and can be adapted successfully for probing source impedances greater than 50 ohms. Low-capacitance (<0.7 pF) resistive dividers can be used, providing the best-known compromise for minimizing capacitance without creating resistive loading problems. Active probes with divider tips offer the flexibility of higher resistance input while shunt capacitance is held to only a few pico. farads.

Hewletr-Packard has pioneered in helping solve the capacitance problem in high frequency measurements. Here are three examples:

Example 1: In 1968, Hewlett-Packard introduced the Model 1802A plugein with so-ohm inputs-a first for real-time scopes.

Example 2: In 1969, Hewlett-Packard provided the first general-purpose realtime scope with 250 MHz bandwidththe 183 . also with 50.0 hm inputs.

Example 3: In this catalog are two 180 System plug-ins and a portable scope with a selectable input impedance - 50 ohms or a high Z with low capacitance. This measurement convenience is available because of Hewlett-Packard's innovative design which uses thick-film attenuators, illustrated in Figure 5, a first for the scope industry.

Figure 5. Hewlett-Packard innovation uses thick-film substrate in cam-operated attenuators, allowing selection of 50 or high input impedance.

Because of Hewlett.Packard's dedicarion to developing better scopes for you, we offer a complete selection of compatible probes. Ask your Hewlett-Pack. ard field engineer for a copy of Application Note 152, oscilloscope probing tech. niques.

Sampling oscilloscopes

Sampling oscilloscopes use a technique which is similar in principle to use of a stroboscope for study of periodic or varying motion.

Samples are taken on successive recurrences of a waveform. As each amplitude sample is taken later in time on the waveform, the CRT beam is deflected to the corresponding point where a visible dot is then displayed. The rate at which sampling occurs is very fast; thus the dots are displayed as a coherent-appearing waveform on the CRT. Figure 6 illus. trates the sampling technique.

Samples are obrained when a pulse "turns on" the sampling circuit for an extremely short time. During this interval the input waveform amplitude is measured, the samples are then effectively "stretched" in time, and amplified at relatively low bandwidths.

Thanks to fast-switching diodes developed by Hewlerr-Packard-some even for use in other types of instrumentation -sampling scope bandwidths have progressed to the 18 GHz point. HewlettPackard introduced the first commercially available sampling scope over ten years ago. Once again, cumulative rechnology has kept Hewletr-Packard sampling scopes a leader, both in performance and price, typified by the Model 1810A 1 GHz sampling plug-in that's low in price and as easy to operate as a real-time scope.

Figure 6. Sampling scope technique reconstructs waveform from consecutive samples.

OSCILLOSCOPES

GENERAL PURPOSE TO 18 GHz
 Solid-state, compact, plug-in design
 180 Series

High Standard For Oscilloscope Measurements

The growing 180 Oscilloscope Systern establishes the standard for high-performance, high-frequency, general-purpose oscilloscope design. This modern plug-in system allows sou to match your ostillo. scope capability to your particular application. These small all solid. stare scopes are ideal for all types of high frequency measurements. This reliable, accurate performance has been proven in applications varying from shipboard testing, to flighr-line checkout. to exacting measurements of computer memories. This system is designed to meet today's requirements and still provide capabilities for future growh.

Complete Selection For Any Measurement Need

A wide selection of mainframes and plug-ins assure you the right combination to fit a particular measurement at the minimum cose. All controls are logically arranged to allow quick familiarization for easy, fast, accurate measurements.

Mainframes

The wide selection of mainframes provides a choice of bandwidths to cover present and future needs. For measuremencs to 100 MHz , the 180 C and D have bright, fast writing displays, the 181 A and $A R$ provide variable persistence and storage. and the 182A has a large screen for easier to see displays. Models 183A/B/C/D have bandwidths greater than 600 MHz with writing speeds of 4 and $8 \mathrm{~ns} / \mathrm{di}$ for high speed pulse and CWW measurements. All mainframes, except the 182A, are available in compact cabinet or $51 / 4$ " high rack styles, which take little bench or rack space.

Vertical Plug-ins

The wide selection of plug-ins assures the right plug-in for almost any measurement application. To fit your application, the realtime verrical plug.in is a vailable in 500 kHz . $35 \mathrm{MHz}, 50 \mathrm{MHz}$, $75 \mathrm{MHz}, 100 \mathrm{MHz}$, and 250 MHz bandwidths with deflecrion factors of $100 \mu \mathrm{~V}, 10 \mathrm{mV}, 5 \mathrm{mV}, 5 \mathrm{mV}$, and 10 mV , respectively. Differential/de ofsel measurements are provided by the 1303 A which measures offset volages with an accuracy of 0.5%. Large signal, single-shot measurements are available in 183 mainframes in excess of 600 MHz with the direci access 1831 A plug-in.

Time Bases

For accurate timing measurements, the time base plug-ins give you a choice of single, expanded, and delayed sweeps with sweep times of $5 \mathrm{~ns} /$ div in 180 mainframes and $1 \mathrm{~ns} / \mathrm{div}$ in 183 main . frames. Applications that only require sweep expansion are provided by the 1824 A at considerably tower cost than a delayed sweep time base. The 1824A not only provides an expansion of up to 100 times but it maintains the $\pm 3 \%$ sweef accuracy that is often lost in a display magnification. If a delayed sweep is required, the 1825A provides calibrated delayed and mixed sweeps for accurate measurements. Also, by using a single reference line on the CRT, jou can make differential timing measurements with approximately 1% zecuracs:

Sampling Plug-ins

The new generation sampling plug-ins provide the easiest and fastest low level, high frequence measurements available at this time. The 1810 A operates and looks like a real time plug-in and provides fast, accurate. low-level measurements to 1 GHz . Measurements to 4 GHz and 18 GHz are provided by the 1811 A and its remore feedthru sampling heads, 1432 A and 1430 C . The remote sampling heads reduce measurement errors by eliminating long high frequency inierconnecting lines and the feedthru characteristic altows measure ments to be made while the system is operating normally with ics ox'n Joads.

TDR

Time Domain Refectomerry is a fash. convenient technique of measuring the electrical characteristics of transmission systems. For wideband applications, Models 1815A/B and 1818A will display an impedance profile of a system that shows magnitude, nature, and distance of a discontinuity from the test point. Model 1818A is a low cost, easy-to-use 150 ps riseume system for inscallation evaluation and servicing of cransmission systems. For design work or critical system installations, the 1815A/B with its remore sampling heads provides calibraced 35 ps rise times which will display dis. concinuities as close as $1 / 4$-inch apart.
Waveguide transmission sjscems can also be checked by using the 1580 A narrow band TDR system. This narrow band TDR clearly show's the magnitude of discontinuities with the location directly calibraied in feet or optionally meters from the source. This allow's rapid sysern set-up or repair of faults caused by misaligned or corroded waveguide flanges, coaxial cable connectors or damaged waveguide.

Operation In Extreme Environment

A 180 system has been developed to meet the exireme eni iron. mental requirements of the military. This system, which includes plug-ins and from panel cover with accessories, is arailable as an AN/USM-281A. The same ruggedized system can also be obained as a 180 F mainframe and with 1801 F and 1821 F plug-ins or as a rack mount model in the 180 ER .

180 System Selection Charts*

MAINFRABES		
Model No.	DESCRIPTION	Priog
180 C	Cabinet style for up to 100 MHz real time plug-ins	\$ 950
1800	$51 / 2$-inch high rack/bench style version of 180C	1050
181A	Cabinet style, variable persistence and storage CRT, 100 MHz	1950
181AR	51/4-inch high rack/bench style version of 181A	2025
182A	Large screetn, 100 MHz , cabinet style	950
183A	Cabinet style, $>500 \mathrm{MHz}$ bandwidth, $4 \mathrm{~cm} / 1 \mathrm{~s}$ writing speed	1950
183B	51/4-inch high rack/bench style version of 183A	2050
183 C	Cabinet style, $>500 \mathrm{MHz}$ bandwidth, selectable scan, 4 or $8 \mathrm{~cm} / \mathrm{ns}$ writing speed	2500
183D	51/4-inch high rack/bench style version of 183C	2600

* Refer to Model Number Index for page references.

Vertical Plug-ins

Model No.	1801A	1803A	1804 A	18054	180¢A	18074	1808A	(3)1810A*	(3)1811A	(11)830A	(1): $1831 \mathrm{~A} / \mathrm{B}$
Bandwidh, MHz	50	$\begin{gathered} 40 \\ (30) \end{gathered}$	50	100	0.5	35	75	$\begin{gathered} \text { I GHz } \\ \text { (sampling) } \end{gathered}$	4 or 18 GHz (sampling)	250	$\begin{aligned} & >600(\mathrm{~A}) \\ & >500(\mathrm{~B}) \\ & \hline \end{aligned}$
Min. Deflection ractor/div	5 mV $(500 \mu \mathrm{~V}$ 00 t 001 cascaded)	$\begin{gathered} 5 \mathrm{mV} \\ (1 \mathrm{mV}) \end{gathered}$	20 mV	5 mV	$100 \mu \mathrm{~V}$	10 mV	5 mV	2 mV	2 mV	10 mV	$\approx 6 \mathrm{~V}$
Channels	$\begin{gathered} 2 \\ (1 \text { cas. } \\ \text { caded }) \end{gathered}$	1 diff	4	2	2	2	2	2	2	2	1
Differential Input	Yes	$\begin{gathered} \text { Yes } \\ \text { (with dc } \\ \text { offsel) } \end{gathered}$	No	Yes	1831A only						
Price	$\begin{gathered} \$ 680 \\ \left(\begin{array}{c} \$ 68001 \\ \$ 830) \end{array}\right. \end{gathered}$	\$950	\$1050	\$1400	\$675	\$450	\$880	\$1650	\$1200	\$900	$\begin{aligned} & \$ 375(A) \\ & \$ 425(8) \end{aligned}$

Time Base Plug-ins

TIME BASEPLUQ-INS									TDR	TDR/SAMPLING
Model No	1820 C	1821A	1824A	1825A	(1)1810A	1811A	(1)848A	(1841A	© 1818 A	(31)16A/B
Ext Trig	$150 \mathrm{MHz}^{2}$	100 MHz	150 MHz	150 MHz	$>1 \mathrm{GHz}$	$\begin{gathered} 18 \mathrm{GHz} \\ \text { (with } \\ \text { countdown) } \end{gathered}$	$>500 \mathrm{MHz}$	$>500 \mathrm{MHz}$	<150 ps TDR system	35 ps callbated risetime TDR, 12.4 GHz single channel sampling 1815 A caliorated infeet. 18158 calibrated in meters. Plug-in requires sampling head and tunnel diode
Int Trig	100 MHz	75 MHz	100 MHz	100 MHz	1 GHz		250 MHz	250 MHz		
Sweep Speeds/div	5ns-1s	10 ns - Is	$5 \mathrm{~ns}-1 \mathrm{~s}$	5ns-1s	$\begin{gathered} 100 \mathrm{ps} \\ \text { (expanded } \\ -50 \mu \mathrm{~s} \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \mathrm{ps} \\ (\text { expanded }) \\ -5 \mu \mathrm{~s} \\ \hline \end{array}$	$\begin{gathered} 1 \mathrm{~ns}- \\ 0.1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 1 \mathrm{~ns}- \\ 0.1 \mathrm{~s} \end{gathered}$		
$\begin{aligned} & \text { Delayed and Mixed } \\ & \text { Sweep } \end{aligned}$	No	Yes	$\begin{array}{c\|} \hline \text { X100 } \\ \text { Expanded } \\ \hline \end{array}$	Yes	No	No	No	Delayed		
Price	\$400	8700	\$550	\$800	\$1650	(1) $\$ 1700$	\$650	\$1150	\$1200	¢ 81250.

Mainframe/Vertical/Time Base Compatibility Chart

		Veritole Plug-Iry								Time Base Plug-In							TDR/8amping			
MAINFR										[iٌ	$\underset{\text { 玉 }}{\text { 玉 }}$							$\stackrel{\sum}{\stackrel{D}{5}}$		
180C/D		$x \times$	x	x	X	X	X			X	x	x	X				x	x	X	x
181A/AR		x x	x	X	x	\times	x			x	x	x	x				x	x	X	x
182A		$x \quad x$	x	X	x	x	X			x	X	x	X				x	x	X	x
	$<100 \mathrm{MHz}$	$x \times$	X	x	x	x					X	X	X				x	X	\times	x
183	$>100 \mathrm{MH2}$	$x \times$	x	x	x	X	X	X						x		x	X	X	X	x
A/B/C/D	Opt 035	$x \quad x$	X	X	x	X	X	X	X						X					

NOTES:

1. Operates in 183 malnframes only.
2. Double size plugrin.
3. Requifes option 035 to 183 maln. frames and 1840A Tlme Base.
4. Peice is without sampling heads and tunne! dlodes.

LARGE SCREEN, 100 MHz
 Plug-in flexibility
 Model 182A

Description, 182A

Model 182A plug-in oscilloscope mainframe provides large screen, 100 MHz bandwidth in the proven 180 oscilloscope system. The parallax free, internal graticule is 8×10 divisions with each division equal to 1.29 cm , which makes it easier to view displays from a distance. This larger CRT area, 66% larger than $8 \times 10 \mathrm{~cm}$ displays, also improves viewing of displays such as four-channel, differential/dc-offser, and time domain reflectometer measurements.
Another feature of this mainirame is its design for maintainability. Plug. in circuir modules that connect to a printed circuit mocher board almost eliminate internal cabling, which increases reliability and makes it easier and quicker to get an instrument back into service. For example: the horizontal amplifier is on a plug-in circuit board that includes a section of front panel with knobs and switches mounted on ir. This allows a complete. pre-tested board to be quickly installed which keeps instrument down-time to a minimum. Also, the function of major circuit areas, test points, and adjustment values are printed on the cifcuit boards so a knowledgeable technician can easily adjust or repair the circuits.

Specifications, 182A

Cathode-ray tube and controls

Type: post accelerator, 19 kV accelerating potential; aluminized P 31 phosphor (other phosphors available, see Options).
Graticule: 8×10 div internal graticule. 0.2 -div sub-divisions on major axes. 1 div $=1.29 \mathrm{~cm}$. Front panel recessed screwdriver adjustment aligns trace with graticule. Edge lighted graticule.
Beam finder: returns trace to CRT screen regardless of serting of horizontal, vertical, or imensity contrals.
Intensity modulation: approx $+2 \mathrm{~V}, \geq 50 \mathrm{~ns}$ pulse widrh (≤ 10 MHz CW) will blank trace of normal intensity. Input R , approx 5 k ohms. Maximum Input voleage, $\pm 20 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac).

Calibrator

Type: approx 1 kHz square wave, <3 us rise time.
Voltage: cwo outputs, $250 \mathrm{mV} \mathrm{p}-\mathrm{p}$ and $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$; accuracy, $\pm 1 \%$

Horizontal amplifier

External input

Bandwldth: dc-coupled, de to 5 MHz ; ac-coupled, 5 Hz to 5 MHz.
Deflection factor: $1 \mathrm{~V} / \mathrm{div}, \mathrm{xi} ; 0.1 \mathrm{~V} / \mathrm{div}, \times 10$; accuracy, $\pm 5 \%$. Vernier provides continuous adjustment between ranges.
Dynamic range: $\pm 20 \mathrm{~V}$.
Maximum input: $\pm 300 \mathrm{~V}$ (dc + peak ac).
Input RC: 1 megohm shunted by approx 30 pF .

Internal sweep

Sweep magnifier: $\times 10$; accuracy, $\pm 5 \%$ (including 3% accuracy time base).
Outputs: four emitter follower ourputs on rear for main and delayed gates, main and delayed sweeps or vertical and horizontal outputs when used with sampling plug-ins; maximum currens available, $\pm 3 \mathrm{~mA}$; ourpurs will drive impedance ≥ 1000 ohms without distortion.

Generas

Weight: (withour plug.ins) ner, $261 / 2 \mathrm{lb}$ ($12,02 \mathrm{~kg}$); shipping $381 / 2$ $1 \mathrm{~b}(17,46 \mathrm{~kg})$.

Power: 115 of $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz},<110$ watts with plug-ins at normal line Max. mainframe power, 200 VA

Environment: (Mainframe operates within specifications over the following ranges.) Temperature, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$: Humidity, up to 95 名 relative humidiry at $40^{\circ} \mathrm{C}$, Altitude, up to $15,000 \mathrm{ft}$; Vibra. tion. vibrated io three planes for is minures each with 0.010 inch excursion, 10 to 55 Hz .

Dlmensions: 7 15/16 in. wide $\times 13$ 5/16 in. high $\times 195 / 8 \mathrm{in}$. deep over-all ($201,6 \times 338,1 \times 498,5 \mathrm{~mm}$).
Accessories furnished: metalic mesh contrast filter; power cord.
Price: (mainfeame less plug-ins)
Model 182A Oscilloscope Mainframes950

Model 182A Option 010 Oscilloscope Mainftame $\$ 900$
Options
002: aluminized P2 phosphor in lieu of P31, no charge.
007: aluminized P7 phosphor in tieu of P31, no charge.
010: mainframe without rear panel main and delayed sweep and gate outputs...

Less $\$ 50$ 011: aluminized P11 phosphor in lieu of P31, no charge. Beamfinder does not intensify display on Option 011 oscilloscopes.

Description, 180C/D

Models 180C (cabinet style) and 180D (rack style) mainframes contain the basic functional circuits and power supplies for real time 1800 series plug-ins to $100 \mathrm{MHz}, \mathrm{TDR}$ and 12.4 GHz sampling and dual channel 1 GHz and 18 GHz sampling piag.ins. Basic mainframe features are: 8×10 division (1 div $=1 \mathrm{~cm}$) internal, parallax-free graticule; internal food gun for scale illumination; x 5 and $\times 10$ sweep magnifier; external horizontal input; two calibrator oulputs of 250 mV and 10 V ; and the Hewlett-Packard developed beam finder

The cathode-ray tube has 15 kV accelerating porential for fast visual and photographic writing speeds which makes it easy to measure low duty cycle pulses. Photographic writing speed with P31 phosphor is $1500 \mathrm{~cm} / \mu \mathrm{S}$ and is measured using an HP 195A Camera, 10,000 ASA film without film fogging techniques.

To facilitate servicing, the modular power supply may be simply unplugged and removed from the mainframe for complete access to all components. In addition, the power supply may be operated in this exposed condition without requiring separate extenders which further simplifies and speeds up main. tenance procedures. A horizontal gain calibrator, Model $10411 A$, is available to provide fast calibration of the mainframe horizontal amplifier. This and other accessories are listed in the accessories section.

Specifications, 180C/D

Cathode.ray tube and controls
Type: post accelerator, approx 15 kV accelerating potential: aluminized P31 phosphor (see Options for other phosphors).
Gratleule: 8×10 div incernal gracicule, 1 div $=1 \mathrm{~cm}, 0.2$ dis subdivisions on major axes. Fronc panel recessed screwdriver adjustment aligns trace with graticule. Scale control illuminates CRT phosphor when viewing with hood or taking photographs.
Beam finder: recurns trace to CRT screen regardless of setting of horizonial, vertical, or intensity controls.
Intensity Modulation (External Input)
Input: approx $+2 \mathrm{~V}, \geq 50$ ns pulse width ($\leq 10 \mathrm{MHz}$ sine wave) will blank trace of normal intensity.
Ingut R: approx 5 kohms.
Maximum input: $\pm 20 \mathrm{~V}$ (dc + peak ac).
Photographic writing speed: $1500 \mathrm{~cm} / \mu \mathrm{s}$. Measured using P 31 phosphor, 10,000 ASA film without film fogging and HP Model 195A camera (1.3 lens, $1: 0.5$ object-to-image ratio). Writing speed may be increased substantially by using film fogging techniques, P11 phosphor, and faster camera lenses.

Calibrator

Type: approx 1 kHz square wave, $<3 \mu$ sise time.
Voltage: two outputs, 250 mV f-p and $10 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ into ≥ 1 megohm; accuracy, $\pm 1 \%$.

External input

Horizontal amplifier

Bandwidth: de 105 MHz de-coupled; 5 Hz to 5 MHz ac-coupled.
Deflection factor: $1 \mathrm{~V} /$ div, $\mathrm{x} 1 ; 0.2 \mathrm{~V} /$ div, $\mathrm{x} 5 ; 0.1 \mathrm{~V} /$ div, x 10 ; accuracy $\pm 5 \%$. Vernier protides continuous adjustment between ranges.
Dynamic Range: $\pm 20 \mathrm{~V}$
Maximum input: 600 Vdc (ac-coupled inpur).
Input RC: approx 1 megohm shunted by approx 30 pF .

Internal sweep

Magnifier: $x 5$, $\times 10$, accuracy $\pm 5 \%$ (with 3% accuracy time base).
Outputs: four rear panel, emitter follower outputs provide main and delayed gates, main and delayed sweeps, or vertical and horizoncal outputs when used with TDR/Sampling plug.ins. Maxi-

mum current available, $\pm 3 \mathrm{~mA}$. Output will drive impedances of ≥ 1000 ohms without distortion.

General
Weight (without plug-ins)
Model 180C (cabinet): net $24 \mathrm{lb}(10,9 \mathrm{~kg})$; shipping, 36 lb $(16,3 \mathrm{~kg})$.
Madel 180D (Rack): net, $26 \mathrm{lb}(11,8 \mathrm{~kg})$; shipping, 40 lb ($18,1 \mathrm{~kg}$).
Power: 115 or 230 V , $\pm 10 \%$: 48 to 440 Hz ; normally <110 wats with plug-ins at normal line. Max. mainframe power, 200 VA.
Environment (Mainframe operates within specificarions over the following ranges.): Temperature, 0 to $\div 55^{\circ} \mathrm{C}$, Humidity, to 95% relative humidicy to $40^{\circ} \mathrm{C}$; Altitude, to $15,000 \mathrm{ft}$; Vibration, vibrated in three planes for 15 min . each with 0.010 inch excur. sion, 10 to 55 Hz .

Dimensions

Cabinet Model 180C: 77/8" wide, $113 / \mathrm{g}^{\prime \prime}$ high, 21/4" deep behind panel ($200 \times 289 \times 540 \mathrm{~mm}$)
Rack Model 180D: $163 / 4 \mathrm{in}$. wide, $57 / 32 \mathrm{in}$. high, $213 / 8 \mathrm{in}$. deep over-all ($425,132,6,543 \mathrm{~mm}$), $143 / 8 \mathrm{in}$. (493 mm) deep behind rack mount tabs
Accessories furnished: 71/2 foot power cord; Model 10179A mesh contrast filter; rack mounuing harduare and 2 probe holders (HP $\mathrm{P} / \mathrm{N} 3050.0464$) are also supplied with the 180D rack model.
Price (mainframe less plug-ins)
Model 180C Oscilloscope Cabinet Style Mainframe $\$ 050$
Model 180C Option 010 (Sec options) $\$ 900$
Model 180D Oscilloscope, Rack Style Mainframe $\$ 1050$
Model 1800 Oprion 010 (See Options) $\$ 1000$

Options

The following oprions are available to modify a mainframe to fit your application. If other mainframe changes are required, contatr your Hewlett-Packard Field Enginecr.
002: aluminized P2 phosphor in lieu of P31, no charge.
007: aluminized P7 phosphor in lieu of P31, no charge.
010: deletes the rear panel outputs for main and delayed gates and main and delayed sweeps

Less, $\$ 50$
D11: aluminized P11 phosphor in lieu of P31, no charge. Beamfinder does not intensify display on Option 011 oscilloscopes.

100 MHz STORAGE CRT
 Plug-in flexibility

Description, 18IA/AR

Models 181A (cabinet style) and 181AR (rack style) mainframes provide plug-in fexibility, 100 MHz bandwidth capability with a variable persistence/storage cathode-ray tube. The storage mesh CRT allows you to adjust the amount of time a trace is retained to match your measurement requirement. In addition, the 181 offers storage capability for over one hour to permit you to study or phorograph a display at your convenience.

Variable persistence and storage is useful for displaying many types of signals, especially low repetition rate or single shor events. Variable persistence allows you to adjust the trace retention time to match your signal requirements, thus eliminating annoying slow sweep flicker.

The single shot Writing speed in the 181 is variable from $20 \mathrm{div} / \mathrm{ms}$ to greater than $1000 \mathrm{div} / \mathrm{ms}$. This allows adjustment of the writing speed to match the measurement requirement which provides more versatile scope operation. The integrating capability inherent in this storage CRT allows fast rise repetitive fulses to be displayed even though they may be well beyond the single shot writing capability of the CRT.

The wide selection of plug-ins allows you to match roday's measurement requirements and still provide capability for future growth at minimum expense. Refer to the 180 system selection chart for the main features of 1800 series plug-ins,

Specifications, 181A/AR

Cathode-ray tube and controls

Type: post-accelerator storage tube; 8.5 kV accelerating potential; aluminized P31 phosphor.
Graticule: 8×10 div internal graticule, 0.2 div subdivisions on najor axes. 1 div $=0.95 \mathrm{~cm}$. Front pantel adjustment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardless of setting of horizontal or vertical controls.
Intenslty modulation: approx $+2 \mathrm{~V}, \geq 50$ ns pulse widh (≤ 10 MHz CW) blanks trace or normal intensity. Input R, 5100 ohms.

Persistence

Normal: natural persistence of P31 phosphor (approx $40 \mu \mathrm{~s}$). Variable: from $<0.2 \mathrm{~s}$ to $>1 \mathrm{~min}$.

Storage writing speed

Write mode: >20 div/ms.
Max write mode: >1000 div/ms.
Brightness: >100 foot Lamberts.
Storage time: from Write made to Store, traces may be stored at reduced intensity for >1 hour. To View mode, traces may be viewed at normal incensity for >1 minute. From Max Wirite mode to Store, eraces may be stored at reduced intensity for >5 minutes. To View mode, traces may be stored at normal intensity for >15 seconds.
Erase: manual, pushbutton crasure takes approx 300 ms .

Horizontal amplifier

External input
Bendwidth: de.coupled, de to $s \mathrm{MHz}^{\text {; ac-coupled, }} \mathrm{SHz}$ to 5 MHz .
Deflection factor: $1 \mathrm{~V} / \mathrm{div}$ in $\times 1 ; 0.2 \mathrm{~V} / \mathrm{div}$ in $\mathrm{x}: 0.1 \mathrm{~V} / \mathrm{div}$ in $\times 10$.
Dynamic range: $=20 \mathrm{~V}$.
Maximum input: 600 V de (ac-coupled input). Inpue RC approx 1 megohm shunted by approx 30 pF .
internal sweep
Magnifier: xs, x10; accuracy, $\pm 5 \%$ (with 3% accuracy time base).

Callbrator

Type: approx : kHz square wave, 3μ s rise time.
Amplltude: $10 \mathrm{~V} \mathrm{p-p;}$ accuracy, $\pm 1 \%$.
Outputs: four rear panel emitter follower outpurs for main and delayed gates, main and delayed sweeps or vertical and horizontal outputs when used with TDR/Sampling plug-ins. Maximum cursent a a ailable, $\pm 3 \mathrm{~mA}$. Will drive impedances ≥ 1000 ohms without distortion.
Weight (without plug.ins)
Model 181A (cabinet): net, $24 \mathrm{lbs}(10,9 \mathrm{~kg})$; shipping, 40 lbs $(18,1 \mathrm{~kg})$.
Model 181AR (rack): net, 26 lbs (11.8 kg); shipping, to lbs ($18,1 \mathrm{~kg}$).
Environment (operates within specifications over the following ranges) : temperature, 0° to $+95^{\circ} \mathrm{C}$; humidity, to 95% relative humidity to $40^{\circ} \mathrm{C}$; altitude, to $15,000 \mathrm{fr}$; vibration, vibrated in three planes for 15 min each with 0.010 inch excursion, 10 to 3s Hz .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 115$ watts at normal line with plug-ins, Max mainframe power, 225 VA.

Dimensions

Model 181A (cablnet): $77 / 8^{\prime \prime}$ wide $\times 113 / 8^{\prime \prime}$ high $\times 211 / 4^{\prime \prime}$ deep ($200 \times 289 \times 530 \mathrm{~mm}$)
Model 181AR (rack): $163 / 4^{\prime \prime}$ wide x s $1 / 4^{\prime \prime}$ high $\times 213 / 8^{\prime \prime}$ deep over-all ($425 \times 132.6 \times 543 \mathrm{~mm}$) $193 / \mathrm{s}^{\prime \prime}$ (49 j mm) deep behind rack mounts.
Accessorles furnished: $71 / 2 \mathrm{ft}$ power cord, Model 10178A mesh contrast filter; rack mounting hardware and two probe holders (HP P/N S0S0.0464) are supplied with rack models.
Price (mainframe less plug-ins)
Model 181A Oscilloscope, Cabinet Style Mainframe $\$ 1950$
Model 181AR Oscilloscope Rack Style Mainframe $\$ 2025$
Options (order by option number)
H49: Model 181A or 181AR with remote programming capability for Write, Max, Wrire, Normal, Store, View, and Erase functions. Programming accomplished through contact closure, DTL, or TIL logic sources. Price: Model 181A Option H49, \$2450. Model 181AR Option H49. $\$ 2525$.

OSCILLOSCDPES

Models 183A/B/C/D mainframes, with their related plug-ins, provide $r \in a l$ time frequency response through the VHF region. This high frequency response is accomplished without sacrificing viewing ease, accuracy, operating simplicity, or plug.in versatility in wide band general purpose applications.

The fast writing speed of these main frames allow's easy viewing of slow rep rate digital words or other groups of fast-rise pulses in computers and high speed digital systems. In communication system analysis, the wide band response allows undistorted displays of modulation envelopes on ri carriers.

All four mainframes offer full $6 \times 10 \mathrm{~cm}$ displays at 4 $\mathrm{cm} / \mathrm{ns}$ writing speed. In addition, the 183C/D offers increased writing speeds of $8 \mathrm{~cm} / \mathrm{ns}$ in a reduced scan mode. This fast writing speed allows easy photographic recording of high-speed, single-shot transients thru the capabilities of either the 10 mV 250 MHz dual channel plug-in or direct access plug.ins extend. ing to 600 MHz .

To take advantage of this fast writing speed, two time bases are available which provide accurate expanded sweep times to $h \mathrm{~ns} /$ div. Both the standard and delaying time bases provide ultra stable triggering to 500 MHz giving clear clean jitter free displays for all general purpose applications.

Specifications, 183A/B/C/D Cathode-ray tube and controls

Type: post accelerator, 20 kV accelerating potential; aluminized P31 phosphor (other phosphors available, see options): safery glass faceplate.
Writing speed:* Models $183 \mathrm{~A} / \mathrm{B}, 4 \mathrm{~cm} / \mathrm{ns}$; Models $183 \mathrm{C} / \mathrm{D}, 4 \mathrm{~cm} /$ ns in normal scan; $8 \mathrm{~cm} / \mathrm{ns}$ in reduced scan.

Graticule

Models 183A/B: $6 \times$ l0 division internal graticule. 1 div $=1$ cm . 0.2 division subdivisions on major axes.
Models 183C/D: normai scan, 6×10 division internal graticule. $1 \mathrm{div}=1 \mathrm{~cm} .0 .2$ division subdivisions on major axes; reduced scan. 6×10 div internal graticule superimposed in cencer of normal scan graticule. 1 div $=0.5 \mathrm{~cm}$.
Flood gun: illuminates CRT phosphor. Normal or pulsed mode of operation selected with rear panel switch. Scale control adjusts graticule illumination in normal mode and pulse width in pulsed mode which increases phocographic writing speed.
Beam finder: returns trace to CRT screen regardless of setting of horizontal or vertical controls.
Intensity modulatlon: approx $+2 \mathrm{~V}, 50$ ns pulse widch (≤ 15 $\mathrm{MHz}_{\mathrm{C}} \mathrm{CW}$) blanks trace of normal intensity. Input $\mathrm{R}, 4700$ ohms. +15 V blanks trace of any intensity.

Calibrator

Pulse timing: selectable, 2 kHz rep rate (0.5 ms perind), $50 \mu \mathrm{~s}$ pulse width; 1 MHz rep rate ($1 \mu \mathrm{~s}$ period), 100 ns pulse width Accuracy, $\pm 0.5 \%+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}: \pm 1 \%$: $+55^{\circ} \mathrm{C}$.
Amplítude: selectable, 50 mV or 500 mV , $\pm 1 \%$ inco a 50 ohm $=0.5 \%$ load.
Source R: 50 ohms, nominal.
Pulse shape (measured with i GHz bandwidth sampler): rise time (negative slope), 1 ns; overshoor and ringing, $=3 \%$ max; Aatness, $\pm 0.5 \%$ after s ns with pulse top and base line perturba. tions ayeraged.
External calibrator Input: calibrator shaping network shapes an external negacive input that exceeds -0.5 V peak. Rep-rate extends to $>10 \mathrm{MHz}$. Input R, approx 10 k ohms. Rear panel input selected with rear panel switch and front panel light indicates when switched to external position.

[^13]

Horizontal amplifier
External input: bandwidth, dc-coupled, dc to 8 MHz ; ac-coupied, 2 MHz : deflection factor, $1 \mathrm{~V} / \mathrm{div}, \mathrm{X} 1 ; 100 \mathrm{mV} / \mathrm{div}, \mathrm{X} 10$; accuracy $\pm 5 \%$, vemier provides continuous adjustrment between ranges and extends deflection factor to at least 10 V /div; dynamic range, $\pm 20 \mathrm{~V}$; maximum input, $\pm 350 \mathrm{~V}$ (dc + peak ac); input RC, approx i megohm shunted by approx 20 pF .
internal sweep magnifier: Xio: accuracy, $\pm 5 \%$.

General

Outputs: two rear panel emitter follower outputs for main or delayed gates (vertical or horizontal outputs when used with sampling plug-ins). Output amplitude is approx $\pm 0.75 \mathrm{~V}$ with 1840 A time base plug-in. Will drive impedances ≥ 1000 ohms without disrortion.
Weight (without plug-ins): Models $183 \mathrm{~A} / \mathrm{C}$ (cabiner) net, 33 lbs ($15,0 \mathrm{~kg}$) ; shipping, 46 lbs ($20,9 \mathrm{~kg}$): Models $183 \mathrm{~B} / \mathrm{D}$ (rack) ner, 35 lbs ($15,9 \mathrm{~kg}$); shipping, 48 lbs ($21,8 \mathrm{~kg}$).
Environment (mainframe operates within specifications over the following ranges): temperature, $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; humidity, to 95% relative humidity to $40^{\circ} \mathrm{C}$; altitude, to $15,000 \mathrm{ft}$ vibration. vibrated in three planes for 15 minutes each with 0.010 inch excursion, 10 to 55 Hz .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz , approx 115 watts with 1830 A and 1840 A plug.ins at 115 V and 60 Hz . Maximum nainframe power at normal line, 155 watts.

Dimensions

Models 183A/C (cabinet): $7 / 8^{\prime \prime}$ wide, $113 / 8^{\prime \prime}$ high, $223 / 4^{\prime \prime}$ deep behind front panel ($100 \times 289 \times 578 \mathrm{~mm}$).
Models 183B/D (rack): $163 / 4^{\prime \prime}$ wide, $5.7 / 36^{\prime \prime}$ high, $24^{\prime \prime}$ deep over-all (425.5, 132.6, 543 mm), 22" (558.5 mm) deep behind rack mount tabs.
Accessories supplied: Model 10179A mesh conirast filter, $71 / 2 \mathrm{ft}$ power cord; reduced scan mask for 183C/D (HP Parl No. 00183. 04111). Rack mounting hardware and two clip-on probe holders (HP Part No. 5050.0464) with 183B and D rack models.

Price (mainframe less plug-ins)

Model 183A Oscilloscope, Cabinet StyIe Mainframe $\$ 1850$
Madel 183B Oscilloscope, Rack Siyle Mainframe $\$ 1925$
Mrodel 183 C Oscilloscope, Cabiner Style Mainframe $\$ 2500$
Model 183D Oscilinscope, Cabinet Style Mainframe $\$ 2600$

Description, 1808A
Model 1808 A is an ideal vertical amplifier for design or trouble-shooting logic circuits using ECL components. This plug-in provides lope drift and Rexible triggering for accurate $C W$ and timing measurements. Other convenience features are: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$; de to 75 MHz bandwidth on all ranges; selectable display polarity on each channel; and select. able high Z or 50 ohm inputs.

General purpose probing is provided by a one megohm input with a very low 12 pF shunt capacitance to reduce phase shift and signal loss in CW measurements. A switchable, high quality, 50 ohm input is also provided, which allows marching to a 50 obm source with minimum reflections due to the low L.2:1 VSWR. This 50 ohm inpur provides accurate rise time measurements with virtually no reflections to degrade the input signal or introduce phase shift. The 50 ohm inpur also allows active and passive probes with very low input capacitance to be used which further reduces signal degradation.

Specifications, 1808A

Modes of operation: channel A; channel B; channels A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching between channels al approx 400 kHz rate (CHOP), with blanking during switching; and channel A plus channel B (algebraic addition).

Each channel (2)

Bandwleth: (s dB down from 8 div reference signal from a terminated 50 ohm source): decoupled, de to 75 MHz ; accoupled, approx 8 Hz to 75 MHz .
Rise time: <4.7 ns (measured from 10% to 90% points of 6 div input step from a terminated 50 ohm source).
Deflection factor
Ranges: $5 \mathrm{mV} / \mathrm{dix}$ to $5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in 1 . 2, 5 sequence. $\$ 2 \%$ attenuator accuracy. Vernice provides continuous adjustment between defection factor settings and extends maximum deflection factor to at least $12.5 \mathrm{~V} / \mathrm{dic}$. Polarlty: + up or $-u p$, selectable.
Signal delay: input sigoals are delayed sufficiendy to "iew leading edge of input pulse without advanced trigger.
Input coupling: selectabie, ac and dc (1 megohm), so ohms, or ground. Ground position disconnects inpur connector and grounds amplifier irput,
Input (selectable)
1 megohm: 1 megohm $\pm 1 \%$ shunted by approx 12 pF . 50 ohm: 50 ohms $\pm 1 \%$. VSWR, $<1.2: 1$ at 75 MHz on all ranges.

Maximum input

1 megohm: $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac) at 1 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $5 \mathrm{mV} /$ div range ar 1 kHz or less.
50 ohm: 10 V tms (dc-coupled input).
Drift: $<100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

$A+B$ operation

Ampliffer: bendwidth and defection factors and unchanged: either channel may be inverted for $\pm \mathrm{A}+\mathrm{B}$ operation.
Differential input (A-B) common mode: for frequencies from de to $2 \mathrm{MHz}, C M R R$ is at least 40 dB on $5 \mathrm{mV} / \mathrm{div}$ and at least 20 dB on other ranges for common mode signals of 24 div or less.
Triggering
Source: A, B or composise $\{A+B\}$ modes, on the signal displayed; chop mode, on A or B signal: alternate mode. on $A . B$, or successively, (comp) from the displayed signal on each channel.
Frequency: de to 75 MHz on signals causing 0.5 div p.p or more vertical defection in all display modes (1820A, 182 LA require 1 div $\mathrm{P} \cdot \mathrm{p}$) except de to 100 kHz in chop mode.

General

Environment: same as Model 180C/D mainframe.
Weight: net, 5 lbs ($2,3 \mathrm{~kg}$) : shipping, 9 lbs ($4,1 \mathrm{~kg}$).
Price: Model 1808A Dual Channel Vertical Amplifier, \$8s0; Model 1808A Option 00; Dual Channel Vertical Amplifier, $\$ 800$.
Accessorias furnished: two $10: 1$ voltage divider probes. Options

003: Model 1808A without probes, less $\$ 80$.

Description, 1801A

Model 1801A is a dual channel vertical amplifier plug.in for 180 system mainframes. Operating chazacteristics are: 5 $\mathrm{mV} /$ div to $20 \mathrm{~V} /$ div deffection factors; de to 50 MHz bandwidth constant on all ranges; selectable display polarity; and selectable inpur coupling. The two channels can be operated singly, algebraically added, or in dual trace modes with alternate or chopped switching and selectable erigeer source.
For added measurement versatility, Option 001 provides a X s multiplier for $1 \mathrm{mV} /$ div deflection factors. Option 001 also provides a Channel B output, which can be cascaded into Channel A for $500 \mu \mathrm{~V} /$ div deflection factor.

Specifications, 1801A
Modes of operation: channcl A; channel B; channels A and B displuyed alternately on successive sweeps (ALT); chanṇels A

OSCILLOSCOPES
and B displayed by switching between channels at approx 400 kHz rare (CHOP), with blanking during switching; channel A plus channel B (algebraic addition)
Each channei (2)
Bandwidth (measured with or without a Model 10004B probe, 3 dB down from 8 div reference signal from a terminared 50 ohm soutce. Lower limit is approx 0.8 Hz with 10004 B probe when ac-coupled): de-coupled, dc to 50 MHz ; ac-coupled, approx 8 Hz to 50 MHz .
Rise time: <7 ns (measured with or without 10004 B probe $10 \% 1090 \%$ of 8 div inpur step from a terminated 50 ohm source).
Deflection factor: $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1 , 2 , y sequence. $\pm 3 \%$ attenuator accuracy. Vernier protides continuous adjustment berween deflection factor setrings and extends maximum defection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Polarity: + up or -up, selectable.
Signal delay: input signals are delayed sufficiently to viear lead. ing edge of input pulse withour advanced external trigger.
Input RC: 1 megohm $\pm 2 \%$ shunted br approx 25 pF
input coupling: selectable, ac, dc, or ground. Ground position disconnects signal input and grounds amplifier input.
Maximum Input
DC.coupled: $\ddagger 350 \mathrm{~V}$ (dc + peak ac) ac 10 kHz or less: $亡 150 \mathrm{~V}$ (de + peak ac) on $5 \mathrm{mV} /$ die range at 10 kHz or less.
AC-coupled: $\pm 600 \mathrm{~V}$ dc.
$A+B$ operation
Amplifier: bandoridat and defection factors are unchanged: either channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Differential Input (A-B) common mode: for frequencies from de to 1 MHz, CMRR is ar least 40 dB at $5 \mathrm{mV} / \mathrm{dir}$ and at least 20 dB on other ranges for common mode signals of 24 div or less.
Triggering
Source: A, B, or composite ($\mathrm{A}-\mathrm{B}$). Modes, on the signal displayed; chop mode, on A or B signal; alternate mode, on A, B or successively (comp) from the displayed signal on each channel.
Frequency: de to 50 MHz on signals causing 0.5 div or more vertical defection in all display modes except de to 100 kHz in chop mode.

General

Weight: ne!, 4 lbs ($1,5 \mathrm{~kg}$) ; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$).
Environment: same as Model 180C/D mainframes.
Accessories furnished: two $10004 \mathrm{~B}, 10: 1$ divider probes, approx $31 / 2 \mathrm{ft}$.
Price: Model 1801A Dual Channel Vertica! Amplifier, $\$ 680$; Model 1801A Option 003 Dual Channel Vertical Amplifier, $\$ 600$.
Optlons (order by option number)
O01: provides $x s$ magnifer and channel B vertical output. Contact your Hewlett-Packard feld engineer for more information about this option.
003: Model 1801A without probes, less $\$ 80$.
090: 6 it 10006 B probes substituted for $10004 \mathrm{~B}, 10: 1$ atten, no charge.
091: 10 ft 10003 B probes substitured for $10004 \mathrm{~B}, 10: 1$ atten, no charge.

Description, 1807A

Model 1807A is an economical, dual channel plugin for applications involving logic timing measurements in circuits using MOS and TTL elements. A selection of standard, delay generators, or expanded sweep time bases, allow timing mea surements to $5 \mathrm{~ns} / \mathrm{div}$ in 180 mainframes or to $1 \mathrm{~ns} / \mathrm{div}$ in 183 mainframes. The 181 variable persistence/scorage main. frames provide bright, clear displays of low rep rate logic pulses when they are too slow for standard CRT displays.

Specifications, 1807A

Modes of operation: channel A ; channel B ; channels A and B displaped alternately on successive sweeps (ALT) ; channels A and B displayed by switching between channels at approx 100 kH_{2} rate (CHOP), with blanking during switching; and channel A plus channel B (algebraic addition).

Each channel (2)

Bandwidth: (measured with or without 10004 B probe, 3 dB down from $\&$ div reference signal fromi a terminated 50 ohm. Lower limit is approx 0.8 Hz with 10004 B probe when accoupled) : de-coupled, de to 35 MHz ; ac-coupled, approx 8 Hz to 35 MHz .
Risa time: < 10 ns (measured with or without 100048 probe, 10% to 90% of 8 div input from a terminated 50 ohm source).
Deflection factor: $10 \mathrm{mV} / \mathrm{dix}$ ro $5 \mathrm{~V} / \mathrm{dir}$ (9 positions) in 1 , 2,5 sequence. $\pm 3 \%$ attenuator accuracy. Vernier provides continuous adjustmens between deffection factor settings and exiends maximum defection factor to 12.5 V /dir.
Polarity: - UP or - UP, selectable on channel B
Signal delay: input signals are delayed sufficiently to view lead. ing edge of inpur pulse withour advanced trigger.
Input RC: 1 megohm $\pm 2 \%$ shunced by approx 27 pF .
input coupling: selectable, ac, dc, or ground. Ground pasition disconnects inpur connector and grounds amplifier input.
Maximum input
DC-coupled: $\pm 350 \mathrm{~V}$ (de + peak ac) at 10 kHz or less; $\pm 150 \mathrm{~V}$ (dc + peak ac) on $10 \mathrm{mV} /$ div at 10 kHz or less. AC-coupled! $\pm 600 \mathrm{~V} d c$.

$A+B$ operation

Amplifier: bandwidth and deflection factors are unchanged; channel B may be inverted for $+A \pm B$ operation.
Differentlal input ($A-B$) common mode: for frequencies from de 101 MHz, CARRR is at least 40 dB on $10 \mathrm{mV} / \mathrm{dir}$ and at least 20 dB on other ranges for common mode signals of 24 div or less.

Triggering

Source: on channel A for channel A, chop and alternate modes, on channel B for channel B mode, on signal displayed for A + B mode.
Frequency: de to 35 MHz on signals causing 05 div p-p or more verrical defection in all display modes except de to 100 kHz in chop mode.

General

Environment: same as $180 C / D$ mainframe.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Price: Model 1807A Dual Channel Vertical Amplifer. $\$ 450$

DIFFERENTIAL/DC OFFSET
 Calibrated Vo to 600 V
 Model 1803A

Description, 1803A

Model 1803A is a differential/dc offset amplifies plug-in for 180 system mainframes. Operating characteristics are: defection factors of $1 \mathrm{mV} /$ div to $2 \mathrm{~V} /$ div from de to 30 MHz and from $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ to 40 MHz ; CMRR of 86 dB (20,000:1) on the $1 \mathrm{mV} /$ div range with a 10 volt common mode signal; and calibrated offset voltage that provides differential comparison of pulse amplitude measurements with 0.5% aecuracy.

Specifications, 1803A
 Vertical dellection

Bandwidth: de to 40 MHz (3 dB down) for deflection factors of $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$; de to 30 NHz (3 dB down) on $1 \mathrm{mV} /$ div and 2 mV /div for V_{0} range of 0 to 6 V , and 2 most sensitive volts/dis settings on other Vo ranges. Lower 3 aB limit is approximately 2 Hz with inpet as coupled. (Measured with or without 10004 B probe; 8 div reference signal from a terminated so ohm source. Lower limit is approximately 0.2 Hz with probe.)
Risetime: <10 ns for defecrion factors of $5 \mathrm{mV} /$ div $1020 \mathrm{~V} /$ div: $<12 \mathrm{~ns}$ on $1 \mathrm{mV} /$ div and $2 \mathrm{mV} /$ div on Ve range 0106 V and on two mose sensitive volts/div settings on other Vn ranges. (Measured with or withou: 10004 B probe: 10% to 90% of 8 div input step from a terminated 50 ohm source).

Deflector factor

Ranges: from $0.001 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (1 f calibrated positions) in 1,2 . 5 seguence. 上 3% attenuator accuracy.
Vernier: provides continuous adjustment between all deflecrion factor ranges; extends maximum deffection factor to at least so $\mathrm{V} / \mathrm{dit}$. Uncalibrated ligit indicates when vernier is not in CAL position.
Input coupling: front panel selection ac, dc, ground or V_{0} for boch + and - inputs. Ground disconnects signal inpur and grounds amplifer inpur for reference.

Maximum inpus

Vorange
0 to 6 V
0106 V
0 to 6 V
0.060 V

01060 V
0 w 600 V

Defiection Factor $0.001 \mathrm{~V} / \mathrm{dix}$ to $0.02 \mathrm{~V} / \mathrm{div}$ $0.05 \mathrm{~V} / \mathrm{J} v \mathrm{~m}_{1} 0.2 \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~V} /$ dir $1020 \mathrm{~V} /$ div $0.01 \mathrm{~V} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~V} / \mathrm{A}$ to $20 \mathrm{~V} / \mathrm{d}$ $0.1 \mathrm{~V} / \mathrm{div}$ u) $30 \mathrm{~V} / \mathrm{d}$

Maximum Input
(dc + peak ac)
$\pm 15 \mathrm{~V}$
$\pm 150 \mathrm{~V}$
$\pm 600 \mathrm{~V}$
$=150 \mathrm{~V}$
$\pm 600 \mathrm{~V}$
$\pm 600 \mathrm{~V}$

Overioad recovery

6 V overload: within $\underline{\underline{2}} 10 \mathrm{mV}$ of hinal signal value in ≤ 0.3 as within $\pm 5 \mathrm{mV}$ in $\leq 1 \mu \mathrm{~s}$, and within 1 mV in $\leq 1 \mathrm{~ms}$.
60 V overload: within $\pm 100 \mathrm{mV}$ of final signal value in ≤ 0.3 $\mu \mathrm{s}$, within $\pm 50 \mathrm{mV}$ in $\leq 1 \mu \mathrm{~s}$, and within $\pm 10 \mathrm{mV}$ in $\leq 1 \mathrm{~ms}$.
600 V overload: within $\pm 1 \mathrm{~V}$ of final signal value in $\leq 0.3 \mu \mathrm{~s}$, within $=0.5 \mathrm{~V}$ in $\leq 1 \mu \mathrm{~s}$, and within $\pm 100 \mathrm{mV}$ in $\leq 1 \mathrm{~ms}$.
Common mode rejection ratio: messured at $0.001 \mathrm{~V} / \mathrm{div}$. (CMRR decreases with increasing deflection factor.)

Common Mode
Input Sinewave
(Max p.p)
10 V
10 V
10 V
Freq. in 1 MHz
1 V
10 V

Frequency Range
DC (1) 100 kHz
100 kHz to 1 Mr Hz
$1 \mathrm{MHzw} 10 \mathrm{NH} \neq$

20 MHz

60 Hz

CMiRR

$\geq 20,000: 1 \quad(\geq 86 \mathrm{~dB})$
$\geq 10,000: 1 \quad(\geq 80 \mathrm{~dB})$
$5,000: 1$
$\begin{aligned} \mathrm{r} \in \mathrm{g}, \text { in } \mathrm{MHz} \\ \geq 50: 1(\geq 34 \mathrm{~dB}) \\ \geq 2,000: 1(\geq 66 \mathrm{~dB})\end{aligned}$

Vo output: calibrated de offser voltage arailable at front panel connector, continuously variable from 0 to $\pm 0.006 \mathrm{~V}, 0$ to $\pm 0.06 \mathrm{~V}$. 0 to $\pm 0.6 \mathrm{~V}$, or 0 to $\pm 6 \mathrm{~V}$. Accuracy of the $\pm 6 \mathrm{~V}$ range is

[^14]
$\pm 0.15 \%$ of reading $\pm 8 \mathrm{mV}$ when driving a resistance of 10 megohms or higher.
DC offset

	Defection Factor	Comparison Accuracy
$010 \pm 6 \mathrm{~V}$	$0.001 \mathrm{~V} / \mathrm{dis}$ co $0.02 \mathrm{~V} / \mathrm{div}$	$\pm(0.25 \%+8 \mathrm{mV})$
	$0.05 \mathrm{~V} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$	$\pm(0.75 \%+8 \mathrm{mV})$
	$0.5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	上 1%
	$5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$
$010 \pm 60 \mathrm{~V}$	$001 \mathrm{~V} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{dis}$	$\pm(0.4 \%+80 \mathrm{mV})$
	$0.5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	$\pm(0.75 \%+80 \mathrm{mV})$
	$5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	± 30
$0 \mathrm{IL} \pm 600 \mathrm{~V}$	$0.1 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	$\pm(0.65 \%$ - 0.8 V)
	$5 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$

Triggering: de to 40 MHz on signals causing 0.5 div of more vercical defection.

General

Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Environment: same as Model 180C/D mainframes.
Price: Model 1803A Differential DC Offser Amplifier, $\$ 950$.

Description, 1804A

Model 1804 A is a four channel verrical amplifier plug-in for 180 system mainframes. Operating characteristics are: 20 $\mathrm{mV} /$ div to $10 \mathrm{~V} /$ div deflection factors; de to 50 MHz band. width; and selectable inpur coupling. The four clannels may be operated singly or in any combination of uraces in alrernate or chopped modes with selectable trigger source.

Specifications, 1804A

Modes of operation: channel A, B, C, or D or any combination displayed alternately on successive sweeps (ALT); channels A, B, C, or D or any combination displayed by swithing between channels at approx 1 MHz rate (CHOP), with blanking during switching.
Each channel (4)
Bandwidth: (measured with of withou: 10004 B probe 3 dB down from 8 dis reference signal from a cerminated 50 ohm source. Lower limit is approx 1 Hz with probe when accoupled.) DC-coupled. ds to 50 MHz , ac-coupled, 10 Hz in 50 MHz .
Risetime: <7 ns. (Measured with or withous 10004B probe; 10% to 90% of 8 div input step from a terminated 50 ohm source.)

4 CHANNEL; HIGH GAIN $10 \mathrm{mV} /$ div to $50 \mathrm{MHz} ; 100 \mu \mathrm{~V} /$ div to 500 kHz Models 1804A, 1806A

OSCILLOSCOPES

Deflection factor

Ranges: from $0.02 \mathrm{~V} /$ div to $10 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in $1,2,5$ sequence. $\pm 3 \%$ attenuator accuracs'.
Vernier: provides continuous adjustmenr between all deflecrion factor ranges; extends maximum dehection factor to at least $25 \mathrm{~V} /$ div. Uncalibrated light indicates when vernier is not in CAL position.
Signal delay: input signals are delayed sufficiently to view leading edge of input pulse without adranced ext trigger.
Input RC: 1 megohm $\pm 2 \%$ shunted by approx 25 pF .
Maximum input: dc-coupled, $\pm 350 \mathrm{~V}$ (dc + peak ac) as 10 kHz or less; $\pm 150 \mathrm{~V}$ (de + peak ac) on $20 \mathrm{mV} / \mathrm{div}$ at 10 kHz or less; ac-coupled, $=400 \mathrm{~V} \mathrm{dc}$.
Trace identification: pushbutton concrol displaces respeceive irace approx 0.5 div.
Triggering
Source; selectable on signal from any channel in either chop or alternate mode, or successively from the displayed signal on each channel in alternate mode.
Frequency: dc to 50 MHz on signals causing 0.5 div or more verrical deffection in all display modes except chop; dc to 200 kHz in chop mode.

General

Accessory supplied: Model 10412A extender card for ring counter board.
Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$: shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Environment: same as Model 180C/D mainframes.
Price: Model 1804A Four Channel Vertical Amplifer, $\$ 1050$.
Options (order by option number)
090: four 10004B 10:1 Probes $\approx 31 / 2 \mathrm{fr}$ long, add $\$ 160$.
091: four 10006B 10:1 Probes $\approx 6 \mathrm{fr}$ Jong. add $\$ 160$.
092: four 10005B 10:1 Probes $\approx 10 \mathrm{ft}$ long, add $\$ 160$.

Description, 1806A

Model 1806A is a dual channel, differential input amplifier for low level measurements in 180 system mainframes. Operating characteristics are: de to 500 kHz bandwidth, $100 \mu \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div deflection factors, 100 dB CMRR from dc to 10 kHz with a $\pm 10 \mathrm{~V}$ common mode signal on the $100 \mu \mathrm{~V} / \mathrm{div}$ range, and less than $20 \mu \mathrm{~V}$ of noise, measured tangentially at fuil bandwidth.

Specifications, 1806A

Modes of operation: channel A alnne; channe! B alone; channels A and B displayed altemately on successive sweeps (ALT):
channels A and B displayed by switching between channels ax
approx 100 kHz rate (CHOP) with blanking during switching.
Each channel (2)
Bandwidth ($<3 \mathrm{~dB}$ down at 500 kHz): dc-coupled, de to 500 kHz , ac-coupled. approx 2 Hz to 500 kHz ; bandwidth limit switch, reduces upper bandwidth to approx 50 kHz .

Deflection factor

Ranges: from $100 \mu \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div (17 positions) in 1 , 2. 5 sequente. $\pm 3 \%$ attenuator accuracy.

Vernier: contincously rariable between ranges; extends maximum deflection factor to at leasc $50 \mathrm{~V} /$ div. Uncalibrated light indicates when vernier is not in CAL position.
Noise: $20 \mu \mathrm{~V}$, measured tangentially at full bandwidth.
Input: differential or single-ended on all ranges, selectable.

Common mode

Frequency: de to 10 kHz on all ranges.
Rejection ratio: $\geq 100 \mathrm{~dB}$ (100,000 to 1) with decoupled input on $100 \mu \mathrm{~V} /$ div range, decreasing 20 dB per decade of deflection factor to $\geq 40 \mathrm{~dB}$ on the 200 mV /div range; CMRR is $\geq 30 \mathrm{~dB}$ on the $500 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div ranges.
Maximum signal: $\pm 10 \mathrm{~V}$ (dc + peak ac) on $100 \mu \mathrm{~V} / \mathrm{div}$ to $200 \mathrm{mV} /$ div ranges: $=400 \mathrm{~V}$ (dc + peak ac) on all other ranges.
Input coupling: selecrabie $A C, D C$, or OFF for borh + and - inputs. Off position disconnests sigal input and grounds amplifer input for reference.
Inpat RC: 1 , megohm shunted by approx 45 pF .
Maximum input: $\pm 400 \mathrm{~V}$ (dc + peak ac)
Input isolation: $\geq 80 \mathrm{~dB}$ between channels at 500 kHz with shielded connectors.

Triggering

Source: on channel A signal for A, Chop, or Alrernate displays: on chanrel B signal for B , Chop, or Alternate: on composite A and B for alternate.
Frequency: do in $>500 \mathrm{kHz}$ on signals causing 0.5 div or mine vertical defiection in all display modes except Chop. DC to 100 kHz in Chop.

Genera!

Weight: net, $31 / 2 \mathrm{lbs}(1,6 \mathrm{~kg})$; shipping, $61 / 2 \mathrm{lbs}(3,0 \mathrm{~kg})$.
Environment: same 45 Model $180 \mathrm{C} / \mathrm{D}$ mainframe.
Price: Model 1806A Dual Differential Vertical Amplifier, $\$ 675$. Accessories furnished: two BNC to dual banana plug binding post adapters. HP Part No. 1250.1264.
Recommended probes (not supplied with Model 1806A) : Models $10001 \mathrm{~A} / \mathrm{B}, 10002 \mathrm{~A} / \mathrm{B}, 10003 \mathrm{~A}, 10007 \mathrm{~B}$; 10008 B , and 10012 B . Refer in oscilloscope accessories for more information.

100 MHz , DUAL CHANNEL
 $5 \mathrm{mV} /$ div, High Z or 50 ohm inputs
 Model 1805A

Model 1805 A, 100 MHz vertical amplifier provides accurate measurements for both digital and analog design and troubleshooting. A selectable high impedance with low input capacitance or so ohm inpui provides accurate pulse and CW measurements. Other features that provide accurate, convenient measurements are: flexible triggering, $5 \mathrm{mV} / \mathrm{div}$ to $\mathrm{s} \mathrm{V} / \mathrm{div}$ deflection factors from dc to 100 MHz on all ranges, selectable display polarity on each channel, and up to ± 200 divisions of offset.

A new planar attenuator of thick film design now makes it possible to have both a low capacitance, high impedance input for probing and a precision 50 ohm input for transmission line measurements. In the high Z position ($\mathrm{ac} / \mathrm{dc}$) a 1 megohm input with only 13 pF shunt capactance is established. This extremely low capacitance provides minimal loading in all probing applications, which can be reduced even further by using 10:1 divider probes. For precision 50 ohm measurements, a terminated 50 ohm input may be selected with a front panel switch. The internal termination is maintained at a high de. gree of quality by compensating for the normal scope input capacitance, which cannot be accomplished with an external termination. The internal termination also makes possible the high 10 volt maximum input capability.

Active probes are also available to reduce circuit loading while ettaining the precision 50 ohm input measurement capability. Probe capacitance with the 1120A and its divider tips is less than 1 pF and with the 10020A passive resistive divider is less than 0.7 pF .

The de offet capability of ± 200 div makes measurements easy with low level non-symetrical logic. This de offset allows de offset on logic pulses to be restored while maintaining the low frequency pulse characteristics necessary in most logic measurements.

Timing measurements are fast and easy with the selection of trigger source from channel A or B or composite of A and B. This allows you to trigger on either channel while viewing the time relationship with the other channel or by selecting composite triggering each channel is individually triggered.

Specifications, 1805A
Modes of operation: channel A; channel B; channels A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching berween channels at approx 600 kHz race (CHOP), with blanking during switching channel A plus channel B (algebraic addition).

Each channel (2)

Bandwidth: (3 dB down from 8 div reference signal from a terminated 50 ohm source).
DC-coupled: de to 100 M Hz
AC-coupled: approx 10 Hz to 100 MHz .
Rlse time: <3.5 ns (measured from 10% to 90% points of 6 div input step from a terminared 50 obm source).

Deflection factor

Ranges: 5 mV /div to $5 \mathrm{~V} / \mathrm{div}$ (10 calibrated positions) in 1, 2, 5 sequence.
Attenuator accuracy: $\pm 2 \%$.
Vernier: provides continuous adjustment between defleccion factor settings and extends maximum defection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$. Uncalibrated light indicaces when vemier is ner in CAL position.
Dynamic range: 6 div at 100 MHz increasing to 16 div as $\leq 15 \mathrm{MHz}$.
Positioning range: 16 dir.
OHfset: ± 200 div; maximum offser on 2 volt range and above is limited by 300 volt maximum input volage specification.
Polarity: + up or - up, selectable.
Signal delay: inpur signals are delayed sufficiendy 10 view leading edge of input pulse without adranced trigzer.
Input coupling: selectable, ac and de (high impedance), so ohms, or ground. Ground position disconnects input connector and grounds amplifier inpur.
Input (selectable)
1 megohm: 1 megohm $\pm 1 \%$ shunted by approx 13 pF .
50 ohm: so ohms $\pm 1 \%$. VSWR, 1.35 at 100 MHz on $5 \mathrm{mV} /$ div range and 1.1 at 100 MHz on all other ranges.
Maximum input
1 megohm: $\pm 300 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) at 1 kHz or less; $\pm 1 \mathrm{so}$ V (dc + peak ac) on $5 \mathrm{mV} /$ div range at 1 kHz or less.
50 ahm: 10 V rms (dc-coupled input).

A + B operation

Amplifier: bandwideh and deflection factors are unchanged; either channel may be inverred for $\pm A \pm B$ operation.
Difterential input (A-B) common mode: for frequencies from de to $1 \mathrm{MHz}, \mathrm{CMRR}$ is $>40 \mathrm{~dB}$ for common mode signals up to 16 div and 20 dB from 1 MHz to 100 MHz for common mode signals up to 6 dir.

Triggering

Source: selectable from channel A, channel B, or composite $(A-B)$ signal in any display mode.
Frequency: ds to 75 MHz on signals causing 0.5 div p-p increasing co 1 dit at 100 MHz or more vertical deflection in all display' modes except de to 100 kHz in chop mode.
Vertical signal output
Source: channel A, channel B, or channel's $A+B$ selected by Trigger Source.
Amplitude: approx $50 \mathrm{mV} / \mathrm{div}$ of display into 50 ohms for on screen signals not exceeding dynamic range specifications.
Bandwidth: ds to approx 80 MHz into 50 ohms.

General

Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$. Environment: same as Models 180C/D.
Accessories furnished: two $10: 1$ voltage divider probes.
Price: Model 1805A Dual Channel Vertical Amplifer $\$ 1400$

250 to 600 MHz VERTICALS $10 \mathrm{mV} / \mathrm{div}$ to 250 MHz , large signal to $>600 \mathrm{MHz}$ Models 1830A, 1831A, 1831 B

OSCILLOSCOPES

Specifications, 1830A

Modes of operation; channel A alone, channel B alone, channels
A and B displayed alternately on successive sweeps (ALT), channels A and B displayed by switching (time shared) between channels, chop frequency of approx 250 kHz , channel A plus channel B, and by inverting channel B, channel A minus channel B.
Each channel (2)
Bandwidth: dc to $250 \mathrm{MHz}, 3 \mathrm{~dB}$ dorn from 6 div reference signal at 10 MHz from a 50 ohm source.
Risetme: ≤ 1.5 ns. 10% to 90% with 6 div input step with a risetime of $\leq 200 \mathrm{ps}$ from a 50 ohm source.
Pulse response: overshoor, ringing, flatness (combined). $< \pm 3 \%$; preshoor, $<0.5 \%$.
Deflection factor
Ranges: from $0.01 \mathrm{~V} /$ div to $1 \mathrm{~V} / \mathrm{div}$ (7 positions) in $1,2,5$ sequence. $\pm 3 \%$ attenuator accuracy (front panel Cal adjust). Vernier: continuously variable between all ranges, extends maximum defection factor to approx $2.5 \mathrm{~V} / \mathrm{div}$. Vernier LiNCAL (uncalibrated) light indicates when vernier is not in the calibrated position.
Polarity: + up or - up selectable on channel B.
Slgnal delay: >55 ns, which allows riewing the leading edge of a pulse without external delay or advanced trigger.
Drift: short rerm drift/min. and long term drift $/ \mathrm{hr}, \leq 0.05$ div after $1 / 2 \mathrm{hr}$ from curnon and at constant ambient temperature. Inout R: 50 ohms.
Maximum Input: s V rms or ± 500 div peak, whichever is less.
VSWR: ≤ 1.30 on $10 \mathrm{mV} /$ div and ≤ 1.20 from $20 \mathrm{mV} / \mathrm{div}$ to $1.0 \mathrm{~V} / \mathrm{div}$ at 250 MHz .
Reflection coefficient: $\leq 10 \%$ on $10 \mathrm{mV} / \mathrm{div}$ and $\leq 5 \%$ from $20 \mathrm{mV} / \mathrm{div}$ to $1.0 \mathrm{~V} /$ div. Measured with I ns risetime TDR.
$A+$ 日 operation: amplifier meets independent channel specifica. tions for risectime and bandwidth. Channel B may be invereed for A minus B operation.
Triggering
Source: channel A or composite (on displayed signal) in all display modes.
Frequency: dc to $>250 \mathrm{MHz}$ on signals causing 1 div or more vertical deflection in all modes (with Model 1840A and 1841A Time Bases).

General

Probe power: provides power for operating two Hewlett-Packard probes.
Welght: net, 5 lbs ($2,3 \mathrm{~kg}$); shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$
Environment: same as 183 mainframe.
Price: Model 1830A, 250 MHz Vertical Amplifier
$\$ 900$

Specifications, 1831A and 1831B

Note

These plug-ins require Option 035 to the 183 mainframes and the 1840 A time base

Vertical
Bandwidth: $<20 \mathrm{kHz}$ to $>600 \mathrm{M}(\mathrm{Hz}$ (1831A), $>500 \mathrm{MHz}$ (1831B).
Rise time: $<600 \mathrm{ps}(1831 \mathrm{~A}),<700 \mathrm{ps}(1831 \mathrm{~B})$.
Pulse response: $<5 \%$ overshoor: $< \pm 5 \%$ perturbations with 350 ps rise time step input from a 30 ohm source; $<6 \%$ tilt for a 1μ s wide pulse at $25^{\circ} \mathrm{C}$ and $<10 \%$ till from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Deflection factor: $5.75 \mathrm{~V} / \mathrm{div}, \pm 10 \%$.
Ingut characteristics
input R: 50 ohms, single-ended or differential (1831A); singleended (1831B)
Maximum de input: $\pm 100 \mathrm{~V} \mathrm{dc}$.
Maximum ac input: 2.0 watts, 4 div p.p CW.
VSWR: <1.3:1 to 750 NHz .
Input reffections: $< \pm 10 \%$, measured with 150 ps TDR.
Signal delay (18318): approx 60 ns which allows viewing leading edge of a pulse without external delay.
internal triggering (1831B): stable to 500 MHz with signals producing $1 / 2$ div or more vertical deffection.

General

Weight: 1831 A net, $2 \mathrm{ibs}(0,91 \mathrm{~kg})$; shipping, $5 \mathrm{lbs}(2,27 \mathrm{~kg})$ 1831 B net, $4 \mathrm{lbs}(1,81 \mathrm{~kg})$; shipping. $7 \mathrm{Ibs}(3,18 \mathrm{~kg})$.
Environment: same as Model 183 mainframe.
Accessories furnished: one 50 ohm load, HP Part No. 0950.0090 (1831A only). Two mainframe termination resistors, HP Part No. 01831-61501.

Price

Model [831A Direct Access Plug.in $\$ 375$
Model 1831 B Direct Access Plug-in
Options
001: 100 ohm input for 1831A. Specifications for model 1831A Option 001 are the same as Model 1831A except as follows: Bandwidth: $<10 \mathrm{kHz}$ to $>600 \mathrm{MHz}$.
Deflection factor: $5 \mathrm{~V} / \mathrm{div}, \pm 10 \%$.
Input R: 100 ohms, single-ended or differential,
Tilt: $<3 \%$ for a 1μ s wide pulse at $25^{\circ} \mathrm{C}$; $\angle 3 \%$ from $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$.
Maximumac input: 2 wats, i.e. 8 div p-p CW.

2 CHANNEL/ 1 GHz SAMPLER
 Easy-to-use, internal triggering
 Model 1810A

Description, 1810A

Model 1810A is a 1 GHz , dual channel double size sampling plug.in for use in all 180 series oscilloscope mainframes. Easy-to-use controls, operate and look like real-time plug.ins which reduces familiarization time and possible measurement errors. You can make accurate measurements of repetitive signals from dc 10 greater than 1 GHz with deflection factors of $2 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} /$ div without the problems encountered with previous, specialized sampling controls.
A unique sampling circuit maintains a sampling efficiency at 100% for all input signal levels, which eliminates time consuming external adjustments and false triggering. Other internal circuit improvements reduce internal adjustments to a minimum, and they are non-interacting, for fast calibration. Internal delay lines allow triggering on the displayed waveform withouk requiring an exrernal pre-trigger. By adding 50 ohm impedance converter probes, 1120A, the 1810 A can be used for general purpose probing with minimum circuir loading with very low probe shunt capacitance. Power for two Hewlett-Packard active probes is provided through the front panel power jacks or an 1122A probe poner supply may be used for up to four probes.

Specifications, 1810A

Modes of operation: channel A : channel B_{i} channels A and B displayed on alternate samples (AZT) ; channel A plus channel B (algebraic addition): and channel A versus channel B.

Vertical channels
Bandwidth: de to 1 GHz .
Rise time: <350 ps.
Pulse resporse: < 3% (overshoot and perturbations).
Deflection factor
Ranges: $2 \mathrm{mV} / \mathrm{dir}$ to $200 \mathrm{mV} /$ div (9 calibrated pasitions) in 1, 2, 5 sequence.

Accuracy: $\pm 3 \%$.

Vernier: provides continuous adjustment between all deflection factor ranges; extends minimum deflection factor to $<1 \mathrm{mV}$ / diy.
Polarity: + UP or - UP.
Dynamic range: $>1.6 \mathrm{~V}$.
Positioning range: $> \pm 1 \mathrm{~V}$ on all deflection factors.
Jnput R: 50 ohms, $\pm 2 \%$.
Maximum inpet: $\pm 5 \mathrm{~V}$ (dc + peak ac).
VSWR: $<1.1: 1$ to 300 MHz , increasing to $<1.5: 1$ at 1 GHz .
Reflection coefficient: $<6 \%$, measured rwith HP Model 1415A TDR.
Noise
Normal: $<2 \mathrm{mV}$, observed from center 80% of dots.
Filtered: $<1 \mathrm{mV}$.
Isolation between channels: $\geq 40 \mathrm{~dB}$ with 350 ps rise cime input. Time difference between channels: <100 ps.
$A+B$ operation: bandrwidth and defection factors are unchanged; either channei may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Vertical outputs: an uncalibrated, 1 V vertical output signal from each channel is provided at the rear panel of 180 system mainframes.

Time base

Ranges

Normal: i0 ns/div to $50 \mu \mathrm{~s} / \mathrm{div}$ (12 calibraced positions) in a $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Expanded: direct reading expansion up to X 100 in seven calibrated steps on all normal time scales, extends the range to $100 \mathrm{ps} /$ div. Accuracy is $\pm 4 \%$ ($10 \mathrm{ps} / \mathrm{div}$, $\pm 10 \%$ using the mainframe magnifer).
Vernier: continuously rariable berween ranges; increases fastest sweep to $<40 \mathrm{ps} / \mathrm{div}$.

Triggering
Made
Normal: trigger level control can be adjusted to trigger on a wide variety of signals.
Automatlc: triggers automatically on most signals with a minimum of adjustment of the level control. A baseline is displayed in the absence of an input signal.
Source: selectable; channel A triggers channel A or alternate; channel B triggers channel B , alternate, $\mathrm{A}+\mathrm{B}$, or A is B .
Sine wave: 30 mV p.p for signals from 1 kHz to 200 MHz . 100 mV p-p for signals from 200 MHz to 1 GHz for jitter of <30 ps plus 1% of 1 period. Useful uriggering can be obtained with 5 mV signals.
Pulse: 30 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Useful riggering can be obtained with 5 mV signals.
External
Sine wave: 30 mV p-p for signals from 1 kHz to 1 GHz for jitter of $<30 \mathrm{ps}$ plus 1% of 1 period. Useful triggering can be obtained with 5 mV signals.
Pulse: 30 mV peak, 3 ns wide pulses for < 30 ps jitter. Useful triggering can be obtained with 5 mV signals.
Either inkernal or external
Auto: $50 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ for CW signals from 20 kHz to 200 MHz for $<30 \mathrm{ps}$ jitter plus 2% of 1 period (may be used to 1 GHz with increased jitter). Pulse trigsering requires 50 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter.
Level and slope: continuously variable from +800 mV to -800 mV on either slope of sync signal.
Coupling: ac coupling attenuates signals below approx 1 kHz .
Variable holdoff: variable over ar least a 3:1 range in all sweep modes.
Marker position: intensified market seggent indicates point about which the sweep is to be expanded (automatically dimened with increasing persistence in 181A and 181AR mainframes).
Scan
Internal: dot density, continuously rariable from <100 to >1000 dots full screen or from approx 500 to >2000 dots in filtered mode.
Manual: scan is positioned manually by front panel control.
Horizontal output: an uncalibrated approx 0.75 V amplitude signal
is prorided at the rear panel of a 180 or 181 mainframe.

General

Probe power: supplies power to operate two Hewlett-Packard active probes.
Weight: net, 7 lbs ($3,2 \mathrm{~kg}$); shipping, $12 \mathrm{lbs}(5,4 \mathrm{~kg}$).
Environment: same as Model $181 \mathrm{~A} / \mathrm{AR}$ mainframes.
Price: Nodel 1810A 1 GHz Sampling, $\$ 1650$.

2 CHANNEL/18 GHz SAMPLER Easy-to-use, 10 ps time scale Model 1811A

 OSC/LLOSCOPES

1811 A

Description, 1811A

The Model 1811A sampling plug-in provides 18 GHz , dualchannel, feedthru sampling in the versatile 180 oscilloscope system. The logical acrangement of front panel controls reduces familiarization time and measurement errors and the feedthru remote sampling heads allow measurements of operating systems. Flexibility and economy is assured with this double-size plug-in since it will operate in all 180 series mainframes with a selection of standard CRTs (5 inch), large sereen, variable persistence and storage, and the wideband 183 mainframes. A selection of remote sampling heads allows you to match a sampling system to a measurement problem at minimum cost.
The bridged method of extracting a signal used in this sampling system provides the optimum method of measure. ment since it extracts only a small amount of the waveform rather than terminating the signal in the measuring system. By using remote sampling heads connected in series with the system under test, the signal displayed is the signal chat is passed through the sampler to the next stage of a system. Any problems are then displayed as they exist in the system.
The two sampling heads available are: $1430 \mathrm{C}, 1432 \mathrm{~A}$. Model 1432A provides 90 ps risetime capability while 18 GHz mea. surements are supplied by the 1430 C which has a 20 ps risetime. Specifications for these sampling heads are on the follow. ing page.

18 GHz triggering with a displayed jitter of 10 ps or less is provided by a 1104 A trigger countdown, 1106 B tunnel diode. and 1109 B high pass filer. To allow viewing a signal without using a delay line, a rrigger ourput is available as a signal source trigger which starts the sweep prior to display of the vertical signal.

Specifications, 1811 A

Modes of operation: channel A; channel B, channels A and B displayed on alternate samples (ALT) ; channel A plus channel B (algebraic addition): and channel A versus channel B.

Vertical channels

Deflection factor
Ranges: $2 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} / \mathrm{div}$ (6 calibraied positions) in 1, 2, 5 sequence.
Accuracy: $\pm 3 \%$.
Vernier: provides continuous adjustment between all deflection factor ranges; extends min defection factor to $<1 \mathrm{mV} /$ div,
Polarity: + UP or - Up.
Positioning range: $> \pm 1 \mathrm{~V}$ on all deflection factors.
Isolation between channels: $\geq 40 \mathrm{~dB}$ over bandwidth of the sampler.
Time difference between channels: <100 ps.
$A+B$ operation: bandwidth and deflection factors are unchanged; either channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Vertical outputs: an uncalibrated, 1 V vertical outpur signal from each channel is provided at the rear panel of 180 system main. frames.

Time base

Ranges

Normal: 1 ns/div to $5 \mu \mathrm{~s} / \mathrm{div}$ (12 calibraced pasitions) in a 1,2 , s sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Expanded; direct reading expansion up to X 100 in seven calibrated steps on all normal time scales, extends the range to $10 \mathrm{ps} / \mathrm{div}$. Accuracy is $\pm 4 \%$ ($1 \mathrm{ps} / \mathrm{div}, \pm 10 \%$ using the mainframe magnifer).
Vernier: continuously variable between ranges; increases fastest sweep to <ips/div.

Triggering

Mode
Normal: trigger level control can be adjusted to trigger on a wide variery of signals.
Automatic: triggers automatically on most signals with a minimum of adjustment of the level control. A baseline is displayed in the absence of an input signal.
Sine wave: 80 mV p-p for signals from 1 kHz to 1 GHz for jitter of < 10 ps plus 1% of 1 period. Useful triggering can be obtained with S mV signals. Triggering may be extended to 18 GHz with HP Models 1104A/1106B trigger countdorw.
Puise: 30 mV peak, 3 ns wide pulses for <30 ps jitter. Useful triggering can be obtained with 5 mV signals.
Auto: 50 mV p-p for CW signals from 10 kHz to 200 MHz for <30 ps jitter plus 2% of 1 period (may be used 101 GHz with increased jitter). Pulse triggering requires 50 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter.
Level and slope: continuously variable from +800 mV to -800 mV on either slope of sync signal.
Coupling: ac coupling attenuates signais below approx 1 kHz
Variable holdoff: variable over at least a $3: 1$ range in all sweep modes.
Marker position: intensified marker segment indicaces point about which the sweep is to be expanded (automatically dimmed with increasing persistence in 181A and 181AR mainframes).
Scan
Internal: dot density, continuously variable from < 100 to >1000 dots full screen or from approx 500 to >2000 dors in filtered mode.
Manual: scan is positioned manually by front panel control.
Horizontal output: an uncalibrated approx 0.75 V amplitude signal is provided at the rear panel of a 180 or 181 mainframe.
Trigger output: $1 \mathrm{~ns}, 1.5 \mathrm{~V}$ into 50 ohms.

General

Probe power: supplies power to operate one Hewlett-Packard active probe.
Environment: same as Models 180C/D mainframes.
Weight: net, $5 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Price: Model 1811A Sampler, $\$ 1700$.

FEED THRU SAMPLING HEADS

4 or 18 GHz , Low reflection coefficients
Models 1430C, 1432A

Description, sampling heads

Models 1430C and 1432A provide accurate measurements of CW and fast rise pulses. The sampler is of eeedthru design allowing measurements to be made using the system as a load rather than using an artificial internal termination. These remote samplers are connected to the scope by a five-foot cable which allows the head to be placed at the signal source to eliminate high freguency lossy lines.

Model 1430 C provides 20 ps rise time with low overshoot for accurate measurements of fast rise pulses and CW signals to 18 GHz . While the feedthru measurement technique allow's measurements of an operating system, terminated measurements can also be made with the 50 ohm loads (Model 909A Option 012) that are supplied.

The 1432A provides 90 ps ristime (4 GHz) measurements for lower frequency measurements than the 1430C. Feedthru or terminared measurement may also be obtained with this sampler and the two 50 ohm loads that are supplied.

Specifications, 1430C

Rise time: approx 20 ps (<28 ps obsereed with $1105 \mathrm{~A} / 11068$ pulse generator and 909A Option 01250 ohm Ioad).
Bandwidth: de to 18 GHz .
Overshoot: < 7.5%.
Noise: 10 mV unsmoothed; 2.5 mV smoothed. Both measured tangencially.
Dynamic range: ± 1 volt.
Low frequency distortion: $< \pm 5 \%$.
Maximum sale input: ± 3 volis.
Input characteristics
Mechanical: type N connectors on input and output ports.
Electrical: 50 ohm feedthrough, de-coupled. Refiection from sampler is approx 10%, measured with a 40 ps TDR system. Pulses emited from sampler input are approx 10 mV amplitude and 5 as duration.
Time difference between channels: <s ps.
Connecting cable lengths: ff .

General

Weight: net, 4 lbs ($1,8 \mathrm{~kg}$); shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accossories proulded: two 50 ohm loads (HP Model 909A Op tion H12).
Price: Model 1430 C Sampling Head, $\$ 2800$.

Specifications, 1432A
Rise time: <90 ps.
Bandwidth: de to 4 GHz .
Overshoot: $< \pm 5 \%$.
Noise: approx 8 mV observed noise on CRT excluding 10% of random dots. Noise decreases on automatically filtered sanges of 5 and $2 \mathrm{mV} / \mathrm{div}$. Smoothed position of smoothing switch reduces noise and jitter approx 4:1. Response provides conifinuous adjustment between normal and filtered modes.
Dynamic range: 1 V p-p.
Low frequency distortion: $<3 \%$.
Maximum safe input: $\pm 5 \mathrm{~V}$.
Input characteristics
Mechanical: GR type 874 connectors on inpur and output ports.
Electrical: 50 ohm feedthrough, dc-coupled. Refiection from sampler is approx 15% measured with a 90 ps TDR system. Pulse emitted from sampler inpur are approx 50 mV in ampli. cude and 10 ns wide.
Time difference between channels: <25 ps.
General
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessories provided: two 30 ohm loads with GR rype 874 connectors.
Price: Model 1432A Sampling Head, $\$ 1100$.

Specifications, 1104A/1106B/1108A 1104A/1106B/18 GHz Trigger Countdown 1104A/1108A/10 GHz Trigger Countdown Input
Frequency range: (1106B) 1 GHz to 18 GHz . (1108A) 1 GHz to 10 GHz .
Sensitivity: (1106 B) signals 100 mV or larger and up to 12.4 GHz , produce $<20 \mathrm{ps}$ of jitter (200 mV required to 18 GHz). (1108A) signals up to 50 mV or larger and up 1010 GHz , produce <20 ps of inter.
Maximum safe ingut: $\pm 1 \mathrm{~V}$.
Input impedance: (1106 B) 50.0 hm Type N input connector. (1108A) 50 -ohm GR-874 input connector. Reflection from input connector is $<10 \%$ using a 40 ps TDR system.
Slgnal appearing at input connector; approximately 250 mV .

Output

Center frequency: approximately 100 MHz .
Amplitude: typically 150 mV .

General

Weight
1104A: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg}$) : shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
1106 B or 1108 A : net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Price: HP Model 1104A, $\$ 200$. HP Model 1106B, $\$ \$ 50$. HP Model 1108A, \$200.
Recommended accessory: HP Model 1109B/I129A High Pass Filter.

LOW COST TIME BASES Single \& delayed; 150 \& 50 MHz triggering Models 1820C, 1821A

 OSCILLOSCOPES

Specifications, 1820C
 Tlme base

Sweep

Ranges: $50 \mathrm{~ns} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$ (23 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between ranges, extends slowest sweep to at least 2.5 s/div. Uncalibrated light indicates when vernier is not in CAl position.
Magnifier: (on mainfracne) expands fastest sweep to $5 \mathrm{~ms} / \mathrm{div}$. Sweep mode

Normal: triggered by an int, ext or power line signal.
Automatic: bright baseline displayed in absence of trigger signal. Triggering is same as Normal except low frequency limit is 40 Hz .
Single: in Normal, sweep occurs once with same triggering as Normal; reset pushbutton arms sweep and lights indicator; in
Auto, sweep occurs once ench time reset pushbution is pressed.

Triggering

Internal: refer to vertical amplifier plug-in specifications.
External: de to 50 MHz on signals 50 mV p.p or more increasing in 150 mV ac 150 MHz .
Line: power line frequency sigoal.
Level
Internal: at any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of trigger signal, from +20 V io $-20 \mathrm{~V} \div 10$ setting.
Slope: pushbutton selects + or - slope of urigger signal.
Coupling: front panel selection of AC, DC, HF Reject, or IF Reject. AC arrenuates signals below approx 20 Hz , LF Reject attenuates signals below approx $15 \mathrm{kHz}, \mathrm{HF}$ Reject attenuates signals above approx 15 kHz .
Trigger holdoff; time between sweeps concinuously variable, ex. ceeding on full sweep on all ranges.

General

Environment: same as Models 180C/D mainframes.
Welght: net, 3 lbs ($1,4 \mathrm{~kg}$); shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$).
Price: Model 1820C Time Base, $\$ 400$.

Specifications, 1821A Delayed Time Base Main tlme base

Sweap

Ranges: $0.1 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div (22 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in CAL position.
Vernier: continuously variable beeween all ranges; extends slowest sweep to at least $2.5 \mathrm{~s} / \mathrm{div}$.
Magnifler: (on mainframe) expands fastest sweep to $10 \mathrm{~ns} /$ div.

Sweep mode

Normal: triggered by an int, ext, or power line signal.

Automatic: bright baseline displayed in absence of input signal. Triggering same as normal excepr low frequency limit is 40 Hz for internal or external modes.
Single: sreep occurs once with same rriggering as normal; reser pushbutton with armed indicator light.

Triggering

Internal: refer to venical amplifier plug-in specifications.
External: from de to 50 MHz on signals 0.5 V p.p or more, in. creasing to 1 V p-p at 100 MHz .
Line: power line frequency signal.
Level and slope: internal, at any point on the vertical waveform displayed; external, variable from +3 V to -3 V on either slope of the sync signal: from +30 V to -30 V in $\div 10$ seraing.
Coupiling: ($A C, D C, A C F$, or $A C S$). AC attenuates signals below $\approx 20 \mathrm{kHz}, A C F(a c$ fast) attenuares signals below $\approx 15 \mathrm{kHz}$. ACS (ac-slow) attenuates signals abore $\approx 30 \mathrm{kHz}$.
Trace intersification: intensifies that part of Main time base to be expanded to full' screen on Delayed time base. Rotating Delayed time base sweep switch from Off position activates intensifed mode. Front panel screwdriver adjust sets relative intensity of brightened segment.

Delayed time base

Sweep
Ranges: $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div (18 positions) in 1,2 , s sequence. $\pm 3 \%$ accuracy with vernier in CAL position.
Vernier: continuously variable between all ranges; extends slowest sweep 10 at least $123 \mathrm{~ms} /$ din.
Triggering: applies to intensfifed Main, Delayed, and Mixed time base triggering.
Internal: refer to vertical amplifier plug-in specifications.
Automatic: riggers at end of set time delay.
External: same as main time base.
Level and slope: same as main time base.
Coupling: same as main time base.
Delay (before start of Delayed sweep)
Time: continuously variable from $0 . i \mu \mathrm{~s}$ to 10 s .
Accuracy: $\pm 1 \%$ Linearity. $\ddagger 0.2 \%$. Time jitter, $<0.005 \%$ (1 part in 20,000) of maximum delay of each step.
Trigger output: (at end of Delay time) approx 1.5 V with < 50 ns risetime from 1000 ohm source resistance.
Mixed time base: dual time base in which Main time base drives first portion of sweep and delayed time base completes sweep at up to 2000 times faster. Also operates in single sweep mode.

General

Welght: net, \& lbs ($1,8 \mathrm{~kg}$); shipping, $7 \mathrm{lbs}(3,1 \mathrm{~kg})$.
Environment: same as Model $180 \mathrm{C} / \mathrm{D}$ mainframes.
Price: Model is21A Time Base and Delay Generator, $\$ 700$.

TIME BASE \& X100 EXPANDER
$5 \mathrm{~ns} /$ div sweep, 150 MHz triggering Model 1824A

Description, 1824A

Model 182-iA time base and sweep expander plug-in is designed for use in all 180 series mainframes including the 183 wide band mainframes. This plug-in allows sweep expansions up to 100 limes with 3% accuracy, 5 ns sweep speeds, and triggering to 150 MHz .

The expanded sweep feature allows detailed examination of selected porrions of a display where time delay measurements are not of importance. This provides sweep expansion measurement capability without the expensive delay generator features for your applications. Expansions of 100 times are available and the time/div dial gives a direct readout of the expanded time/div, preventing many measurement errors. Convenient serup is provided by a rrace intensification fearure that selects the starting point of the portion of a sweep that will be expanded to full screen. Expanded sweep position is continuously variable over the center 9 divisions of the main sweep.

Pushbutton controls make operation easy with a minimum chance for error and an automatic trigger mode displays a baseline in absence of a trigger signal. A trigger hold off control provides for stable triggering on complex vaveforms or a particular pulse in a digiral word may be selected to trigger a display. Additional trigger Aexibility is provided by complete selection of the teigger pasameters which includes: ac or de coupling, low or high frequency rejection, positive or negative slope, and a $\div 10$ mode that provides wider dynamic range of input signals. A trigger level control allows selection of the trigger signal at any point on the displayed signal or $a \pm 2$ volt external signal.

An external trigger inpur sensitivity of 50 mV adds to the versatility of this plug-in by allowing 10:1 divider probe to be used with 0.5 V logic circuirs. This allows standard probes to be used to reduce circuit loading at trigger pick-off points and reduces the possibility of circuit malfunction caused by the measuring instrument.

Specifications, 1824A

Time base

Sweep
Ranges: $50 \mathrm{~ns} / \mathrm{dir}$ to $\mathrm{s} /$ dir (23 calibrated positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.

Vernier: concinuously variable between ranges, extends slowest sweep to at least $2.5 \mathrm{~s} / \mathrm{div}$. Unealibrated light indicates when vernier is not in calibraced position.
Magnifier: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$.

Expanded sweep

Expander: direcr reading expander control provides up to 100 times sweep expansion, accuracy $\pm 3 \%$. Expand position control selects part of basic time seale to be expanded, continuously rariable from 0.5 div of sweep start to 9.5 div of basic time scale.
Trace intenslfication: front panel switch selects intensified mode for use in establishing start of expanded display. A front panel adjustment sers relative intensity of brightened segment.

Sweep made

Normal: sweep is triggered by an internal, external, or power line signal.
Automatic: bright baseline displayed in absence of inpur signal. Triggering same as Normal excepi low frequency limit is 40 Hz .
Single: in normal, sweep occurs once with same triggering as Normal; resec pushbutton arms sweep and lights indicator; in Auto, sweep occurs once each time reset pushbution is pressed.

Triggering

internal: refer to vertical amplifier plug.in specifications.
External: dc io 50 MHz on signals of 50 mV P-p or more, increasing to 100 mV p.p at 100 MHz and $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$ ac 150 MHz .
Line: power line frequency signal.
Level
Internal: at any point on the vertical waveform displayed.
External: concinuously tariable from +2 V to -2 V on either slope of trigger signal; from +20 V to -20 V in $\div 10$ setting.
Siope: pushbutron selects either positive or negative slope of trigger signal.
Coupling: fronc panel selection of AC, DC HF Reject of LF Reject. $\dot{A C}$: attenuates signals below approx 20 Hz .
LF Reject: attenuates signals below approx 15 kHz .
HF Reject: attenuates signals above approx 15 kHz .
Trigger holdotf: cime between sweeps continuously variable. Exceeds one full streep on all ranges.

General

Environment: same as Models $180 \mathrm{C} / \mathrm{D}$ mainframes.
Price: Model 1824 A Time Base and Sweep Expander, sss0.

Description, 1825A

Model 1825A time base and delay generator provides sweep speeds ranging from $0.05 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} / \mathrm{div}$ in 23 positions. Delay times are continuously variable from 50 ns to 10 s and are accurate to $=1 \%$ also a calibrated mixed sweep mode is provided. A mainframe X 10 magnifier provides sweep-speeds to $5 \mathrm{~ns} /$ div with 5% accuracy.

One knob control makes stable triggering on signals easy in main, delayed, and mixed modes. Stable, accurate time displays are provided in main, delayed, and mixed modes with the highly sensitive 50 mV trigger capability at 50 MHz which increases to only 150 mV at 150 MHz . Trigger synchronization is maintained when switching between main, delayed, and mixed modes further simplifying use.
Front panel controls are logically arranged for quick fa. miliarization and easy use. Pushbuttons eliminare front panel cluter and reduce the possibility of errors. Sweep mode pushbuttons make it easy to establish main, delayed, and mixed modes.
Trigger level controls on main and delayed sweeps allow selection on the desired portion of the signal for almost every measurement application. Also, the $\div 10$ function provides a wide dynamic range of triggering in borh external and internal modes of operation.
External trigger sensitivity of 50 mV on both main and delayed sweeps allows a $10: 1$ divider probe to be used with 0.5 volt logic circuits. This allows probes to be used to reduce circuit loading at trigger pickoff points and reduces the possibility of circuit malfunction caused by the measuring instruments.

Specifications, 1825A
 Main time base

Sweep

Ranges: $0.05 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div (23 positions) in $1,2,5 \mathrm{se}$. quence. $\pm 3 \%$ accuracy with remier in calibrared position.
Vernier: continuously variable beween ranges, extends slowest sweep to at least 2.5 s /div. Uncalibrated light indicates when vernier is not in CAL position.
Magnifier: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$. Sweep mode

Normal: sweep is triggered by an internal, external, or power line signal.
Automatic: bright baseline displayed in absence of trigger signa!. Triggering is same as Normal except low frequency limit is 40 Hz .

Single: in Normal, sweep occuts once with same triggering as Normal; reset pushbuton arms sweep and lights indicaror: in Auto, sweep occurs once each time reset pushbutton is pressed.
Delayed time base: delayed time base sweeps after a time dela; set by Main time base and Delay controls, Delayed time base is triggered on first triggering pulse after set delay or automatically' uiggers after set delay when delaped lexel control is in detem position.
Sweep
Ranges: $0.05 \mu 5 / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}$ (18 positions) in $1,2,9$ sequence. $\pm 3 \%$ accuract.
Magnifier: (an mainframe) expands fastest sweep to $5 \mathrm{~ns} /$ div Triggerlng: Main or Delayed cime base.
Internal: refer to vertical amplifier plug-in speciEcations.
External: de to 50 MHz on signals 30 mV p-p or mere increasing to 100 mV P•P at 100 MHz and 150 mV P.P at 150 MHz .
Line: power line frequency signal. (Main only.)
Level
Internal: at any point on the vertical waveform displajed.
External: continuousiy variable from +2 V to -2 V on either slope of trigger signal, from -20 V ro -20 V in $\div 10$ setting.
Slope: pushburton selects either positive or negative slope of trigger signal.
Coupling: front panel selection of $A C, D C$, HF Reject, or $L F$ Reject.
AC : atcenuates signals below approx 20 Hz .
LF Reject: attenuates signals below approx is kHz .
HF Reject: actenuates signals above approx 15 kHz .
Trigger holdoff: time berween sweeps concinuously variable, exceeding one fall sweep on all ranges. (Main only.)
Delay (before start of delayed sweep)
Time: continuously variable from 90 ns 1010 s .
Accuracy: $=1 \%$. Linearity: $\pm 0.2 \%$.
Time jitter: 0.002% (1 part in 50,000) of maximum dela on each range.
Trace intensification: in Main sweep mode, intensifies thas part of main time base to be expanded to full screen in delayed time base mode. In Mixed mode, intensifies that part of Main time base to be completed by Delayed time base. Rotating time base switch from OFF position accivates intensified mode.
Calibrated mixed swe日p: combines Main and Delayed sweeps inn one display. Sweep is stareed by the Main time base and is com. pleted by the faster Delayed time base. Delayed swreep start is aligned with start of intensified marker.

General
Weight: ner, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,1 \mathrm{~kg})$.
Environment; same as Models 180C/D mainframes.
Price: Model 1825A Time Base and Delay Generator, $\$ 800$.

OSCILLOSCOPES

- 1 knob triggering to 500 MHz
- 50 mV trigger sensitivity
- $1 \mathrm{~ns} /$ div sweep speeds
- Simplified front panel controls

Description, 1840A

The 1840A Time Basc provides stable one knob internal triggering from an 1830A to 250 MHz or from an 1831 B to 500 MHz . External triggering to 250 MHz is provided with 20 mV input and increases to 500 MHz with 50 mV input signals. Trigget functions are controlled with convenient pusthbuttons which simplify panel layout and operation. A variable hold off control achieves a stable display of pulse groups by allowing triggering on a particular pulse in a group.
Sweep times are selectable from $10 \mathrm{~ns} /$ div to $0.1 \mathrm{sec} /$ div and with the mainframe X 10 magnifier a sweep speed of 1 ns/div is available. The single sweep mode of operation in
the 1840 A is fully compatible with the 183 pulsed flood gun mode of operation winich incresses photographic writing speed. Fast single-shot events can be photographed and the film "post fogged" by synchronizing food gun operation with the single sweep, which allows the camera shutter to be left opon for the event.

Option 001 for the 1840 A is available for applications involving high amplitude external trigger signals. This option provides selectable trigger levels of ± 5 volts or ± 25 volts and will withstand peak input pulses of 100 volts with $10 \mu \mathrm{~s}$ duration.

Specifications, 1840A

Time base

Sweep

Ranges: from $10 \mathrm{~ms} /$ duv $100.1 \mathrm{~s} /$ div in $1,2.5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Verniar: continuously variable between all ranges, extends slowest sweep to acteast $0.25 \mathrm{~s} / \mathrm{dic}$.
Magnifier (on mainframe): extends fastest sweep to $1 \mathrm{~ns} / \mathrm{div}$ with $\pm 5 \%$ accuracy.

Sweep mode

Normal: swecp is trizgered by an interna!, external. or power line signal.
Automatic: brigh: baseline displayed in absence of crigger signal.
Single: sweep occurs once nith Normal trigger conditions. Sweep may be ieser with front panel pushbutton or electrically with rear panel input signal. Front panel light indicales when sweep is reset.

Triggering

Internal: refer to veruical amplifier plug-in specifications.
External: dc* to $>250 \mathrm{M} \mathbf{K z z}$ with signals of 20 mV p-p or more increasing to 50 mV , at 500 MHz . Input $\mathrm{R}, 50$ ohms. $\div 10$ rigger attenuator allows wider dynamic range of Ext trigger input.

* (Automatic triggering is same as normai except low frequency limit is SHz for internal and external eriggering.)
Line: power line frequency trigger signal.
Level and slope
Internal: at any point on the displayed vertical waveform.
External: continuously variable from -100 mV to $\pm 100 \mathrm{mV}$ in $\div 1$ and $+1.0 \mathrm{~V} 10-1.0 \mathrm{~V}$ in $\div 10$. Input R , 50 ohms nominal.

Coupling: front panel selection of ac or dc. AC attenuates signals below approx 5 kHz .
Sweep hold off: time berween sweeps continuously variable exceeding one full sweep on all ranges.

General

Probe power: provides power for operating one Hewlett-Packard active probe.
Weight: ner. 3 lbs ($1,4 \mathrm{~kg}$) ; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg}$).
Environment: same as Model 183 mainframe.
Price: Alodel 1840A Time Base, $\$ 650$.
Options (order by option number)
001: contains attenuation and limiting circuits in the external rigger input which allows wider dynamic range of EXT trigger inpur levels. Specifications for the Model 1840A. Option 001 are the same as Model 1540A except as follow's:
External trigger Input
$\div 1$ mode: 1 V p.p to 250 MHz , trigger level adjustable over ± 5 rolt range.
$\div 5$ mode: s $\mathrm{V} \mathrm{p}-\mathrm{p}$ to 250 MHz , trigger level adjustable over ± 25 volt range.
Maximum input: 100 V peak with $10 \mu \mathrm{~s}$ duration. Maximum continuous input, 5 V ms.
Price: Model 1840A Option 001, Time Base, add $\$ 50$.
035: eliminates sweep irregularities caused by high amplitude signals necessary for the 1831 A and 1831 B direct access plugins. This option is required for operation with 1831A or 18318 plugins and also requres a 183 mainframe with Option 035. No additional charge.

- 1 knob triggering to 500 MH 2
- $1 \mathrm{~ns} /$ div main and delayed sweeps
- Simplified front panel controls
- Indicator lights for sweep modes

Description, 1841A

Mode 1841A Time Base and Delay Generator provides 21 sweep times ranging from $10 \mathrm{~ns} /$ div $100.1 \mathrm{~s} /$ div. Delay times are selected by a calibrated 10 -turn control across the time range set by the sweep time switch. A mainframe $\times 10$ magnifier provides $1 \mathrm{~ns} /$ div sweep times for both main and delayed sweeps to match the CRT writing speed.

One knob control makes triggering on rif carriers and sig. nals even higher than the VHF range very easy. Both main and delayed sweep circuits trigger directly on 50 mV signals to 500 MHz without countdown procedures. Trigger synchroni-
zation is also maintained when switching from main to delayed or delayed to main sweeps.

Front panel controls are logically arranged for quick familiarizacion and easy use. Pushbutcon controls for trigger functions eliminate front-panel clutter and reduce the chance for error. Sweep time controls are arranged to make it easy to read main and delayed sweep times at a glance and color coding on main and delayed controls clearly differentiate one sweep from the other. Also, front panel lighrs indicate the main or delayed mode of operation.

Specifications, 1841A

Sweep

Ranges: frona $10 \mathrm{~ns} /$ div $100.1 \mathrm{~s} / \mathrm{div}$ (22 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between all ranges, extends slowest sweep to ar least $0.25 \mathrm{~s} / \mathrm{div}$.
Magnifler (on maintrame): extends fastest sweep to $1 \mathrm{~ns} / \mathrm{div}$, $\pm 5 \%$.

Sweep mode

Normal: sweep is triggered by an internal, external, or power-line signal.
Automatic: bright baseline displayed in absence of a trigger signal.
Single: sweep occurs once with same triggering as nommal; reset pushbutton with armed indicator light. Rear panel inpur (on mainframe) provides remote arming capability.

Triggering

Internal: refer to vertical amplifier plug.in specifications.
External: dc^{*} to $>250 \mathrm{MHz}$ with signals of $20 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ or more. increasing to 500 MHz with signals of 50 mV p.p or more. Input R , 50 ohms. Input in $\div 10$, from $\div 1 \mathrm{~V}$ to -1 V . * (Triggering in AUTO is same as normal except low frequency limit is 5 Hz .)
Lina: power line frequency trigger signal.
Level and slope
Internal: at any point on the displayed verticel waveform.
External: concinuously variable from -100 mV to +100 mV in $\div 1$ and 1.0 V to -1.0 V in $\div 10$. Inpul R , 50 ohms nominal.

Trace intensification: used to set up delayed time base. Intensifies that part of main time base to be expanded to full screen on delayed time base. Moving delayed sureep switch from off position activates intensifed mode. Front panel adjustment sets relative intensity of brightened segment.
Delayed time base: delayed dime base sweeps after the time delay ser by main time base and delay contcols.

Sweap

Ranges: $10 \mathrm{~ns} / \mathrm{div}$ to $1 \mathrm{~ms} /$ div in $1,2,5$ sequence (16 positions). $\pm 3 \%$ accuracy.
Triggaring
Internal: refer to vertical amplifier plug-in specifications.
Automatic: delayed sweep is automaticaliy eriggered at end of set delay time.
External; dc to $>250 \mathrm{MHz}$ with signals of 20 mV p-p or more. increasing to 500 MHz on signals of 50 mV p -p or more. Input R, 50 ohms.
Coupling: front panel selection of ac or dc. AC attenuates signals below approx 5 kHz .
Delay (before start of delayed sweep)
Time: continuously variable from 50 as to 1 s .
Accuracy: $\pm 1 \%$ on 50 ms to $0.1 \mu \mathrm{~s}$, main sweep linearity $\pm 2 \%$, time jitrer is 0.005% (1 part in 20,000) of maximum delay of each step.

General

Probe power: supplies power to operate one Hewlett.Packard active probe.
Weight: net, $3.6 \mathrm{lbs}(1,6 \mathrm{~kg}$); shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$).
Environment: same as Model 183 mainframe.
Price: Mode! 1841A Time Base/Delay Generator, \$1150.

Description, 1818A

The 1818A TDR plug-in provides low cost, 150 ps TDR in the 180 oscilloscope system for the investigation of transmission systems, terminations, and components. The easy-to-use front panel controls provide quick, accurate displays with direct distance calibration of up to 500 feet and dielectric materials from $\varepsilon=1.0$ (air) to $\varepsilon=4.0$. This double-size plug.in pro. vides a lightweight, wideband TDR system for checkout of shipboard, airborne, and remote communications equipment.

Using a "closed-loop radar" approach for investigation of a transmission system's fidelity, this system directly displays the location and magnitude of discontinuities in an analog or digital communication system. Information is lost when a sig. nal encounters a discontinuity that causes energy to be reflected to the source. These ceflections not only cause loss of amplitude in the received information but the re-reflection from discontinuities also appear as noise that is in the same format as the original signal which, if carried to extremes, could completely garble the information. This demonstrates the need for rest equipment that can locate and display individual discontiuities in distance (time) and amplitude (Rho) for fast system setup of repair. While there are many instruments that can detect the presence of discontinuities, only TDR can quickly display them to allow a technitian to repair them with minimum system downtime. TDR can also be used to determine the fidelity of a termination and can also be used, in the trans. mission mode, to determine the transmission quality of an amplifier or attenuator. In this mode of operation, the step generator signal source is applied to the device under test and the output is detected by the sampling portion of the plug-in. In the stimulous response mode. the 1818 A use the 50 ps step generator as a stimulous and the 120 ps sampling section displays the device response. This allows a waveform to be examined for risetime, delay, and pulse top abberations. The 1818A TDR plug-in is designed for use in troubleshooting systems to provide quick. easy location of disconninuities that degrade system operation. When designing transmission systems, it is recommended that a 1815A TDR plug-in with an over-all system rise cime of 35 ps be used for optimum fidelity.

Specifications, 1818A

Systern (in reflectometer configuration)

Rise time: $<150 \mathrm{ps}$.
Overshoot: $\leq 5 \%$ overshoot and ringing (down to $1 / 2 \%$ in 2 nsec). Internal reflections: $<10 \%$ (does not limit resolution).
Reflectometer sensitivity: reflection coefficients as small as 0.002 can be observed.

Signal channel

Rise time: approx 120 ps .
Reflection coefficient: 0.5 div to $0.005 /$ div in a $1,2,5$ sequence. Input: 50 ohms, feed-through type.
Noise and internal pickup, peak: 0.2% of step (rerminated in 50 ahms).
Dynarice range: ± 0.5 volt.
External signal level; up to 1 V peak may be safelly applied to the SAMPLER OUTPUT connector.
Attenuator accuracy: $\pm 3 \%$.

Step generator

Amplitude: approx 0.25 V into 50 ohms (0.5 V inio open circuit).
Rise time: approx 50 ps .
Output impedance: $50 \mathrm{ohms} \pm 1 \mathrm{hm}$ (dc-coupled).
Droop: $<2 \%$ in $1 \mu \mathrm{~s}$.

Distance/time scale

Distance scale accuracy: $\pm 3 \% \pm$ variation in air line ($\varepsilon=1$) $1 \mathrm{~m} / \mathrm{div}$ to $10 \mathrm{~m} / \mathrm{div}$.
Variable dielectric: $(\varepsilon=1$ to $\varepsilon=4) 1 \mathrm{~m} / \mathrm{div}$ to $10 \mathrm{~m} / \mathrm{div}$.
Time scale: $10 \mathrm{~ns} / \mathrm{div}$ to $100 \mathrm{~ns} /$ div.
Magniffeation: X_{1} to X_{100} in a 1, 2, 5 sequence. Accuracy of the basic sweep is maintained at all magnifer settings.
Delay control: 0 to 10 div of unmagnified sweep, calibrated. Accuracy $\pm 3 \%$.
Jitter: <20 ps.

General

Environment: same as Models 180C/D mainframes.
Weight: net, 3 lbs ($1,4 \mathrm{~kg}$) ; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$).
Price: Model 1818A Time Domain ReRectometer, \$1200.
Accessaries supplled: 2 GR elbows (HP Part No. 1250-0239). One 50 ohm load with GR connector (0950.0090).

OSCILLOSCOPES

Descriptions, 1815A, B; 1816A; 1817A

Calibrated 35 ps risetime time domain redectometery and 12.4 GHz (28 ps risetime) sampling capabilities are now avail. able as part of the versatile 180 system oscilloscope.

The Model 181sA TDR/Sampler plug-in, a double-sized plug-in for the 180 system, can be combined with appropriate remote sampler head and tunnel diode mount to obtain a calibrated TDR system with a system risetime of 35 ps for high. resolution displays. Direct readout in feet along the line is obtained from the 1815A or in metess from the Model 1815B. Either an $1106 \mathrm{~A}(20 \mathrm{ps}$) or $1108 \mathrm{~A}(60 \mathrm{ps}$) tunnel diode mount is compatible for TDR with the plug.in and samplers.

The same plug-in and sampler heads used for TDR measurements also serve as either a 4 GHz or 12.4 GHz sampling system with a direct readout in time. For sampling use, there is direct triggering to 500 MHz and to 18 GHz with the Model 1104A/1106A trigger countdown.

Sampling heads, Model 1816A (90 ps riserime) and Model 1817A (28 ps riserime), are derachable, remote, single channel, feed-through samplers for convenient use in $50-0 h m$ transmission systems. The plug-in and sampler heads provide the circuits for operating the tunnel diode pulse generators.

This calibrated TDR system allows analysis of coaxial micro. wave components, identifying discontinuities on the ordes of 0.25 inch apart. Typical components that can be analyzed are connectors, adapters, coaxial-to circuit board transitions, loads, etc. Direct read-out in reflection coefficient, feer, or meters (optional) makes measurements faster and easier to interpret. Front panel calibration for air and polyethylene dielectrics is standard. In addition, the control allows variable calibration for different dielectrics from $\varepsilon=1$ to $\varepsilon=$ approx 4 .

Specifications, 1815A/B

Unless otherwise indicated, TDR and sampling performance specifications are the same. Where applicable, TDR specification is given first, followed by Sampler specification in parentheses. Model 1815A is calibrated in feet and 1815 B is calibrated in meters.

Vertical

Scase: reflection coefficient ρ (volts) from $0.005 /$ div to $0.5 /$ div in 7 calibrated ranges; 1, 2, 5 sequence.

Accuracy: $\pm 3 \%$; TDR only, $\pm 5 \%$ on $0.01 /$ div and $0.005 /$ div in signal average mode.
Vernier; provides continuous adjustment between ranges; extends seale to $>0.002 /$ div.
Signal average: reduces noise and jitter approx 2:1.

Horizontal

Scale: provides up to a 10,000 foot or meter display window with round-trip time or distance (time) in four calibrated decade ranges of $1 / \mathrm{div}, 10 / \mathrm{div}, 100 / \mathrm{div}$, and $1000 / \mathrm{div}$. Concentric expand control provides direct read-out in 28 calibrated steps in 1, 2. 5 sequence from $0.01 \mathrm{~ns} / \mathrm{div}$ to $1000 \mathrm{~ns} /$ div or from 0.01 foot or meter/div to 1000 feet or meters/div ($0.1 \mathrm{~ns} / \mathrm{div}$ to 1000 ns/div)
Accuracy: time, $\pm 3 \%$; distance, TDR only, $\pm 3 \% \pm$ variations in propagation velocity.
Marker position: indicaror, calibrated in divisions; provides direct read-out of round-trip time or distance (time), number of divisions x decade range in units/div.
Marker zero: ten-turn control provides variable reference for marker position dial; allows difect read-out of round-rip time or distance (time) between swo or more displayed events.
Zero finder: permits instant location of marker reference.
Dielectric, TDR onfy: calibrated for air, $\varepsilon=1$, and for polyethylene, $\varepsilon=2.25$. Also provides variable settings for dielectric constants $\varepsilon=1$ to $\varepsilon=$ approx 4 .
Triggering sampling only
Pulses: < 30 mV for pulses 5 ns or wider for jitter $<20 \mathrm{ps}$. CW: signals from 500 kHz to 500 MHz require at least 80 mV for jitter $<2 \%$ of signal period plus 10 ps ; usable to 1 GHz . CW eriggering may be extended to 18 GHz with HP Models 1104A/1106A rigger countdomm.

General

Recorder outputs: appros $100 \mathrm{mV} /$ div; vertical and horizontal outputs at BNC connectors on rear panel of mainframe.
Display modes: repetitive scan, normal or detail: single scan: manual scan; record.
Environment: same as Model $181 \mathrm{~A} / \mathrm{AR}$ mainframes.
Weight: net, 5 lbs ($2,3 \mathrm{~kg}$) ; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Price
Model 1815A TDR/Sampler (calibrated in feet) $\$ 1250$
Model 1815B TDR/Sampler (calibrated in meters) $\$ 1250$

OSCILLOSCOPES

NARROWBAND TDR
Test waveguide systems, compact, transportable Model 1580A

Specifications, 1817A and 1816A

Unless otherwise indicated, Model 1817A and Model 1816A specifications are the same. Where applicable, N (odel $1817 \AA$ specifications (with Model 1106A tunnel diode mount) are given first, followed by Model 1816A specifications (in parentheses) with Model 1108A tunnel diode mount.

TDR system

System risetime: <35 ps (110 ps) incident as measured with Model 1106A (Model 1108A).
Overshoot: < 55%.
Internal reflections: $<10 \%$ with is ps (las ps) TDR; use rc. Hected pulse from shorted output.
Jitter: $<15 \mathrm{ps}$: with signal averaging, typically' g ps.
Internal pickup: $\rho \leq 0.01$.
Nolse: measured tangentially as a percentage of the incident pulse when terminated in 50 ohms and operated in signal averaging mode. $<1 \%(0.5 \%)$ on $0.005 /$ div $100.02 / \mathrm{dix} ;<3 \%$ (1%) on $0.05 /$ div $\operatorname{tn} 0.5 / \mathrm{div}$.
Low frequency distortion: $\leq \pm 3 \%$
Maximum safe Input: 1 vole.

Sampler system

Risetime: <28 ps (90 ps).
Input: 50 ohm feedehrough.
Dynamic range: $1 \mathrm{~V} p-\mathrm{p}$.
Maximum safe Input: 3 volts (5 voits).
Low frequency distortion: $\leq \pm 3 \%$.
Nolse
Normal: $<8 \mathrm{mV}$ (3 mV) tangential noise on $0.01 \mathrm{~V} / \mathrm{div}$ to $0.5 \mathrm{~V} / \mathrm{div}$. Noise decreases automatically on $0.005 \mathrm{~V} / \mathrm{div}$.
Signal average: reduces noise and jitter approx 2:1.
Tunnel diode mount: direst conneciion for either Model 1106A or Model 1108A annel diode mount for TDR system.

Accessorles supplied

Cable, plugin to sampler: connects sampler (1816A or 1817A) to plug-in (1815A or B), HP Part No. 5060.0d41; replacemene price, $\$ 75$.
Cable, tunnel diode to sampler: connects tunnel diode (1108 d or 1108A) to sampler, HP Part No. 01817.61603: replacement price, $\$ 18$.
Price Genaral
Model 1817A 28 ps Rise Time Sampling Head $\$ 1500$
Model 1816A 90 ps Rise Time Sampling Head $\$ 850$

Specifications, 1106A and 1108A

Tunnel diode mount connects directly to sampler and is required for a TDR system.

Amplitude (both): $>200 \mathrm{mV}$ into 50 ohms.
Rlsetime: Model 1106A, approx 20 ps: Model 1108A, < 60 ps.
Output impedance: 50 ohrns $\pm 2 \%$.
Source reflection: Model 1106 A, $<10 \%$ with 45 ps TDR; Model $1108 \mathrm{~A},<10 \%$ with 154 ps TDR.
Weight (both): net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$: shipping, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: Model 1106A, \$550; Model 1108A, \$200.

Description, 1580A
Model 1580A Narrow Band TDR System provides a quick, portable method of determining the locarion and magnitude of discontinuities in rvaveguide or bandpass coaxial rransmission systems. Narrowband TDR clear!y shows the magnitude of resistive or reactive discontinuities with the location directly calibrated in feet or meters from the source. This allows rapid system ser-up or repair of faults caused by misaligned or corroded waveguide flanges and coaxial cable connectors, foreign objects inside waveguides, and crushed or bent waveguide or coaxial cable.

Narrowband TDR is similar in concept to radar, in that an ri pulse burst is transmitted down a systern and, if a dis. continuity exists, energy is reflected back to the source and is detected and displayed by the 1580A system. The use of an ri pulse burst allows the incident energy to be contained within the dominant mode of the raveguide or the passband of a narrowband system, which increases sensitivity and resolution of measurements when compared to a wideband TDR used for interrogation of a narrowband system,

Variable of burst widths, from <5 to $>100 \mathrm{~ns}$, are provided by the 1580 A which allows the incident rf burst bandwidth spectrum ro be matched to the characceristics of a system being tested. Variable burst widths are useful when evaluating waveguide systems where the effects of dispersion, which causes a reflected ri burst to widen in time and lose amplitude, must be considered. The 1580A allows return losses of -40 dB and greater to be resolved when at least 70 mW of if input power is a vailable.

The Narrow Band TDR System consists of a standard 180AR rack model oscilloscope mainframe, a 1815A Option 001 TDR/Sampler Plug-in, and the 1580 A Narrow Band TDR rf burst generator/sampler. The 1580 A may also be purchased calibrated in merers ac no additional cost by ordering Model 1580 A Option 010.

For more information, contact your local Hewlett.Packard field engineer.

TDR Accessories

Models 10452A-10456A Risetime Converters
Models 10452A through 10456A Risetime Converters slow down the step from the $1818 A$ (or 1415A) in order to climinate reflections caused by frequencies beyond the bandwidth of intercs. Rise. times: $(10.90 \%$ points as measured in 150 ps risetime system).

10452: $0.5 \mathrm{~ns} . \quad 10453 \mathrm{~A}: 1 \mathrm{~ns}$.
10455A: 5 ns.
10456A: 10 ns.

Specifications
Risetime accuracy: within $\pm 5 \%$.
Overshoot: less than $\pm 3 \%$.
Output impedance (oc): 50 ohms (accuracy determined by ou:put impedance of generator).
Output mismatch: less than $\pm 5 \%$ reflection to outpur risetime. Allowable input voltage: up 6050 volts, open circuit (from a so-ohm source).
Connectors: GR Type 874.
Price: \$95.
Models 10457A-10458A 50 to 75 ohm Adapters
Adapters convert 1518A (or 1415A) SO ohm output to 75 ohm systems.
Model 10457A: converts 50 ohm GR to 75 ohm Type N.
Pricei: \$45.
Model 10458A: converts 50 ohm GR to 75 ohm Type F (CATV). Price: $\$ 25$.

Sampling Accessories

Speciflcations 1105A/2106B/1108A
$1105 \mathrm{~A} / 1106 \mathrm{~B} / 20$ ps Pulse Generator
$1105 \mathrm{~A} / \mathrm{i} 108 \mathrm{~A} / 60$ ps Pulse Generator Output

Risetime: approx 20 ps with 1106 B , ($<60 \mathrm{ps}$ with 1108A). $<28 \mathrm{ps}$ observed with HP Model 1411A/1430C 28 ps Sampler and HP Model 209A Opion 01250 ohm termina. tion.
Overshoot: $\pm 7.5 \%$ as observed on $1411 \mathrm{~A} / 1430 \mathrm{C}$ with 909 A Option 012.
Droop: less than 3% in lirst 100 ns.
Width: approximarely 3μ.

Amplitude: greater than $\div 200 \mathrm{mV}$ into 50 ohms.
Output characteristics (1106B/1108A)
Mechanical: (1106B) Type N' connector. (1108A) GR-874 connector.
Electrical: de resistance: 50 ohm $\pm 2 \%$. Source reflecrion; less than 10%, using a 40 ps I'DR system. DC offset volt. age; approximately 0.1 V .
Triggering
Amplitude: at least $\pm 0.5 \mathrm{~V}$ peak required.
Risetime: less than 20 os required. Jitter less than 15 ps when triggered by 1 ns risetime sync pulse from 1424A or 1425A. Sampling Time Base.
Width: greater than 2 ns.
Maximum safe input: 10 volts.
Input impedance: 200 ohms, ac-coupled through 20 pF .
Repetition rate: 0 to 100 kHz ; free runs at 100 kHz .
Accessories provided (with Model 1105A): one $6 . \mathrm{fe} 50 \mathrm{ohm}$ cable with Type N connectors, HP Model No. 10132A.
Weight
1106 B or $1108 \mathrm{~A}: n e \mathrm{l}, 1 \mathrm{ib}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{Jbs}(0,9 \mathrm{~kg})$. 1105 A ; nel, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Price: HP Model 1105A, $\$ 200$. HP Model 1106B, $\$ 550$. HP Model 1108A, $\$ 175$.

1109B/1129A High-Pass Filters

The 1109 B and 1129 A High Pass Filters ransmit only frequencies above 1 GHz . They are useful for blocking the 100 MCHz "kickout" encountered when using a tunnel diode countdown 10 riew high frequency signals on a sampling oscilloscope. The 1109 B is designed for use with the Model $1104 \mathrm{~A} / 1106 \mathrm{~B}$ Trigger Countdown, and the 1129 A mates with the Model I104A/1108A.

Specifications 1109 B
Lower bandwidth limit: 3 dB down at 3 GH , nominal.
Input characterlstics
Mechanical: Type λ^{\top} connector.
Electrical (with output terminated in 50 ohms)
Reflection: less than 10% using 40 ps TDR sysiem.
VSWR: g'pically $1.1: 1$ up to 10 GHz increasing to $2: 1$ 31 15 GHz.
DC resistance: 50 ohms $\pm 2 \%$ shunted across line.
Weight: net, 5 oz $(0,14 \mathrm{~kg})$.
Price: \$200.

Specifications 1129A

Lower bandwidth limlt: 3 dB down at 3 GHz , nominal.
Input characteristles
Mechanicas: GR-874 connector.
Electrical (with outpur terminated in 50 ohms)
Reflection: less than 3% using 150 ps TDR system.
DC resistance: 50 ohms $\pm 2 \%$ shunted across line.
Welght: net, 4 oz $(0,11 \mathrm{~kg})$.
Price: $\$ 100$.

Other sampling accessories

50-ohm loads: Models 908A, \$45; and 909A Oplion 012, $\$ 70$.
50 -ohm adapter: Model $11524 A$; has Type N female and APC. 7 connectors. Price, $\$ 70$.
Air line extensions: Model I1S66A; 10 cm, APC- 7 connector. Mrodel 11567A; 20 cm, APC-7 connector. Price, 5115 each.

Introduction, 1700 Series

The Hewletr. Packard Series Oscilloscopes are light weighe, battery operated, portable instruments designed for both lab and field service applications. All models are dual channel and range from 35 MHz to 150 MHz . You can choose models with a main time base only or with both main and delayed time bases. The 1700 series also includes two models with variable persistence and storage CRT's.

Operator convenience

All 1;00 Series models have large CRT's and sharp traces for easy viewing and high resolution. Standard CRT's are $6 \times 10 \mathrm{~cm}$ and variable persistence CRT's are slightly smaller.

Front panel controls are grouped according to function for fast familiacization and pushbuttons are used to furcher simplify operation. By releasing all pushbuttons you can casily locate the trace giving you a head start in viewing your waveform. Delayed sweep controls are grouped in a gray front panel strip for quick identification. Main and delayed sweep speeds are selected with separate controls allowing you to change the sweep speed on one time base without having to reset the other. An interlock is provided which prevents the
delayed time base from sweeping slower than the main time base.
Another convenience feature found on all slandard modeis is scale illumination which aids in photographic work. A beamfinder allows quick location of the trace regardless of the INTENSITY, HORIZONTAL, or VERTICAL control positions. Warning lights are provided which indicate uncalibrated vertical deflection factors or sweep speeds. Additional conveniences provided are front panel adjustments for vertical defection factors, de balance, and 1 volt square wave calibrator for probe compensation.

Performance

The l:00 series-though light weight, rugged and portablegive you the performance ordinarily expected of latoratory oscilloscopes. Vertical bandwidths are specifed over the full 6 divisions of vertical display. Maximum sensitivities are useable over the entire bandridth; for example, the 1710A's deffection factor is 5 mV per div from dc to 150 MHz (3 dB point). In addition, display mode and trigger source flexibility assure you of the right trigger signal combination for your application.

Emphasis on performance is also provided in the 1700 Series horizontal systen. Sweep linearity is specified over the full 10

PORTABLE 35, 75, and 150 MHz $10 \mathrm{~ns} /$ div sweep speeds 1700 Series

 OSCILLOSCOPESdivisions of horizontal display for maximum usefulness and accuracy. In models with calibrated delay (Option 020), you can make differential riming measurements to approximately 1% accuracy by using a common reference graticule.
Internal trigger circuits have emitter coupled logic gates for greater reliability and stable operation over a wide temperature range. A trigger holdoff control is used to eliminate double triggering on complex digital waveforms while maintaining a full-screen, calibrated sweep.

Though the performance of the 1700 Series is high quality, the price is kept low by offering just the features necessary for most applications. A laborarory package is available on all models which adds many features often used in a laboratory environment. This model flexibility assures you of the optimum price/performance ratio.

Battery Operation

1700 series models may be operated from a battery pack. The battery fits snugly inside all instruments with exception of the 1710A.

Many portable oscilloscope users are discovering the advanrages of battery operation:

1. Convenience of working in an installation without having to turn off scope, move power cord. and reset and stabilize display;
2. isolation from ground loops and conducted RFI; and
3. freedom from errors due to power line fluctuations and supply variations.
The battery allows up to six hours of operation (1700A and 1701A) and is rechargeable over night. Other power modes are ac (110 V or $230 \mathrm{~V} \pm 20 \%$, 48 to 440 Hz) or external dc from 11.5 to 35 volts. This fexibility insures that power will be available in almost any possible situation.

Reliability

The 1700 series oscilloscopes have been designed for low pow'er consumption which not only allow's battery operation but increases reliability since most active components operate at only 10 to 20% of their power ratings. For example, the vertical ourput transistors do not require heat sinks. The low porver consumption also means that the 1700 series scopes do not require ventilating holes or fans for cooling which reduces the amount of dust and dirt that can accumulate. Also the lack of ventilation holes reduces de drift since the scope is less susceptible to short term temperature changes caused by drafts. Reliability is also enhanced in the trigger circuits by using emitter-coupled logic circuits instead of conventional tunnel diodes.

Serviceability

Ease of service is assured with the plug-in circuit boards and the low number of internal adjustments. For example, if all internal adjustrnents were misaligned, a technician (with a prorking knowledge of the scope) could completely recalibrate the 1700 A in as little as one hour. This means real dollar savings over the lifetime of the instrument. Serviceability also extends to the probes supplied with the oscilloscopes. The 10006B Probe cables are supplied with spin on/spin off connectors on both ends which reduces replacement time to just fer minutes.

The Model 10101A Storage Cover, supplied with each oscilloscope, helps to protect the front panel during transportation and provides storage space for accessories. Accessories included with the 1700 oscilloscopes are two probes with probe acces. sories, power cord, de plug, and spare fuses.

Field support

Video tapes are available which supply training and help you to become accustomed to 1700 series operation and ap. plications. Ask your Healett-Packard field engineer for details.

OSCILLOSCOPES

1701A

Description, 1700A/1701A

Models 1700A and 1701A are 35 MHz , dual channel, 10 $\mathrm{mV} / \mathrm{div}$ deflection factor, portable oscilloscopes with 6×10 cm internal graticule cathode-ray tubes. The 35 MHz bandwidrh and $10 \mathrm{~ns} /$ div expanded sweep speed provide accurate timing measurements in systems using MIOS and TTL logic elements. Model 1700A is a non-delaying time base oscilloscope and the 1701 A has a delaying time base.
Options are available to allow these oscilloscopes to be tailored to an application at minimum cose For example. Option 020 fot each oscilloscope provides additiona! features that are ofen required in laboratory situations.
More information about the 1700 scries oscilloscopes is located at the beginning of this section.

Specifications, 1700A, 1701A

(Except as nored, spccificacions apply to 1700A and 1701A)

Vertical amplifiers

Modes of operation: channel A; channel B; channels A and B displayed aleemately on successice sweeps (ALT) ; channels A and B displayed by switching berven channels at approx 400 kHz rate with blanking during swithing (Chop) : channel $\mathrm{A}+$ channel B (a)gebraic addition).
Each channel (2)
Bandwith: (direct or with Model 10006B probe. 3 dB down from $50 \mathrm{kHz}, 6$ div reference signals from 25 ohm source). DC-coupled, de to 35 MHz ; ac-coupled, 10 Hz to 35 MHz .
Risetime: <10 ns. Direct or with Model 10006B probe, 10% to 90% poines with 6 div input step from 25 ohm source.

Deflection factor
Ranges: from $10 \mathrm{mV} / \mathrm{djv}$ to $3 \mathrm{~V} / \mathrm{div}$ (9 ranges) in $1,2,5$ senuence. \#3 \% accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends maximum defiection facior to at lease $12.5 \mathrm{~V} / \mathrm{div}$.
Polarity: NORM or INV, selectable on channel B.
Signal delay: signals are delayed sufficiently to view leading edge of inpur signals without advanced extemal trigger.
Input RC: 1 mesoinn $\pm 2 \%$, shunted by approx 27 pF .
Input coupling ac. de. ar ground selectable. Ground position disconnerts signal input and grounds amplifer input.
Maximum input
AC-coupled: $=600 \mathrm{~V}$ (dc + peak ac); rms ac $<330 \mathrm{~V}$, , $\mathrm{V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div}:<150 \mathrm{~V}$ as $10 \mathrm{mV} / \mathrm{div}(10 \mathrm{kHz}$ or less) .
DC-coupled: <350 V (rms) s V/di. $1020 \mathrm{mV} / \mathrm{div}:<150 \mathrm{~V}$ a $10 \mathrm{mV} / \mathrm{dis}$ (10 kHz or less).
$A+B$ operation
Amplifier: bandwidth and deffection factors are unchanged; channel B may be invered for A-B operation.
Common mode (A-B): \{requenç, de 101 MHz rejection ratio, at least 40 dB on $10 \mathrm{mV} / \mathrm{div}$, at least 20 dB on all other ranges with remiers set for optimum rejection. Common mode signal amplitude equivalent to 30 div.
Trigger source (applies for all five modes of operation): Norm. on displayed signal; A only, on signal from Channel A.

Time base

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mathrm{~s} / \mathrm{div}(20$ ranges) in $1,2,5$ sequence. $\pm \mathbf{j} \%$ accuracy with vernier in calibrated position.
Vernier: contintiously variable berween all ranges, extends slowest
sweep to at least $0.5 \mathrm{~s} /$ div. Vernier uncalibrated light indicates when vernier is not in Cal position.
Magnifler: expands all sweeps by a factor of 10 and excends fastest sweep to $10 \mathrm{~ns} /$ dix. Accuracy $\pm 5 \%$ (including 3% accuracy of time base).

Sweep mode

Normal: sweep is triggered by an internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Triggering is same as normal above 40 Hz
Single: in Normal mode, sweep occurs once with same triggering as normal; reser pushbutton arms sweep and lights indicator: in Auto mode, sweep occurs once each time Reset pushbutton is pressed.

Triggering

Internal: de to 35 MHz on signals causing 0.5 divisions or more rertical defection increasing to 1.5 dis deflecrion at 75 MHz in all display modes excepr chop; ds to 400 kHz in chop mode.
Extermal: de to 35 MHz on signals $50 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ or more, increasing to 100 mV p-p at 75 MHz .
External Input RC: approx 1 megohm, shunted by approx 27 pF.

Level and slope

Internal: at any paint on the vertical waveform displayed.
External: continuously variable from +1.5 V to -1.5 V . (Model 1700A only, +15 V to -15 V in $\div 10$) on either slope of trigger signal. Maximum input, $\pm 100 \mathrm{~V}$.
Coupling: AC, DC, LF REJ, or HF REJ.
$A C$: attenuates signals below approx 20 Hz .
LF REJ: attenuetes signals below approx 15 kHz .
HF REJ: attenuates signals above approx 30 kHz .
Trigger holdofi: time between sweeps continuously variable, ex. ceeding one full sweep at $20 \mathrm{~ms} / \mathrm{div}$ and faster.

Model 1701A delayed time base
 Sweep

Ranges: $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $0.1 \mathrm{~s} /$ div (19 ranges) in $1,2,5$ sequence. $\pm 3 \%$ with vernier in calibrated position.
Vernier: continuously variable berween all ranges, extends slowest sweep to $0.25 \mathrm{~s} / \mathrm{div}$.

Triggering

Internal: same as main dime base.
Automatie: delayed sweep is automatically triggered at end of delay time.
Level and slope: at any point on the vertical naveform displayed.
Coupling: selectable, ac ur dc. AC atenuates signals belaw approx 20 Hz .
Defay time: concinunusly variable from $0.1 \mu s$ to 2 s .
Delay litter: $<0.005 \%$ (1 part in 20,000) of maximum delay in each step.
Trace Intensification: intensifies that part of main rime base to be expanded to full screen in delayed time base mode. Rotating time base switch from OFF position activates intensifed mode.

Cathode-ray tube and controls

Type: post-accelerator, $\approx 22 \mathrm{kV}$ accelerating potencial; aluminized P31 phosphor.
Graticule: 6×10 div internal graticule: 0.2 subdivisions on mapor horizontal and vercical major axes. I dis $=1 \mathrm{~cm}$. Fronc panel adjustment aligns race with graticule.
Beam finder: returns trace to CRT screen regardess of setting of horizontal, vertical, or intensity conirols.
Intensity modulation: $>+4 \mathrm{~V}$, de to 1 MHz blinks trace of any intensity. Inpur R, 1000 ohms $\pm 10 \%$. Maximum input, $\pm 10 \mathrm{~V}$ (dc T peak ac).

General

Calibrator: type, $1 \mathrm{kHz}, \pm 10 \%$ squarenave; roltage, 1 V p-p $=1 \%$.

Power requirements
AC line: 115 or $230 \mathrm{~V}=20 \%, 48$ to $440 \mathrm{~Hz}, 30 \mathrm{VA}$ max.
DC line: 11.5 to $36 \mathrm{~V}, 18$ ratts max.
Battery (aptional)
Operating time: up to 6 hours.
Recharge time: 14 hours maximum, with power switch oft. if not operated after power indicator tashes.
Low battery Indicator: power light flashes to indicate that batteries are discharged.
Recharging: batteries are recharging whenever power mode switch is set to ac with power applied. With power switch off, full charge is applied. With power switch on, trickle charge is applied.

Welght

Without panel cover: net, $24 \mathrm{lbs}(11 \mathrm{~kg}$); shipping. 35 lbs $(15,9 \mathrm{~kg})$.
With panel cover and accessories: net. 27 lbs ($12,3 \mathrm{~kg}$): shipping, $38 \mathrm{lbs}(17,2 \mathrm{~kg}$).
WIth panel cover, accessorles, and battery pack: net, 35 lbs $(16 \mathrm{~kg})$; shipping, $46 \mathrm{lbs}(20,9 \mathrm{~kg})$.

Environment: (oscilloscope operates within specifcations over the following ranges); temperature, $0^{\circ} \mathrm{C}$ to $\div 55^{\circ} \mathrm{C}$; humidity, 10 95% relative humidity $1040^{\circ} \mathrm{C}$: altitude, to 15,000 f: vibration, vibrated in three planes for 15 min. each with 0.010 inch ex. cursion, 10 to 55 Hz .
Accessorles furnished: mesh contrast filter, Model 10115A; front panel storage cover, Model 10101A; two NTodel 10006 B probes; one do power plug for assembling a de porier cord; one ac power cord with right angle plug; and one instruction manusl.
Prlce (without battery pack)
Model 1700A Porrable Oscilloscope $\$ 1680$
Model 1701A Delayed Sreep Portable Oscilloscope $\$ 1800$
Options (order by Option number)
012: Model 10103A battery pack insialled, add $\$ 200$.
016: (Model 1701A): TV sync separater (may not be ordered with Option 020), add $\$ 55$.
020 (Model 1700A): external horizontal inpur; Channel A out. put which provides single channel, $1 \mathrm{mV} /$ div defiection facior at reduced bandwidth when cascaded ineo Channel B. Add 550 .
020 (Model 1701A): mixed sweep; calibraced sweep delay; ex. ternal trigger input for delayed sweep; external horizontal inpur: Channel A ourput which provides single channel, 1 $\mathrm{mV} /$ div deflection factor at reduced bandrridth when cascaded ineo Chamel B. Add 5125 .

PORTABLE, 35 MHz

Storage/variable persistence
Models 1702A, 1703A

1703A

Description

Model 1703 A combines 1700 series features of dual channel, $10 \mathrm{mV} / \mathrm{div}$ defiection factor, and main and delayed time base streep speeds to $10 \mathrm{~ns} / \mathrm{div}$, with variable persistence and storage. Model 1702 A is identical to the $1: 03 \mathrm{~A}$ but is mithout the delayed time base

Variable persistence and storage

Hewlett. Packard's storage mesh CRT allon's you to adjust the amount of time a trace is eetained, from less than 1 second to over 1 hour. For example, when making timing adjustments berween two low rep rate, narront pulses, the persistence can be set so that the pulses are on screen for just one sweep. You can make your timing adjusiments quickly and accurately, rieltout the screcr becoming cluttered with old traces.
Variable persistence is also very useful as a pseudo-normal nrite modc, when extra brilliance is required, or any time the sreep speed is low enough to cause flicker. In addition to variable persistence, the 1703 A offers srorage capability, for over 1 hour. This display capability is especially useful for single shot phenomena and other events with very infrequenc occurence. The armed origger circuirs will patiently wat for the event to happen, then capture the raveform when it occurs. All variable persistence and storage controls are convenientily grouped to the right of the CRT.

The 1-03A's writing speed in the storage mode is $20 \mathrm{div} / \mathrm{ars}$. And a mode called "Man Write" uses a fogging techniquc to increase $\begin{gathered}\text { riting speed to } 1000 \text { div ms, wirh only a slighe re- }\end{gathered}$ duction in contrast between trace and background. (See Intro.)

Specifications, 1702A, 1703A
(Except as noted, specifications apply zo 1702A and 1702A)

Vertical amplifiers

Modes of operation: channel A; channel B. channels A and B displayed alternately on successice sweeps (ALT): channels A and B displayed br suitching berween channels at approx 100 hHz rate with blanking during switching (CHOP): channel $A \div$ channel B (algebraic addition)
Each channel (2)
Bandwidth: (direct or with Model 100068 prober. 3 dB down from 50 kHz .6 div reference signal from 25 obra source). DC.coupled, de to 35 MHz ; ac-coupled, 10 Hz to 35 M Hz .

Risetime: < 10 ns . Direcr or with Nfodel 10006 B probe, 10% 1090% points with 6 dir input step from 25 ohm source

Deffectlon factor

Ranges: from $10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{s} \mathrm{V} / \mathrm{div}$ (9 ranges) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vemmer in calibrated position.
Vernler: continuously variable between all ranges, extends maximum deflection faccor to at least $12.5 \mathrm{~V} / \mathrm{di}$.
Polarity: NORM or INV, selectable on channel B.
Signal delay: inpur signals are delayed sufficiently to siew lead. ing edge of inpur signals without advanced external trigger.

Input RC: 1 megohm $\pm 2 \%$, shunted by approx 27 pF .
Inout coupling: ac, dc, or ground selectable, Ground position disconnects signal input and grounds amplifier input.

Maximum Input

AC-coupled: $\pm 600 \mathrm{~V}$ (dc + peak ac); rms ac $<350 \mathrm{~V}, 5$ $\mathrm{V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ (10 kHz or less).
DC-coupled: $<350 \mathrm{~V}$ (rms) s V/div to $20 \mathrm{mV} / \mathrm{div}$; $<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ (10 kHz or less).
A $+B$ operation: same as Models 1700A and 1701A.
Trigger source: (applies for all five modes of operation) Norm, on displayed signal: A only, on signal from Channel A.

Time base

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mathrm{~s} / \mathrm{div}$ (20 ranges) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vemier in calibrated position.
Vernier: continuously rariable berween all ranges. extends slowest sweep to at ieast $0.5 \mathrm{~s} /$ div. Vernier uncalibrated light indicates when vernier is not in Cal position.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} / \mathrm{dir}$. Accuracy, $\pm 5 \%$ (including 3% accuracy of (ime base).
Sweep mode
Normal: sweep is riggered by an internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Triggering is same as normal above 40 Hz .
Single: in Normal mode, sweep occurs once with same rriggering as normal; reser pushbution arms sweep and lights indicator: in Auto mode, sweep occurs once each time Reset pushbutton is pressed.
Triggering
Internal: de to 35 MHz on signals causing 0.5 divisions or more rertical defection increasing to 1.5 div deflection at 75 MHz in all display modes except chop; dc 10 approx 400 kHz in chop mode.
External: de to 35 MHz on signals $50 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ or more, increas. ing to 100 mV p-p at 75 MHz .
External Input RC: approx 1 megohm shunted by approx 27 pF. Level and slope

Internati: at any point on the vertical waveform displayed.
External: continuously variable from +1.5 V to -1.5 V
((odel 1702 A only, +15 V ($0-15 \mathrm{~V}$ in $\div 10$) on either slope of the arigger signal Anaximum inpur, $\pm 100 \mathrm{~V}$.
Coupling: AC, DC, LE REJ. of HE REJ.
AC: artenuates signals below approx 20 Hz .
LF REJ: attenuates signals below approx 15 kHz .
HF REJ: attenuates signals aboic approx 30 kHz .
Trigger holdoff: time berween sweeps continuously variable: ex. ceeding one full sweep at $20 \mathrm{~ms} /$ div and faster.

Model 1703A delayed time base Sweep

Ranges: $0.1 \mu \mathrm{~s} /$ div in $0.1 \mathrm{~s} /$ div (19 ranges) in $1,2.5$ sequence. $\pm 3 \%$ with vernjer in calibrated position.
Vernier: continuously wariable between all ranges, extends slowest sweep to $0.25 \mathrm{~s} / \mathrm{dir}$.

Triggering

Internal: same as main time base.
External; do to 35 MHz on signals of 50 mV p . p or more, increas. ing to 100 mV p-p at 75 MHz .

Level and slope

Internal: at any point on the vertical waveform displayed.
Coupling: AC or dc. AC attenuates signals below approx 20 Hz .

Delay (before start of delayed sweep)

Time: continuously ariable from $0.1 \mu \mathrm{~s}$ to 2 s .
Linearity: $\pm 2 \%$.
Jitter: 0.005% (1 part in 20,000) of maximum delay in each step

Trace intensification: incensifes that part of main time base to be expanded to full screen in delayed mode. Rotating time base swith from OFF position activates intensified mode.

Cathode-ray tube and controls

Type: post-accelerator, $\approx 8.5 \mathrm{kV}$ accelerating porestial: aluminized P31 phosphor
Graticule: 6×10 div internal graticule; 0.2 subdivisions on major horizontal and vertical major axes. 1 div $=0.85 \mathrm{~cm}$. Front panel adjustment aligns trace with graticule.
Beam finder: recurns trace to CRT screen regardess of setting of horizontal, vertical, or intensiry controls.
Intensity modulation: $>+4 \mathrm{~V}$, de to 1 MHz banks trace of any intensify. Input R, 1000 ohms $\pm 10 \%$. Maximum input, $\pm 10 \mathrm{~V}$ (dc + peak 3).
Persistence: Normal, natural persistence of P31 phosphor (approx $40 \mu \mathrm{~s}$) : Variable, from $<0.2 \mathrm{~s}$ to >1 min.
Storage writing speed: Wrice mode, >20 div/ms; Maximum write roade, $>1000 \mathrm{div} / \mathrm{ms}$.
Brightness: ≈ 100 foot lamberts.
Storage time: from Write mode to Store, traces may be stored at reduced intensity for >1 hour. When swisched to View mode, traces may, be siened ar normal intensiry for >1 minure. From Max. Write mode to Store, traces may be stored at reduced intensity for >5 minutes. When switched to View mode, traces may be viewed at normal intensity for >15 seconds.
Erase: manual. pushbutton erasure takes approx 300 ms .

General

Calibrator
Type: $1 \mathrm{kHz}, \pm 10 \%$ squarewave.
Voltage: $1 \mathrm{Vp.p}$, 1%.
Power requirements
AC line: 115 or $230 \mathrm{~V} \pm 20 \%$, 48 to 440 Hz , 50 VA max.
DC tine: 11.5 to 36 V , ≈ 25 watts max.
Battery (optional)
Operating time: up to 4 hours.
Recharge time: 14 hours maximum, with power switch off, if not operated after power indicator fashes.
Low battery indicator: power light fasbes to indicate that bateries are discharged.
Weight
Without panel cover: net. $24 \mathrm{lbs}(11 \mathrm{~kg}$): shipping. 35 lbs ($15,9 \mathrm{~kg}$).
With panel cover and accessories: ner, $27 \mathrm{lbs}(12.3 \mathrm{~kg})$: shipping, $38 \mathrm{lbs}(17,2 \mathrm{~kg}$).
With panel cover, accassories, and battery pack: ner, 35 lbs (16 kg) ; shipping, $46 \mathrm{lbs}(20,9 \mathrm{~kg})$.
Dimensions: refer to 1700 A/1701A outline drawing.
Environment: same as Models 1700A and 1701A.
Accessories furnlshed: mesh contrast filter; front panel storage cover, Model 10101A: wo Model 10006B probes; one do power plug for assembling a de power cord; one ac power cord with righe angle plug; and one instruction manual.

Price

Model 1702A Storage Oscilloscope $\$ 2375$
Model 1703A Delayed Swreep Storage Oscilloscope $\$ 2575$
Options (order by Option number)
012: Model 10103A battery pack installed, $\$ 200$.
020: (1702A unly) external horizontal input; Channel A outpue which provides single shannel, $1 \mathrm{mV} /$ div deflection factor at reduced bandwiden when cascaded into Channel B, add $\$ 75$.
020: (1703A only) laborator' package. Mived sweep; calibrated sreep deiay; external trigger input for delayed sweep; external horizontal input: Channel A ourput which provides single channel, $1 \mathrm{mV} /$ dir defiection factor at reduced bandridth when cascaded into Channel B, add Siso.

OSCILLOSCOPES

PORTABLE, 75 MHz
Dual channel, $10 \mathrm{mV} / \mathrm{div}$
Models 1706A, 1707A

1707A

Description, 1706A/1707A

Models 1706 A and 1707 A are 75 MHz , dual channcl, 10 $\mathrm{mV} / \mathrm{div}$ deRection factor, portable oscilloscopes with 6×10 cm intemal gracicule cathode-ray tubes. The 75 MHz bandwidth and $10 \mathrm{~ns} /$ div expanded sweep speeds provide accurate measurements in systems using (ass TTL and ECL logic measurements. Model [706A has a non-delaying sreep time base and the 1707A has a delaying time basc.

Options are available to allow these oscilloscopes to be talored to an application at minimum cost. For example, Option 020 for each oscilloscope provides additional features that are often required in laboratory situations.

More information about the 1700 serics oscillostopes is locared at the beginning of this section.

Specifications, 1706A, 1707A
(Excepr as noted. specifications apply in 1706A and 1707A.)

Vertical amplifiers

Modes of operation: channel A; channcts A and B displayed alternately on successive sweeps ($A L X$) ; channels A and B displayed by switching between channels at approx 400 kHz rate wich blanking during switching (Chop); channel A + channel B (algebraic addition).
Each channel (2)
Bandwidth: direct or with Model 10006 B probe, 3 dB down from 50 kHz , 6 div reference signal from 25 ohm source.
DC-coupled: de to 75 AHz .
AC-coupled: 10 Hz to 75 MHz
Risetime: <4.7 ns. Direct or with Model 10006 B probe, 10% to 20% points with 6 div input step from 25 ohm source.

OSCILLOSCOPES

Deffection factor

Ranges: from $10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{S} \mathrm{V} / \mathrm{div}$ (9 ranges) in $1,2,5$ sequence. $\ddagger 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable berween all ranges, extends maximum deflection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Polarity: NORM or INV, selectable on channel B only.
Stgnal delay: Input signals are delayed sufficiently to view lead. ing edge of input signals without advanced external trigser.
Input RC: I megohm $\pm 2 \%$, shunred by approx 24 pF .
Input coupling: ac, dc, or ground selectabie. Ground position disconnects signal input and grounds amplifier input.

Maximum Input

AC-coupled: $\pm 600 \mathrm{~V}$ (ds + peak ac); rms ac $<350 \mathrm{~V}, \mathrm{~s}$ $\mathrm{V} /$ div to $20 \mathrm{mV} / \mathrm{div}$; $<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ (10 kHz or less).
DC-coupled: <3S0 V (rims) $5 \mathrm{~V} / \mathrm{div} 1020 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ (10 kHz or less).

A + B operation

Amplifier: bandwidth and defection factars are unchanged; channel B may be inverted for A.B operation.
Common mode (A-B)
Frequency: dc to 1 MHz .
Rejection ratio: at least 40 dB on $10 \mathrm{mV} /$ div, at least 20 dB on all other ranges with verniers set for optimum rejection. Common mode signal amplitude equivalent to 30 di-
Trlggering source: (applies for all five modes of operation) Norm, on displayed signal; A only, on signal from Channel A.

Time base

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mathrm{~s} /$ div (20 ranges) in $1,2, \mathrm{~s}$ sequence $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable betweed all ranges, extends slowest sweep to ar least $0.5 \mathrm{~s} /$ div. Vernier uncalibraced light indicates when vernier is not in Cal position.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} / \mathrm{div}$. Accuracy $\pm 5 \%$ (including 3% accuracy of time base).

Sweep mode

Normali sweep is triggered by an internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Triggering is same as normal above 40 Hz .
Single: in Normal mode, sweep occurs once with same rriggering as normal; reser pushburton arms sweep and lights indicator; in Auro mode, sweep occurs once each time Reset pushbutron is pressed.

Triggering

Internal: de to 35 MHz on signals causing 0.5 divisions or more vertical deffection increasing to 1 div dehection at 75 MHz in all display modes except chop; do to 400 kHz in chop mode.
Externat: dc to 35 MHz on signals 50 mV p-p or more, increasing to $100 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ at $75 \mathrm{MHz}_{2}$.
External inout RC: approx 1 megohm shunted by approx 27 pF .
Level and slope
Internat: at any point on the vertical waveform displayed.
External: continuously variable from $\div 1.5 \mathrm{~V}$ to -1.5 V (Model 1706A only, T is V to -15 V in $\div 10$) on eithe: slope of the trigger signal. Maximum input, $\pm 100 \mathrm{~V}$.
Coupling: AC, DC, LF REJ, or HF REJ. AC: attenuates signals below approx 15 kHz . LF REJ: attenuates sigrals below approx 15 kHz .

HF REJ: attenuates signals above approx 30 kHz .
Trigger holdoft: time between sweeps continuously variable, exceeding one full sweep at $20 \mathrm{~ms} /$ div and faster.

Model 1707A delayed time base

Sweep

Ranges: $0.1 \mu \mathrm{~s} /$ div to $0.1 \mathrm{~s} / \mathrm{div}$ (19 ranges) in $1,2,5$ sequence. $\pm 3 \%$ with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slowest sweep to $0.25 \mathrm{~s} / \mathrm{div}$.
Triggering
Internal; same as main time base.
Automatic: delayed sweep is automatically triggered at end of delay time.
Level and slope: at any point on the vertical waveform displayed.
Coupling: selectable, ac or dc. AC attenuates signals below approx 20 Hz .
Delay time: continuously variable from $0.1 \mu \mathrm{~s}$ to 2 s .
Delay jltter: $<0.005 \%$ (1 part in 20,000) of maximum delay it each step.
Trace intensification: incensifes that part of main time base be expanded to full screen in delayed time base mode. Rotaring time base switch from OFF position activates intensified mode.

Cathode-ray tube and controls

Type: post-accelerator, $\approx 22 \mathrm{kV}$ accelerating potential; aluminized P31 phosphor.
Graticule: 6×10 div internal graticule; 0.2 subdivisions on major horizontal and vertical major axes. 1 div $=1 \mathrm{~cm}$, Frone panel adjustment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: $>+4 \mathrm{~V}$, do to $1 \mathrm{MHz}_{2}$ blanks trace of any intensiry. Inpue R, 1000 ohms $\pm 10 \%$. Maximum inpur, $\pm 10 \mathrm{~V}$ (dc + peak ac).

General

Calibrator

Type: $1 \mathrm{kHz}, \pm 10 \%$ squarewave.
Voltage: $1 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P},} \pm 1 \%$.
Power requirements
AC line: 115 or $230 \mathrm{~V} \pm 20 \%$, 48 to $440 \mathrm{~Hz}, 50$ VA max.
DC line: 11.5 to $36 \mathrm{~V}, 25$ walts max.
Battery (optional)
Operating time: up to 4.5 hours.
Recharge time: same as Models 1700A and 1701A.
Low battery indicator: same as Models 1700A and 1701A.
Weight: same as Models 1700 A and 1701 A .
Dimensions: refer to $1700 \mathrm{~A} / 1701$ A outline drawing.
Environment: same as Models 1700A and 1701A.
Accessories furnished: same as Models 1700A and 1701A.
Price (without battery pack)
Model 1706A Portable Oscilloscope $\$ 1779$
Arodel 1707A Delayed Sweep Portable Oscilloscope $\$ 1925$
Optlons (order by Option number)
012: Model 10103 A battery pack installed, add $\$ 200$.
016 (Model 1707A): TV sync separator (may not be ordered with Option 020), add $\$ 85$.
020 (Model 1706A): same as Models 1700 A and 1701A.
020 (Model 1707A): same as Models 1700A and 1701A.

1710A

Description, 1710A

Model 1710A is a 150 MHz , dual channel, $5 \mathrm{mV} /$ div defection factor portable ascilloscope with a $6 \times 10 \mathrm{~cm}$ internal graticule cathode-ray tube. The 150 MHz bandwidth and ? os/dive expanded sweep speeds provide accurate measurements in logic and analog meaurements. Laboratory performance in a portable package make this oscilluscope equally well suited for bench applications of feld work, such as scrvicing high-speed computers or telemerry equipment.

The 1710A provides accurate measucements of high-fre. quency signals and fast sise time pulses with its $5 \mathrm{mV} / \mathrm{div}$ vertical deffection capability over the full 150 MHz bandwidth. The selectable input impedance of either 50 ohms or I megohm allon's you to select the impedance that best nits your measure. ment application. If you afe looking at a pulse from a so ohm source, you have an instant impedance mateh at the scope input "ith virtually no refections to degrade the input signal or intruduce phase shift. However, when probing high impedance (ircuits, the one megolim input is available with the fick of a swich. Its low shunt capacitance of 12 pF reduces phase shift and signal toss in pulse or $C W$ measurements.

The 1710d's time base also adds to its laboratory quality performance. Its sweep linearity is specified over the full 10 centimeters of horizontal display. The calibrated delay dial pro. vides magnification of any portion of the main sweep, and may also be used for accurate measurements of wavefotm time jiter and orher precise time intervals. Enhancong the 1710A's accurate time base is its excellent trigger capability. Internal trigger sensitivity is less than 1 division over the entire bandwideh and <0.3 div up to 20 MHz . Externally. the scope will trigger on less than 200 mV p-p. The 1710 A adds main sweep trigger flexibility with ext $\div 10$ and line sync functions not found on the other delayed sweep models

Like other 1700 series models the 1710A is rugged and lightweight without sacrificing performance. Front panel controls are grouped by funcrion for fast familiarization. The CRT presents a bright, sharp trace, especially valuable for viewing low rep-rate, fase rise pulses. The 1710 A also comes with 3 storage cover, where probes and accessories can be conveniently stored.

More information about the 1700 series oscilloscopes is located at the beginning of this section

PORTABLE, 150 MHz
 Delayed sweeps to $2 \mathrm{~ns} /$ div
 Model 1710A

Specifications, 1710A

Vertical ampllers

Modes of operatton: chanael $A_{\text {; }}$ chanael B_{i} channels A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching berween channels at approx 1 MHz rate with blanking during switching (chop); channel $A+$ channel B (algebraic addition).

Each channel (2)

Bandwidth: (3 dB down from 6 div reference signal from a 25 ohn source.)
DC-coupled: de to 150 MHz .
AC-coupled; 10 Hz to 150 MHz .
Rise time: <2.4 ns (measured from $10 \%: 090 \%$ points of 6 div input step from a 25 ohm scurce).

Deflectlon factor

Ranges: $3 \mathrm{mV} / \mathrm{div}$ to S V/div (10 calibrated positions) in 1,2, s sequence. $\pm 3 \%$ with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends maximum defection factor to 25 least $12.5 \mathrm{~V} /$ div.
Polarity: NORM or INV, selectable on channel B.
Signal delay: input signals are delayed sufficiently to view leading edge of input signals without external trigger.

Input RC (selectable)

High Z: 1 meg ohm $\pm 1 \%$ shunted by approx 12 pF .
50 ohm: $50 \mathrm{ohms} \pm 1 \%$. VSWR, <1.3:1 on all ranges.
input coupling: selectable, $A C$ or $D C$ (1 megohm), $D C$ (50 ohms), or Ground. Ground position disconnects input connector and grounds amplifer input.
Maximum input
High Z: 150 V ($\mathrm{dc}+$ peak ac) ar 1 kHz on 5 mV range increas. ing to 300 V ($\mathrm{dc}+$ peak ac) on all other ranges.
50 ohm: 10 V rms (dc-coupled input).
$A+B$ operation: bandwidth and defection factors are unchanged; channcl B may be inverted for A.B operation.
Triger source: selectabie from channel A, or normal.
Channel $A:$ all display modes triggered by channel A signal,
Normal: all display modes triggered by displayed signal except Chop. Chop rriggered by Channel A signal.
Sweep modes: Main, Mixed, and Delayed

Main time base

Sweep
Ranges: from $20 \mathrm{~ns} /$ div to $0.2 \mathrm{~s} /$ div (22 ranges) in $1,2,5 \mathrm{se}$. quence. $\pm 3 \%$ accuracy over full scale with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slowest sweep 10 at least $0.5 \mathrm{~s} /$ div. Vernier uncalibrated light indicates when vernier is not in Cal position.
Magnifler: expands all sweeps by a faccor of 20 and extends fastest sweep to $2 \mathrm{~ns} /$ div. Sweep accuracy is 5% (including 3% accuracy of the time base).
Sweep trigger mode
Normal: sweep is triggered by an internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Triggering is same as nomal above 40 Hz .
Single: in Normal mode, sweep occurs once with same triggering as normal, reset pushbutton arms sweep and lights indicator; in Auto mode, sweep occurs once each time Reset pushbutton is pressed.
Triggering
Internal: de to 20 MHz on signals causing 0.3 divisions or more vertical deffection, increasing to 1 division deflection at 150 MHz in all display modes. Triggering on line frequency is also selectable.
External: dc to 20 MHz on signals of 50 mV p.p or more, increasing to 200 mV p-p at 150 MHz .
External input RC: approx 1 megohm shunred by approx 20 pF . Level and slope
Internal: at any point on the vertical waveforn displayed. External: continuously variable from +1.5 V to -1.5 V on
either slope of the trigger signal. +15 V to -15 V in $\div 10$ on main time base only. Maximum input, $\pm 100 \mathrm{~V}$. Coupiling: AC, DC, LF REJ, or HF REJ. $A C$: attenuates signals below approx 10 Hz . LF RED: artenuates signals below approx 50 kHz . HF REJ: attenuates signals above approx 50 kHz .
Trigger holdott: time between sweeps continuously variable, exceeding one full sweep on all ranges.

Sweep

Delayed time base
Ranges: $20 \mathrm{~ns} / \mathrm{div}$ to $0.1 \mathrm{~s} / \mathrm{div}$ (21 ranges) in $\mathrm{I}, 2,5$ sequence. $\pm 3 \%$ accuracy over full scale with veroier in calibrated position. Selected independently of main time base setting (must sweep faster than main time base).
Vernter; continuously variable between all ranges, extends slowes: sweep to at least $0.25 \mathrm{~s} / \mathrm{div}$. Vernier uncalibrated light indicates when vernier is not in Cal position.
Magniffer: same as main time base.

Triggering

Internal: same as main time base.
Automatic: delayed sweep automatically starts at end of delaj" time.
Trigger: delayed sweep is ammed at end of delay period.
Level and slope: at any point on the vertical waveform displayed when in trigered mode.
Couplling: selectable, $A C$ or $D C, A C$ attenuates signals below approx 10 Hz .
Delay time: continuously variable from $0.02 \mu \mathrm{~s}$ to 2 s ; accuracy $\pm 1 \%$; lineacity $+0.2 \%$.
Delay jitter: $<0.005 \%$ (1 park in 20,000) of max. delay in each
Trace intensification: intensifies that part of main time base to be expanded to full screen in delayed time base mode. Rotating delayed time base switch from OFF position acrivates in msified mode.
Mixed time base: dual time base in which main time base deives first portion of sweep and delayed time base completes the sweep at up to 1000 times faster. Also operates in singie sweep mode.

Cathode-ray tube and controls

Type: post-accelerator, $\approx 22 \mathrm{kV}$ accelerating potential; aluminized P31 phosphor.
Graticule: 6×10 div internal graticule; 0.2 subdivisions on major horizontal and verrical major axes. I div $=1 \mathrm{~cm}$. Front panel adjustment aligns trace with graticule.
Beam finder: returns sace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intenslty modulation: $>+6 \mathrm{~V}$, de to l MHz blanks trace of any intensity. Input R, 1000 ohms $\pm 10 \%$. Maximum inpur, $\pm 10 \mathrm{~V}$ (dc + peak ac).
Calibrator

General

Type: 1 kHz , $\pm 10 \%$ squarewave.
Voltage: 1 V p.p, $=1 \%$.
Current: $5 \mathrm{~mA}, \pm 1 \%$.
Power: 115 or $230 \mathrm{~V} \pm 20 \%$, 48 to $440 \mathrm{~Hz}, 75$ VA max.
Weight
Without panel cover: net, 31 lbs ($14,1 \mathrm{~kg}$); shipping, 42 lbs ($23,7 \mathrm{~kg}$).
With panel cover and accessories: net, 34 lbs ($15,4 \mathrm{~kg}$); shipping. 46 lbs ($25,4 \mathrm{~kg}$).
Dirnensions: refer to 1700A/1701A outline drawing, and add i / s " to all chassis lenglt measurements.
Envlronment: (Oscilloscope operates within specifications over the following ranges); (emperature, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; humidity, to 95% relative humidity to $40^{\circ} \mathrm{C}$, altitude, to $15,000 \mathrm{ft}$; vibration, vibrated in three planes for 15 min . each with 0.010 inch excursion, 10 to 55 Hz .
Accessories furnished: 10115 A contrast filter, front panel storage cover, Model 10101A; two divider 10006 C probes; one ac poxer cord with right angle piug; and one instruction manual.
Price: Model 1710A Oscilloscope

The Hewlett-Packard 140 Oscilloscope System provides the versatility you need for measurements over the entire oscilloscope spectrum. With many high performance vertical and horizontal plugeins to choose from, you can head in any measuremenr direction; wide-band sampling, high-sensitivity, delayed sweep, or measurements such as time domain reflectometry, swept frequency, or spectrum analysis.

Hewlett-Packard's 140 oscilloscope system offers these capabilities:

- Sampling bandwidth to 18 GHz .
- Sampling delayed sweep time base.
- $50 \mu \mathrm{~V} /$ div deflection factors.
- Versatile single or double-size plug-in capability.
- Direcr readour TDR.
- Swepr frequency.
- Spectrum analyzer plug-ins.

In addition, the system offers standard CRT persistence in either the 140 B , or 143 A mainframes; or variable persistence and storage in the 141 B mainframes. Select from these unique measurement capabilities or from the general purpose plug-ins available.

High-performance mainframes

The advanced $140 \mathrm{~B}, 191 \mathrm{~B}$, and 143 A mainframes give you a choice between conventiona! (fixed) CRT persistence, variable persistence and storage, and $8^{\prime \prime} \times 10^{\prime \prime}$ CRT displays. As a result, the 140 system not only has an extensive plug-in capability, but also, the CRT versatility needed to meet the requirements of measurement problems today-six months from now-or in the distant future.

Because all deflection circuits are contained in the plug.ins, you get exclusive capabilities in mixing plug-ins. You can not only select the amplifier needed for the vertical axis, but also,
the particulat time base generator needed for the horizontal axis.

Further, since the 140 system CRT's have jdentical horizontal and vertical deflection factors you can use two vertical amplifiers for an X.Y display . . or one single-channel amplifien and one dual-channel amplifier to plot two variables against a third... or two identical dual-channel amplifiers for a pair of simultaneous X -Y displays.

Variable persistence and storage

The 141 B mainframe gives you all the advantages of the 1408 mainframe-plus the benefits of variable persistence and storage. At the twist of a knob, you can adjust trace persistence from 0.2 seconds to more than a minute. This variable persisrence allows you to adjust the CRT persistence to match the changing characteristics of a signal-any necessary number of traces can be held for trend comparisons, or for ficker free displays.

The Hewlett-Packard mesh storage tube offers many advantages. With the 141B CRT a stored trace has the same high contrast and visual brightness of a conventional CRT. Intecmediate trace values stand our clearly, you can easily dis. tinguish between four or five separate trace intensities. Intensity of the CRT can be varied by a front panel control, or modulated externally for X.Y.Z presentations.

18 GHz sampling with delayed sweep

You can see through P band, observe $C W$ signals to 18 GHz and beyond, and see fast pulses with 20 ps risetime capability. You can also use TDR measurements to resolve discontinuities dow'n to less than 1 cm in the design of cables, coaxial compo. nents, connectors and strip lines. In addition, the delayed sweep can be used through the full bandwidth for displays of pulse segments that leave conventional sampling scopes blurred. You also get less than 20 ps jitter to ensure steady, clear displays.

Two vertical amplifers are available. Model 1411A provides dc to 18 GHz at $1 \mathrm{mV} / \mathrm{div}$, dual-channel performance with remote samplers featuring feed-through inputs for minimum signal disturbance. The other sampling vertical amplifier, Model 1410A, gives performance to 1 GHz , with borh high.Z probes and 50 ohm inpuls-and internal triggering. Model 1425A Sampling Time Base plug.in provides delayed sweep, automatic triggering, and a movable intensified dot that makes it easy to set up the point of magnification.

$50 \mu \mathrm{~V} /$ div zero drift

The versatile HP 140 Scope System gives you six highsensitivity plug-ins specifically designed for measurement of low-level signals. For example, the 1406A vertical plug-in offers $50 \mu \mathrm{~V} /$ div deflection factors with no de drift--plus precision calibrated de offset for extreme magnification.
With the Hewletr-Packard calibrated offset feature, the 1406A gives you the advantages of a dc and ac voltmeter-four-digit readout, auto decimal placement, better than 0.5% measurement accuracy. As a do voltmeter, the 1406 A offers you the additional advantages of no drifr in the measurement instrument, and the ability to observe and measure any ac riding on the dc voltage.

2-channel 20 MHz bandwidth, 4-channel displays to 15 MHz , and delayed sweep

If you need wideband real time performance, for example, you can use the dual-trace 1402A vertical amplifer and get dc to 20 MHz (15 MHz with Model 143A) at $5 \mathrm{mV} /$ div,
algebraic addition, built-in delay line for viewing the leading edge of fast-rise pulses, full 6 div deflection and a wide dynamic range. An internal sync amplifier triggers on Channel A in dual rrace mode of operation-gives stable traces and accurate time measurements withour external triggening.

When you need to display four channels of information, you can use the 4 -trace 1404 A vertical amplifier and get dc to is MHz at $10 \mathrm{mV} /$ div or $1 \mathrm{mV} /$ div to 10 MHz , algebraic addition, and built-in delay line for viewing the leading edge of fast-rise pulses. Internal trigger circuits allow you to trigger on channel A, B, C, or D or select composite triggering. which triggers each channel índividually.
For easy readability of complex waveforms and accurate time interval measurements, Model 1421A Time Base \& Delay Generator provides calibrated time delays from 10 seconds to $0.5 \mu \mathrm{~s}$, calibrated sweep speeds from $0.2 \mu \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div. The 1421A aiso offers mixed sweep which displays the first portion of a trace at normal sweep speeds, and expands the trailing portion of the trace at faster delayed sweep speeds to allow step-by-step magnified examination.

Spectrum analyzer plug-ins for measurements in the trequency domaln

By a simple addition of Spectrum Analyzer plug-ins, you can convert your time-domain oscilloscope into a frequency. domain instrument. These spectrum analyzer plug-ins have absolute amplitude calibration, high sensitivity, low distortion, wide dynamic range, and flat frequency response.

140 Series Plug-in Selection Chart

Vertioal Plug-In	REALTIME							SAMPLING			TDR	Swept Frey.
Capabilities	1400 B	1402A	1403A	1404A	1405A	1406A	1408A	1410A	1411A/1430C	1411A/1432A	1415A	1416A
Bandwidth	500 kHz	20 MHz	400 kHz	15 MHz	5 MHz	400 kHz	500 kHz	1 GHz	18 GHz	4 GHz		
Deflection Factor/div	$100 \mu \mathrm{~V}$	5 mV	$10 \mu \mathrm{~V}$	10 mV	5 mV	$50 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	1 mV	1 mV		
Channels	1	2	1	4	2	1	2	2	2	2		
X.Y	X	X	X	X	X	X	X	X	X	X		
Delayed Sweap			1421A for Realtime					1425A for Sampling				
No Drift						X						
Max. CMRR in dB	100	40	106	40	40	60	100					
Algebraic Add.		X		X	X		X	X	X	X		
TDR											X	
Wide Band TDR									X			
Swept Freq.												X
RECOMMENDED TIME BASES												
1421A	x	X	X	X	X	x	x					
1423A	\times	X	X	X	X	X	X					
1424A								X	x	X		
1425A								X	X	X		
SPECTRUM ANALYZER SYSTEM PLUG.INS	Reter to Model Number Index for 8550 Series Plug ins.											

- 8×10 div internal graticule
- Bright display
- Convenient beam finder
- Price: $\$ 695$ (less plug-ins)

141B

- Variable persistence and storage
- Bright stored displays
- 8×10 div internal graticule
- Convenient beam fínder
- Price: $\$ 1500$ (less plug.Ins)

143A

- Large, $8 \times 10 \mathrm{in}$. viewing area
- Bright, easy-to-see displays
- 8×10 div internal graticule
- Convenient beam finder
- Price: $\$ 1500$ (less plug.ins)

Description, 140 mainframes

The HP 140 Oscilloscope System provides the versatility you need for measurements over the entire oscilloscope spectrum. With many high-performance plug-ins to choose from, you can head in any measurement direction: wideband, sampling, high sensitivity, time domain refectometry, swept frequency, and spectrum analysis.
The HP 140 -system mainframes are designed to give you high-frequency and high-sensitivity performance. The mainframe contains a post-accelerator CRT with associated control circuits and porver supplies and the power supplies for the plug-ins.
The 141B mainframe gives you all the advantages of the 140 mainframe plus the benefits of a mesh CRT with variable persistence and storage.
This variable persistence allows you to adjust CRT persistence to match the changing characteristics of a signal. Any
necessary number of traces can be held for trend comparisons or for ficker-free low-frequency displays.

With the mesh storage tube, a stored trace has the same high conrrast as a conventional CRT and intermediate trace values are easily distinguished between four or five different trace intensities. Trace intensity can be controlled from the front panel or externally modulated for X.Y-Z presentations.

Another 140 -System feature is the large screen, 8×10 inch viewing area, 143A mainframe, which is useful when the display is to be viewed from a distance or by many people at one time. The Model 143A provides high resolution displays throughout the oscilloscope spectrum with the same accuracy and linearity associated with conventional 5 -inch dis. plays.

For complete specifications about the 140 System, refer to the 140 System data sheet or contact your Hewlett-Packard field engineer.

$1400 B$

- $100 \mu \mathrm{~V} / \mathrm{div}$
- de to 500 kHz
- Differential on all ranges
- 100 d日 CMRR
- Price: $\$ 275$.

1404A

- $10 \mathrm{mV} /$ div to 15 MHz
- $1 \mathrm{mV} /$ div to 10 MHz
- Signal delay for fast rise viewing
- Selectable triggering
- Price: $\$ 1025$

1408A

- $100 \mu \mathrm{~V} /$ div-dual channel
- dc to 500 kHz
- 100 dB CMRR
- Alternate or chopped sweeps
- Price: $\$ 575$

1402A

- $5 \mathrm{mV} / \mathrm{div}$
- dc to 20 MHz -dual trace
- Slgnal delay for fast rlse vlewing
- Price: $\$ 625$

1405A

- $5 \mathrm{mV} /$ div.dual trace
- de to 5 MHz
- Algebraic addition
- Price: $\$ 350$

1421A

- 20 MHz triggering
- Delayed sweep
- Sweeps to 20 ns/div
- Price: $\$ 725$

1403A

- $10 \mu \mathrm{~V} / \mathrm{div}$
- 0.1 Hz to 400 kHz
- 106 dB CMRR
- Price: $\$ 575$

1406A

- $50 \mu \mathrm{~V} /$ div-de to 400 kHz
- No drift
- Calibrated offset for accurate ac an dc measurements
- Price: $\$ 950$

1423A

- 20 MHz triggering
- Sweeps to 20 ns/div
- Trigger hold-off
- Price: $\$ 525$

OSCILLOSCOPES

DC TO 18 GHz SAMPLING TDR, SWEPT FREQUENCY
Model 1400 series plug-ins

- $1 \mathrm{mV} /$ div at 1 GHz dual trace
- Internal triggering
- High impedance probes and 50Ω inputs
- Price: $\$ 1700$

1425A

- Delayed sweep
- Sweeps to 10 ps/div
- Triggering to 1 GHz
- Price: $\$ 2000$

1411A

- $1 \mathrm{mV} /$ div-dual trace
- Bandwidths to 18 GHz
- Remote samplers
- Price: $\$ 850$

1424A

- Triggering to 5 GHz
- Sweeps to 10 ps/div
- Direct readout on all sweeps
- Price: $\$ 1475$

1415A

- Complete TDR systam for testing cables, connectars, striplines
- Determines location, meaning, and nature of each discontinuity
- Resolves discontinuities-an inch apart
- Easy to operate
- Price: $\$ 1200$

g

1430 C

- 20 ps risetime
- Price: $\$ 2800$

$1432 A$
- 90 ps risetime
- Price: \$1100

1416A

- Speeds and simplifies swept trequency measurements
- High resolution direct readout in dB
- Low drift
- X-Y recorder outputs
- Price: $\$ 900$

For complete 140 System speclflcations, contact your Hewlett-Packard fleld engineer.

1200 Series Description

The 1200 series 500 kHz and 7 MHz oscilloscopes provide the most versatile, general purpose instruments for today's low frequency applications. These oscilloscopes are all solid-state, light-weight, reliable, stable, which makes them ideal for a variety of applications. The many features of these scopes provide accurate, versatile, easy-to-obtain and read displays. Logical arrangement of controls, a beam finder to locate offscreen displays, and automatic triggering make operation easy, which is important to persons in production line testing, system applications, and classroom or laboratory instruction.

The wide variety of instruments assure an oscilloscope that will match your measurement requirement. Basic choices for specialized or general purpose, low frequency measurement applications ate: single or dual channel 500 kHz displays, 5 $\mathrm{mV} /$ div or $100 \mu \mathrm{~V} / \mathrm{div}$ defection factors, standard or storage CRTs, and a 7 MHz , dual channel, $s \mathrm{mV} /$ div model-all available in cabinet or rack configurations. In addition, these lightweight instruments allow measurements in remote or difficult access areas such as: aircraft flight lines, communications field sites, or weapons test sites.

The 500 kHz models provide balanced inputs on all ranges and on each channel which is useful in low level audio applications. An additional feature on the dual channel models is an A vs. B mode, which displays channel A signal versus channe! B signal through identical amplifers with less than 1° phase shift up to 100 kHz .

Field effect transistors at the vertical amplifier input provide stable, low-drift operation virtually free of annoying trace
shifts caused by temperature changes, shock, and vibration. Long term stability also means less frequent calibration and lower periodic maintenance costs.
Rack versions (designated by a $\mathrm{B}, ~ " 1200 \mathrm{~B}$, " following the model number) are only $51 / 4$ inches high which saves valuable rack space and allows more instruments to be included in a rack for a more versatile system. Since these instruments are complete oscilloscopes, they offer the system user a read-out device and a convenient calibration and service tool.
In applications with displays that occur at slow rates, a storage/variable persistence CRT is available that will eliminate the annoying ficker or cetain single occurrence traces. This longer persistence is useful when displaying slowly moving bio-medical phenomena and applications where the trace or display information must persist after the exitation is removed.
Single, normal, and free run modes of sweep operation are Hexible enough for complex measurements, yet operation is simple and straight forward. The sweep time and magnifier controls provide a direct reading of a magnified sweep which reduces the chance of error and time for measurements.

Specification grouping

Due to the similarity of these oscilloscopes, the specifications have been grouped to reduce redundancy and increase usability. The layour is as follorvs: Cathode-Ray Tube (standard and storage) ; vertical amplifiers in sequence of $500 \mathrm{kHz}, 100 \mu \mathrm{~V}$ / div and $5 \mathrm{mV} / \mathrm{div}$, and $7 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{div}$; Time Base, common to all 1200 oscilioscopes; followed by combined general information.

STANDARD \& STORAGE CRT $500 \mathrm{kHz}, 100 \mu \mathrm{~V} / \mathrm{div}$
 1200 Series

1200 Series Oscilloscope Selection Chart

Feature	12004/8*	12014/8*	1202A/B*	12064/日*	1208A/B*	1217a/B*
Deflection Factor/div	0.1 mV to 20 V	0.1 mV 1020 V	0.1 mV 1020 V	5 mV to 20 V	5 mV 1020 V	5 mV to 20 V
Bandwidit	500 kHz	7 MHz				
Number of Traces	2	2	1	2	1	2
Differential Input	all ranges	all ranges	all a anges	81l renges	all ranges	all zanges (B - A)
CMRR	100 d8	100 dB	100 dB	50 dB	50 dB	30 dB
Common moda Signal Maximum	$=10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	30 div
Phase Shift (A vs 8)	1° to 100 kHz	$1^{\circ} 10100 \mathrm{kHz}$	-	1° to 100 kHz	-	-
Sweep Speeds/div	$1 \mu \mathrm{~s}$ to 5 s	$1 \mu \mathrm{~s}$ to 5 s	$1 \mu \mathrm{~s}$ to 5 s	$1 \mu \mathrm{slo} 5 \mathrm{~s}$	$1 \mu \mathrm{~s}$ to 5 s	$1 \mu \mathrm{~s}$ to 5 s
Ext. Horiz. Input	yes	yes	yes	yes	yes	yes
DC-coupled 2-axis	yes	yes	yes	yes	уез	yes
Variable Persistence and storage	no	yes	no	no	no	no
Price	\$1050	\$1900	\$790	\$895	\$715	\$1175

""A" denotes standard bench model, e.8. 1200A. " B " denotes standard rack model, e.g. 12008.

Specifications, 1200 Series

Cathode-ray tube and controls

Standard CRT

Type: mono-accelerator, 3000 V accelerating potential; P31 phosphor standard (refer to options for other phosphors).
Gra\&lcule: 8×10 div internal graticule, 0.2 subdivision markings on horizontal and vertical major axes. 1 die $=1 \mathrm{~cm}$.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intenslty modulation: +2 V signal blanks trace of normal in. tensity: +8 V signal blanks any intensity trace, DC-coupled rear panel input; amplifer risetime, approx 200 ns; input R, 5 k ohms.

Variable persistence/storage CRT

1201A/B
Type: post-accelerator, variable persistence storage tube; 10.5 kV accelerating potential; aluminized P31 phosphor.
Gratleule: 8×10 div internal graticule. 0.2 subdivision markings on major axes. 1 div $=0.95 \mathrm{~cm}$. Front panel recessed screwdriver adjustment aligns trace with graticule.
Intensity modulation: +2 volt signal blanks trace of normal intensity. +8 volt signal blanks trace of any intensity. DC. coupled input on rear panel; amplifier riserime approx 200 ns ; input R is approx $s k$ ohms.
Beam finder: returns trace to CRT screen regardless of horizontal or vertical control settings.
Persistence/storage characteristics
(Referenced to a centered 7×9 div area in STD mode and to a centered 6×8 div area in FAST mode.)
Persistence: convencional, natural persistence of P31 phosphor. approx $40 \mu \mathrm{~s}$. Variable, continuously variable from 0.2 s to >1 min. in STD mode; and from 0.2 s to 15 s in EAST mode.
Storage writing speed: STD mode, $20 \mathrm{div} / \mathrm{ms}$; FAST mode, 0.5 div/ $\mu \mathrm{s}$.

Brightness: 100 foot-lambers in write mode.
Storage time: STD writing speed, variable from approx 1 minute to >2 hours. Fast writing speed, variable from approx is s to >15 min.
Erase: pushbutton erasure takes approx 1.2 s . Write gun is blanked and sweep is reset until erasure is completed.

Vertical amplifiers
 $100 \mu \mathrm{~V}, 500 \mathrm{kHz}$
 1200A/B, 1201A/B, 1202A/B

Bandwidth: dc-coupled, de to 500 kHz ; ac-coupled, 2 Hz to 300 kHz .
Bandwidth limit switch: allows selection of upper bandwidth limit to approx 50 kHz or 500 kHz .
Risetime: $0.7 \mu \mathrm{~s}$ max.
Deflection factor
Ranges: from $0.1 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (17 positions) in 1,2 , 5 sequence.
Attenuator accuracy: $\pm 3 \%$ with vernier in calibrated position.
Verniar: continuously variable berween all ranges; extends maxium defection factor to at least $50 \mathrm{~V} /$ div.
Noise: $<20 \mu \mathrm{~V}$ measured tangentially at full bandwidth.
Input: differential or single-ended on all ranges, selectable.
Common mode
Frequency: de to 10 kHz on all ranges.
Rejection ratio: $100 \mathrm{~dB}(100,000$ to 1) with dc-coupled inpur on $0.1 \mathrm{mV} /$ div range, decreasing by $<20 \mathrm{~dB}$ per decade of deflection factor to at least 40 dB on the $0.2 \mathrm{~V} /$ div range; CMRR is at least 30 dB on the $0.5 \mathrm{~V} /$ div ranges.
Maxlmum slgnal: $\pm 10 \mathrm{~V}$ (dc + peak ac) on $0.1 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ diy ranges; $\pm 400 \mathrm{~V}(\mathrm{dc}+\mathrm{peak} a c)$ on all other ranges.
Input coupling: selectable AC ; DC , or OFF for both + and inputs.
Input RC: 1 megohm shunted by approx 45 pF ; constant on all ranges.
Maximum input: $\pm 400 \mathrm{~V}$ (dc + peak ac).
Remainlng vertical amplifler speciffcations apply only to dual channel models
Modes of operation: Channel A alone; Channel B alone; Chan. nels A and B (either Chop or Alternate); Channels A and B vs. horizontal input (Chop only); Channel A vs. B (A-vertical, B-horizontal). Chop frequency is appiox 100 kHz .
Internal trigger source: on Channel A signal for A, Chop, and Alternate displays. On Channel B signal for B display.
lsolation: $>80 \mathrm{~dB}$ between channels at 500 kHz , with shielded input connectors. OSCILLOSCOPES

Phase shift: (Channel A vs. B) $<1^{\circ}$ to 100 kHz with vermers in calibrated position.

$5 \mathrm{mV} / \mathrm{div}, 500 \mathrm{kHz}$

1205A/B, 1206A/B, 1207A/B
Bandwidth: dc-coupled, de to 500 kHz ; ac-coupled, 2 Hz to 500 kHz .
Risetima: $0.7 \mu \mathrm{~s}$ max.

Deflectlon factor

Ranges: from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div (12 positions) in 1,2 , 5 sequence.
Attenuator accuracy: $\pm 3 \%$ with vernier in calibrated posi. tion.
Vernier: continuously variable between all ranges; extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Input: differential or single-ended on all ranges, selectable.

Common mode

Frequency: dc to 10 kHz on all zanges.
Rejection ratio: 50 dB with dc-coupled inpert on $5 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ div ranges; $C M R R$ is at least 30 dB on the 0.5 $\mathrm{V} /$ div to $20 \mathrm{~V} /$ div ranges.
Maximum signal: $\pm 3 \mathrm{~V}$ ($\mathrm{dc}+\mathrm{peak} \mathrm{ac}$) on $s \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ div ranges; $\dot{\mp} 300 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on all other ranges.
Input coupling: selectable AC, DC or OFF for both + and inputs.
Input RC: 1 megolun shunted by approx 45 pF ; constant on all ranges.
Maximum linput: $\pm 400 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac).
Remaining vertical amplifier specifications apply only to dual channel models
Modes of operation: Channel A alone; Channel B alone; Channels A and B (either Chop or Alternste); Channels A and B vs, horizontal input (Chop only); Channels A vs. B (A-vertical, B-horizoncal). Chop frequency is approx 100 kHz .
Internal trigger source: on Channel A signal for A, Cbop, and Alternate displays. On Channel B signai for B display,
Isolation: $>80 \mathrm{~dB}$ between channels at 500 kHz , with shielded input connectors.
Phase shift: (Channel A vs. B) $<1 \circ$ to 100 kHz with verniers in calibrated position.

Bandwidth: dc-coupled, de to 7 MHz ; ac-coupled, 2 Hz to 7 MHz .
Risetime: 50 as max.
Deflection factor
Ranges: from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1,2 , 5 sequence.
Attenuator accuracy: $\pm 3 \%$ with vernier in calibrated posi. tion.
Verniar: continuously variable berween all ranges; éxtends maximum defection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Input RC: 1 megohm shunted by approx 35 pF ; constant on all ranges.
Input: single-ended on all ranges.
input coupling: selectable AC, DC, or OFF.
Modes of operation: Channel A alone; Channel B alone; Ctann. nels A and B (either Chop or Alternate triggered by Channel A); Channels $A^{-}+B$ (triggered by Channels $A+B$). Chop frequency is approx 100 kHz .
Differentlal Input: Channel A may be inverted for differential operation. Bandwidth and defection factors remain unchanged.
Common mode
Frequency: dc to 100 kHz .
Rejection ratio: 30 dB on 5,10 , and $20 \mathrm{mV} /$ div ranges and 20 d 8 on all other ranges.
Maximum signal: 30 div.
Internal trigger source: on Channel A signal for A, Chop, and Alternate displays; on Channel B signal for B display; on Channels $A+B$ signal for Channel $A+B$ display.

1217A/B Vertical Amplifier

FLEXIBLE SWEEP \& TRIGGER
 Direct reading magnifier
 1200 Series

Time Rase

```
All models
    Sweep
Ranges: from \(1 \mu \mathrm{~s} /\) div to \(\mathrm{S} \mathrm{s} / \mathrm{div}\) (21 positions) in \(1,2,5\) sequence. \(\pm 3 \%\) accuracy with verniec in calibmed position.
Vernler: continuously variable between ranges; extends slowest sweep to at leas \(12.5 \mathrm{~s} /\) div.
Magnifler: direct reading x10 magnifier expands fastest sweep to \(100 \mathrm{~ns} /\) div with \(\pm 5 \%\) accuracy.
Automatle triggering
Baseline is displayed in absence of an input signal.
Internal: 50 Hz to above 500 kHz ( 2 MHz in \(1217 \mathrm{~A} / \mathrm{B}\) ) on most signals causing 0.5 division or more vertical deflection, increasing to i div at 7 MHz in Models 1217A/B. Triggering on line feqquency also selectable.
External: 50 Hz to above \(1 \mathrm{MHz}(2 \mathrm{MHz}\) in \(1217 \mathrm{~A} / \mathrm{B})\) on most signals at least \(0.2 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}\), increasing to \(0.5 \mathrm{~V} \cdot \mathrm{p}\) at 7 MHz in Models \(1217 \mathrm{~A} / \mathrm{B}\).
Trigger siope: positive or negative slope on internal, external, or line trigger signals.
Amplitude salaction triggering
Internal: de to above 500 kHz on signals causing 0.5 division or more vertical deflection.
Externali de to 1 MHz on sigaals at least 0.2 V p-p. Input impedance is 1 megohm shunted by approx 20 pF .
Trlgger level and slope: internal, at any point on vertical waveform displayed; or continuously variable from +100 \(V\) to -100 V on either slope of the external trigger signal.
Telgger coupling: de or ac for external, line, or internal trig. gering. Lower ac cutoff is 2 Hz for external; 5 Hz for internal.
Internal low frequency triggering (1217A/B only): internal trigger signal is attenuated at approx 6 dB per octave for frequencies above 5 MHz .
Single sweep: selectable by front panel switch. Reset switch with armed indicator light.
Free run: selectable by front panel switch.
Maximum Input: \(\pm 350 \mathrm{~V}\) (dc + peak ac).
Horlzontal amplifler
Bandwidth: dc-coupled, de to 300 kHz ; ac-coupled, \(2 \mathrm{H}_{2}\) to 300 kHz .
Deflectlon factor
Ranges: \(0.1 \mathrm{~V} / \mathrm{div}, 0.2 \mathrm{~V} / \mathrm{div}, 0.5 \mathrm{~V} / \mathrm{div}\), and \(1 \mathrm{~V} / \mathrm{div}\).
Vernier: continuously variable berween ranges; extends maximum deflection factor to at least \(2.5 \mathrm{~V} /\) div.
Maximum input: \(\pm 350 \mathrm{~V}\) ( \(\mathrm{dc}+\) peak ac).
Input PC: 1 raegohm shunted by approx 20 pF .
Input: single-ended on all ranges.
```


Typical Horizontal Time Base

General

Calibrator

Type: line frequeacy square wave.
Output: $1 \mathrm{~V} \pm 1.5 \%$

Dimensions

Cabinet models (designated by A suffix). 8.5/16" wide x $113 / 4^{\prime \prime}$ high $\times 8.11 / 16^{\prime \prime}$ deep $(211,2 \times 298,5 \times 474,7 \mathrm{~mm})$.
Rack models (designated by B suffix) : $19^{\prime \prime}$ wide $x ~ \$ 1 / 4^{\prime \prime}$ high x $171 / 8^{\prime \prime}$ deep ovec-all ($483 \times 132,5 \times 435 \mathrm{ram}$) $153 / 8^{\prime \prime}(390.5$ mm) behind front panel.

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz , approximate watts $1200 \mathrm{~A} / \mathrm{B}, 50 \mathrm{~W} ; 120 \mathrm{AA} / \mathrm{B}, 60 \mathrm{~W} ; 1202 \mathrm{~A} / \mathrm{B}, 40 \mathrm{~W}: 1205 \mathrm{~A} / \mathrm{B}$, $45 \mathrm{~W} ; 1206 \mathrm{~A} / \mathrm{B}, 40 \mathrm{~W} ; 1217 \mathrm{~A} / \mathrm{B}, 75 \mathrm{~W}$.

Weight

1200A: net, $25 \mathrm{lbs}(11,4 \mathrm{~kg}$) ; shipping, $341 / 2 \mathrm{Jbs}(15,7 \mathrm{~kg})$.
1200B: net, $22 \frac{1}{2} \mathrm{lbs}(10,2 \mathrm{~kg}$) ; shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg})$.
1201A: ner, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$) ; shipping, $391 / 2 \mathrm{lb}(17,9 \mathrm{~kg})$.
1201B: net, $271 / 2 \mathrm{lbs}(12,5 \mathrm{~kg}$) ; shipping, $40 \mathrm{lbs}(18,2 \mathrm{~kg})$.
1202A: net, $231 / 2 \mathrm{lbs}(10,6 \mathrm{~kg})$; shipping, $33 \mathrm{lbs}(15 \mathrm{~kg})$.
1202B: net, $21 \mathrm{lbs}(9,5 \mathrm{~kg})$; shipping, $331 / 2 \mathrm{lbs}(15,2 \mathrm{~kg})$.
1205A: net, $25 \mathrm{lbs}(11,4 \mathrm{~kg}$) ; shipping. $341 / 2 \mathrm{Jbs}(15,7 \mathrm{~kg}$).
120SB: net, $22 \frac{1}{2} \mathrm{lbs}(10,2 \mathrm{~kg})$; shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg})$.
1206A: net, $231 / 2$ lbs ($10,6 \mathrm{~kg}$); shipping, $33 \mathrm{lbs}(15 \mathrm{~kg})$.
1206B: net, $21 \mathrm{Jbs}(9,5 \mathrm{~kg})$; shipping, $331 / 2 \mathrm{lbs}(13,2 \mathrm{~kg})$.
1217A: net, $241 / 2 \mathrm{lbs}(11,1 \mathrm{~kg}$) ; shipping, $341 / 2 \mathrm{lbs}(15,7 \mathrm{~kg}$).
1217B: net, $23 \mathrm{lbs}(10,4 \mathrm{~kg}$); shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg}$).
Price
Model 1200 A or 1200 B Dual Channel, $100 \mu \mathrm{~V}$ Oscilloscope
Model 1201 A or 1201 B Dual Channel, $100 \mu \mathrm{~V}$ Storage Oscilloscope$\$ 1900$

Model 1202A or 1202 B Single Channel, $100 \mu \mathrm{~V}$ Oscilloscope$\$ 790$

Model $1205 A$ or $1205 B$ Dual Channel, 5 aV Oscilloscope $\$ 895$
Model 1206A or 1206 B Single Channel, 5 mV Oscilloscope $\$ 715$
Model 1217A or 1217B Dual Channel, $5 \mathrm{mV}, 7 \mathrm{MHz}$ Oscíloscope . $\$ 1175$
Options (order by Option number)
002 (standard CRT only) : P2 phosphor in lieu of P31, no charge-
006 (rack models only): rear input terminals wired in parallel with front panel vertical and horizontal input terminals. Verticai inpur shunt capacitance is increased to approx 100 pF on 500 kHz models and to approx 85 pF on 7 MHz models. Horizontal input shunt capacitance is increased to approx 75 pl on 500 kHz and 7 MHz models.
Price: add $\$ 35$ for single channel models and $\$ 35$ for dual channel models.
007 (standard CRT only) : P7 phosphor in lieu of P31, no charge.
009 (variable persistence/scorage models only) : remote erase through rear panel banana jack, shorting to ground provides erasure, add $\$ 25$.
011 (standard CRT only): P11 phosphor in lieu of P31, no charge.
Beamfinder does not intensify display on Option 011 Oscilloscopes.
015 (500 kHz models only): vertical channel signal outputs through rear panel connectors.
Vertical output signal speciflcations
Output: $0.3 \mathrm{~V} /$ div $\pm 10 \%$, 0 V offser unaffecred bs position control setting.
日andwldth: dc to 500 kHz .
Dynamic range: $\pm 3.5 \mathrm{~V}$.
Maximum slewing rate: $12 \mathrm{~V} / \mu \mathrm{s}$ with 300 pF load.
Minimum load RC: 10 k ohms shunted by approx 300 pF . Source impedance: approx 300 ohms.
Price: single channel models, add $\$ 70$; dual channel models, add $\$ 95$.

Models 120 B and 130 C have applications in a few specialized systems and have abbreviated specifications. If complete specif. cations are required, contact your Hewlett-Packard Field Engineer.

Specifications, 120B

Time base
Range: $; \mu \mathrm{s} / \mathrm{cm}$ to $200 \mathrm{~ms} / \mathrm{cm} \pm 9 \% .1 \mu \mathrm{~s} / \mathrm{cm}$ in $\mathrm{xs} \pm 10 \%$.
Triggering
Automatic: internal, 50 Hz to 450 kHz for mose signals of 1.0 cm vertical deflection; external, 50 to 450 kHz for signals 1.5 $\mathrm{V} \mathrm{P} \cdot \mathrm{P}$.
Amplitude selection: internal, 10 Hz to 450 kHz for signals $>0.5 \mathrm{~cm}$ vertical deflection; external. 10 Hz to 450 kHz for sigmals 1.5 V p.p.
Trigger level and slope: from any foint on the vertical waveform presented on CRT; or continuously variable from -7 6 +7 volts on the negative slope of externa! sync signal.

Vertical amplifier

Bandwidth: de to 450 kHz ; lower limit 2 Hz when ac-coupled.
Deflection factor: $10 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ in 4 steps, $\pm 3 \%$: vernier extends $10 \mathrm{~V} / \mathrm{cm}$ step to at least $100 \mathrm{~V} / \mathrm{cm}$.
Maximum Input: 50 V peak ($\mathrm{dc}+\mathrm{ac}$)
Balanced input: on $10 \mathrm{mV} / \mathrm{cm}$ range, common mode rejection is at least 40 dB ; common mode signal $\pm 3 \mathrm{~V}$ peak.
Phase shift: vertical to horizontal, $\pm 2^{\circ}$ to 100 kHz (with verniers in Cal).

Horizontal amplifler

Bandwidth: de so 300 kHz ; lower limit is 2 Hz when ac.coupled.
Deflection factor: $0.1 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ in 3 steps, $\pm 5 \%$; veraier extends $10 \mathrm{~V} / \mathrm{cm}$ step 10 at least $100 \mathrm{~V} / \mathrm{cm}$.

General

Cathode-ray tube: 2700 V mono-accelerator, P31 phosphor.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ internal graticule.
Beam finder: recurns trace to CRT screen.
Intensity modulation: +20 V , pulse blanks normal entensity trace.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall (425 x $191 \times 467 \mathrm{~mm}$); hardarate furnished for quick conversion to $7^{\prime \prime}$ $\times 19^{\prime \prime}(178 \times 483 \mathrm{~mm}) \mathrm{rack}$ mouni
Weight: net, 29 lbs (13 kg) ; shipping, $35 \mathrm{Jbs}(16,9 \mathrm{~kg}$).
Power: 115 or 230 volis $\pm 10 \%$; 50 to 400 Hz : approx 90 W .
Prlce: HP Model 120 B Oscilloscope
.5625.

Specifications, 130 C

Time base
Range: $1 \mu \mathrm{~s} / \mathrm{cm}$ to $\mathrm{s} / \mathrm{s} / \mathrm{cm}, \pm 3 \%$: vernier extends s / cm step to at least $12.5 \mathrm{~s} / \mathrm{cm}$.
Magnifier: X2, Xs, X10, X20. X $50 . \pm 5 \%$ for sweeps to $0.2 \mu \mathrm{~s} /$ cm .
Automatic triggering: internal, 50 Hz to 500 kHz for signals >0.5 cm vertical deflection; external, 50 Hz to 500 kHz for signals $>0.5 \mathrm{~V} \cdot \mathrm{P}$.

Amplltude selection trlggering intemal, 10 Hz to 300 kHz for signals >0.9 em vertical defection; external, for signals $>0.5 \mathrm{~V}$ $\mathrm{p} \cdot \mathrm{P}$; dc to 300 kHz or 20 Hz to 500 kHz , ac-coupled.
Trigger level and slope: any point on the display or variable from ~ 10 to +10 V on either slope of external sync signal.

Vertical and horizontal ampliflers
Bandwldth: de ro 500 kHz ; lower limit is 2 Hz ohen ac-coupled.
Deflection factor: $0.2 \mathrm{mV} / \mathrm{cm}$ to 20 volis $/ \mathrm{cm}, 1,2,5$ sequence; accuracy $\pm 3 \%$; vernier exrends $20 \mathrm{~V} / \mathrm{cm}$ step to al least $30 \mathrm{~V} / \mathrm{cm}$.
Maximum input: 500 V peak ($\mathrm{dc}+$ peak ac).
Common mode rejectlon (de to 50 kHz): 40 dB from $0.2 \mathrm{mV} / \mathrm{cm}$ to $0.1 \mathrm{~V} / \mathrm{cm} 30 \mathrm{~dB}$ from $0.2 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ common mode signal max 4 V p-p on $0.2 \mathrm{~V} / \mathrm{cm}$ range, $40 \mathrm{~V} \mathrm{P} \cdot \mathrm{P}$ on $0.5 \mathrm{~V} / \mathrm{cm}$ co $2 \mathrm{~V} / \mathrm{cm}$ ranges, or $400 \mathrm{Vp-p}$ on $5 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ ranges.
Phase shift: $\pm 1^{\circ}$ to 100 kHz .

General

Callbrator: line frequency square wave, $500 \mathrm{mV} \pm 2 \%$.
Cathode-ray tube: 3 kV mono-accelerator.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ internal graticule.
Beam finder: renurns trace to CRT screen.
Intensity modulation: $\pm 20 \mathrm{~V}$ pulse blanks normal incensiry trace. Dimenslons: $16 \% / 4$ " wide, $71 / 2^{\prime \prime}$ high, $183 / 6^{\prime \prime}$ deep over-all (426 x $191 \times 467 \mathrm{~mm}$) ; hardware fumished for quick conversion to $7^{\prime \prime}$ $\times 19^{\prime \prime}(178 \times 843 \mathrm{~mm})$ rack mount.
Welght: ner, $31 \mathrm{lbs}(15 \mathrm{~kg}$); shipping, $38 \mathrm{lbs}(18 \mathrm{~kg})$.
Power: ils or 230 volts $\pm 10 \%$; 50 to 400 Hz ; approx 90 W .
Prlce: HP Model 130C Oscillostope
.5890.

191A TV Waveform Oscilloscope

The 191A is used for accurate displays of TV video waveforms and test signals. Its accuracy of 1% in signal amplitude measurements and positive field selection on noisy signals make this scope ideal for many video applications. Other conveniences features are: 20 kV CRT for bright, easy-to-read displays and RGB operation for color camera set-up.
Price: Model 191A TV Waveform Oscilloscope $\$ 1775$.

GENERAL PURPOSE PROBES
Time mark generators and gain calibrator Models 226A, 10411A, 10000 series

Model 226A is a high quality, time mark generator that provides 30 precision time intervals for calibrating oscilloscope time bases. Marker incervals are in a convenient 1, 2, 5 sequence to match sweecp times on all common oscilloscopes. A single, easy-ro-read front panel rotary switch provides usability without confusing nomenclature.
An optional fearure provides TTL compatible programming for marker intervals. Marker cange programming is accomplished with a six bit parallel TTL compatible, binary word to the rear panel program connector.

Specifications, 226A
Tlme mark
Ranges: from 2 ns to 10 s (30 ranges) in 1, 2, 5 sequence.
Output: $+1 \mathrm{~V} p$ into 50 ohros on all ranges. 28 intenvals from 10 ns to 10 s .
Aceuracy: $\pm 0.005 \%, 0^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}: \pm 0.002 \%$ at $25^{\circ} \mathrm{C}$ after $1 / 2$ hour warmup.
Sine wave output: 2 as and 5 ns sine wave. 1 V into 50 ohms.
Trigger frequency: same as time mark to $100 \mathrm{~ns}, 10 \mathrm{MHz}_{2}$ for all ranges faster chan 100 ns.
Programming (optional): all ranges are programmable, requires 6 parallel lines (6 bit word) and 2 aining lines. TTL comparible.

General

Dimensions: $41 / 2^{\prime \prime}$ high, $74 / 4^{\prime \prime}$ wide, $8^{\prime \prime}$ deep (114,3; 196,9: 203.2 mm).
Welght: net, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$: shipping. $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%$, 48 to 440 Hz , approx 25 warts.
Price: Model 226A Time Mark Generator $\$ 670$
Model 226A with Programming Option 003add $\$ 150$

Horizontal Gain Calibrator, 10411A

The Hewlete•Packard Model 10411A Horizontal Gain Calibrator is an instrument designed to calibrate the horizontal amplifier of 180, 181A/AR, and 182A oscilloscopes.

Specifications, 10411A

Current accuracy: $\pm 1 \%$.
Range: X1, 2. $5 \mathrm{~mA} \pm 0.025 \mathrm{~mA} ; \mathrm{X}$, $0.5 \mathrm{~mA} \pm 0.005 \mathrm{~mA} ; \mathrm{X} 10$, $0.25 \mathrm{~mA} \pm 0.0025 \mathrm{~mA}$.
Weight: net, 14 oz ($0,4 \mathrm{~kg}$); shipping, $2 \mathrm{lbs}(0,9 \mathrm{~kg}$).
Price: Model 10411A Horizontal Gain Calibrator

OSCILLOSCOPES

500 MHz Active Probe with 1:1 Gain, 1120A

(Measured with outpur connected to a 50 ohm load.)
Bandwidth (measured from a terminated 50 ohm source): dc. coupled, de to $>500 \mathrm{MHz}$; ac-coupled, $<1.5 \mathrm{kHz}$ to $>500 \mathrm{MHz}$.
Pulse response: (measured from a terminated 50 ohm source) risetime, <0.75 ns; percurbations, < $\pm 6 \%$ measured with 1 GHz sampler.
Dynamic range: $\pm 0.5 \mathrm{~V}$ with $\pm 5 \mathrm{~V}$ dc offsec.
Noise: approx 1.5 mV (measured tangentially).
Input RC: 100 k ohms, shunt capacitance approx 3 pF at 100 MHz ; with $10: 1$ or $100: 1$ dividers, shunt capacitance is $<1 \mathrm{pF}$ at 100 MHz .
Maximum Input: $\pm 100 \mathrm{~V}$.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Powar: supplied by oscilloscope plug-ins with probe power jacks or a Model 1122A probe power supply.
Length: 4 ft over-all: with Option 001, 6 ff .

Accessories furnished

Model 10241A 10;1 dívider: increases inpur R to approx 1 megohm shunted by $<1 \mathrm{pF}$ at 100 MHz .
Model 10243A 100:1 divider: increases input R to approx 1 megohm shunted by $<1 \mathrm{pF}$ at 100 MHz .
Model 10242A bandwidth limiter: reduces bandwidth to approx 27 MHz shunted by approx 6 pF and reduces gain $<2 \%$.
Also included: slip-on hook tip, $2.5^{\prime \prime}$ ground lead, spare probe tips, a slip-on BNC probe adapter, two red ID sleeves, and a probe divider adjustment tool (PN 5020-0570).
Price: Model 1120A, $\$ 395$. Model 1120 A Option 001 approx 6 ft over-all length, add $\$ 2 s$.

100 MHz Active Probe, 1124A
(Mcasured when connected to a so ohm load.)
Bandwidth (measured from a reminated 50 ohm source): dccoupled, do to 100 MHz ; ac-coupled, 2 Hz to 100 MHz .
Pulse response (measured from a terminated 50 ohm source): risetime, <3.5 ns; perturbations, 5% p-p. Measured with pulse risetime of >2.5 лs.
Attenuation ratio: $10: 1 \pm 5 \% ; 100: 1 \pm 5 \%$.
Dynamic range: X10. $\pm 10 \mathrm{~V} ; \mathrm{X} 100, \pm 100 \mathrm{~V}$.
Input RC: 10 megohms shunred by approx 10 pF .
Maximum safe input
DC-coupled: X10, $\pm 300 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz}_{\text {; }} \mathrm{X} 100$, $\pm 500 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz}$.

AC-coupled: X10, $\pm 300 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz} . \mathrm{DC}$ componenc must not exceed $\pm 200 \mathrm{~V}$; X100, $\pm 500 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz}$. DC component must not exceed $\pm 200 \mathrm{~V}$.
Accessories supplled: one $8^{\prime \prime}$ ground lead, one retractable hook tip, and two probe tip insulating caps.
Power: supplied by 1800 series plug-ins with probe power jacks or Model 1122A probe power supply.
Weight: net, 702 ($0,20 \mathrm{~kg}$); shipping, 2 lbs ($0,91 \mathrm{~kg}$).
Length: approx 5 feet over-all.
Price: HP Model J124A, S12S.

1122A Probe Power Supply

Probe driving capabllity: up to four Hewlett-Packard active probes.
Power output: -12.6 and $+15 \mathrm{~V}, \pm 3 \%$.
Power input: 115 V or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 40 \mathrm{~W}$ (with four probes).
Welght: net, $51 / 4 \mathrm{lbs}$ ($2,4 \mathrm{~kg}$); shipping, $8 \mathrm{lbs}(3.63 \mathrm{~kg}$).
Accessories supplied: four $10131 \mathrm{~B} 36^{\prime \prime}$ extender cables.
Price: HP Model 1122A, $\$ 225$.
Resistive Dividers, 10020A

Dlyislon Ratlo	Input R^{*} (ohmis)	Division Aopuragy	$\underset{(\mathrm{Pms})}{\underset{\mathrm{Max}}{\mathrm{M}} \mathrm{~V}^{* *}}$	$\begin{gathered} \text { (input C } \\ (\mathrm{pF}) \end{gathered}$
1:1	50	-	6	-
5:1	250	土 3%	9	<0.7
10:1	500	$\pm 3 \%$	12	<0.7
20:1	1000	- 3%	15	<0.7
50:1	2500	- 3%	25	<0.7
100:1	5000	$\pm 3 \%$	35	<0.7

* When terminated in 50 ohms.
** Limited by power dissipation of resistlve olement,
Length (ovar-all): approx 4 ft .
Weight: net, $1 \mathrm{lb}(0,45 \mathrm{~kg})$; shipping, $3 \mathrm{lbs}(1,36 \mathrm{~kg})$.
Accessorles supplied: blocking capacitor, BNC adapter tip, 6-32 adapter tip, alligator tip, boat extension, cable assy's $2^{\prime \prime}$ and $6^{\prime \prime}$ ground, spanner tip, insulating cap, colored slecve.
Price: Model 10020A, $\$ 100$.

Probe Accessories
Probe tips
For probes 10001A-10003A: Model 10010 C BNC adapter tip, $\$ 10$.
For probes $10004 \mathrm{~B}-10006 \mathrm{C}$ and 100012B: Model 10011A BNC adapter tip.
Price: Model $10011 \mathrm{~A}, \$ 8$

Terminations

Model 10100 C , 50 ohm feed-through, $\$ 15$.
Model $10100 \mathrm{~B}, 100$ ohm (± 2 ohm) feed-through for 1110A current probe.
Price: Model 10100B, $\$ 18$.

Attenuators: Models 10090A (2X, red), 10091A (5X, green), 10092A (10X, black) 50 ohm attenuators provide division accuracies of $\pm 3 \%$ from de to 1 GHz . Power dissipation is 2 watts average with a maximum peak of 3 kilowatts and maximum VSWR is $1.1: 1$ to 1 GHz .
Price: $\$ 25$ each.

Adapters

Model 10110A, Male BNC to dual female banana post. Price: $\$ 7$. Model 10111A, female BNC to shielded banana post. Price: $\$ 10$.
日NC tip: 100118 for $10004 \mathrm{~B} / \mathrm{C}, 10005 \mathrm{~B}, 10006 \mathrm{~B} / \mathrm{C}$ probes. $\$ 8$.

Probe tip kits

Probe tip kits, Models 10036A and 10037A, extend usefulness of $10004 \mathrm{~B} / \mathrm{C}, 10005 \mathrm{~B}, 10006 \mathrm{~B} / \mathrm{C}$, and 10012 B probes. Model 10036A consists of an assortment including tips for the following: $0.08^{\prime \prime}$ jack; $0.029^{\prime \prime}$ and $0.045^{\prime \prime}$ square pin; 0.040-0.062" dia pin; and a long pin tip. Model 10037A contains six $0.025^{\prime \prime}$ square pin tips. Price: Model 10036A, $\$ 20$; Model 10037A, $\$ 15$. Probe tip kit, Model 10035A for 10001 A-10003A probes contain pincer jaw, banana tip, pin tip, and spring tip. Price, $\$ 5$.

Viewing hoods

Model 10175A polarizer hood increases contrast and reduces glare when viewing dim traces under ambient light; price, $\$ 15$.
Model 10175B hood with removable vinyl face mask designed for use on Hewlett-Packard s" round CRT bezels; price, $\$ 20$.
Model 10176A Aexible viewing hood is for Hewlett-Packard 5" rectangular CRT bezels; price, $\$ 10$.

Slides and Slide Adapters

Bosh fxed and pivored $22^{\prime \prime}$ slides are available for slide mounting Hewletr-Packard oscilloscopes. A slide adapter kit is required for either rype slide.

1208 through 140 series modular instruments

Slide adapter: HP Part Number 1490.0721 , price, $\$ 40$.
Fixed slides: HP Part Number 1490-0714, price, $\$ 32.50$.
Pivor slides: HP Part Number 1490.0718 , price, $\$ 40$.
180AR and 181AR slidb adapter: HP PN 1490-0768, price, $\$ 22.50$.
180AR and 181AR pivot slides: HP PN 1490.0719, price, $\$ 37.50$.
180AR and 181AR fixed slides: HP PN 1490-0714, price, $\$ 32.50$.
Blank plug-ins: blank plug-ins are available for either 140 and 180 system vertical and horizontal mainframe comparcments or a double-size is also available.
140-system blank plug-Ins: vertical or horizontal, Model 10477A, price, $\$ 25$; double-size, Model 10478A, price, $\$ 30$.

180 system blank plug-ins

Vertical: Model 10408A, price, $\$ 45$.
Horizontal: Model 10409A, price, $\$ 50$.
Double size: Model 10410A, price, $\$ 60$.
Plug-in extenders
Plug-in extenders allow calibration and maintenance while a unit is operating.
140 system extender cable Model 10406A (one required for each plug-in), price, $\$ 40$.
180 system extender (metal frame extends both plug-ins) Model 10407 A , price, $\$ 75$.
Panel covers
Models 10166A and 10169 A panel covers provide front panel protection and space for probe and accessory storage for 180 series and 1200 -series cabinet instruments.

180-system cabiner instruments, HP Model 10166A, price, $\$ 30$.
1200-5ystem cabinet instruments, HP Model 10169A, price. 535.

For 180-system and 191A TV waveform oscilloscope rack model instrument panel cover, order HP PN 5060-0437, $\$ 39.50$.
Flexible Covers for 180 Series
These flexible covers, made of durable vinyl-material, are designed to fit 180 series cabiner style mainframes. The covers provide proteccion during transportation or storage and each has a slot for access to the carrying handle.
Prices: Model 10167A for 180C and 181A, 825; Madel 10170A for 183 A and 183 C , $\$ 25$; Model 10172 A for $182 \mathrm{~A}, \$ 30$.
 OSCILLOSCOPES

Description, 198A

The HP Model 198A is an economical camera for generalpurpose oscilloscope photography. In addition, this camera may be conveniently applied to normal photography of objects or surfaces which can be placed in the camera focal plane.

The camera features a Polaroidb back using the standard flat pack self-processing film, for rapid, on-the-spot results. Graticule (scale) illumination uses a simple pair of mirrors reflecting rwin curtains of light onto the surface to be photographed. The mirror system is interlocked with lens focal distance and the mechanical focusing system. When the curtains of light just meet, the CRT graticule is evenly illuminated and the camera is focused.

Graricule illumination can be set continuously on, flashed by the shutter cable-release, or set off. When on or in flash, the illomination intensity is variable. Both focusing and graticule illumination may be seen through a viewing port at the rear of the camera.
Model 198A is easily and directly mounted on any 5 -inch Hewlett-Packard oscilloscope by an adjustable clamp that locks the 198A securely in place. Bezel adapters are available for most other oscilloscopes.

Specifications, 198A

Film type: Polaroid ${ }^{(1)} 107$ Black and White ASA 3000 8-pack; Polaroid (8) 108 Color ASA $758 . p a c k .(73 \times 96 \mathrm{~mm}$). Type 107 (black and white) development time: 15 seconds. Type 108 (color) development time: 60 seconds.
Object-to-image ratio: 1:0.85.
Lens: $75 \mathrm{~mm}, f / 3.5$.

Shutter

Speeds: B, $15,1 / 2 \mathrm{~s}, 1 / 4 \mathrm{~s}, 1 / 8 \mathrm{~s}, 1 / 15 \mathrm{~s}, 1 / 30 \mathrm{~s}, 1 / 60 \mathrm{~s}$. Cable release; cable has thumbscrew lock for time exposures.
Aportures: F/3.5, $4,5.6,8,11,16,22$.
Focus: directly adjustable with camera-back closed or open. Coincidence of vertical light patterns on CRT face indicates correct focus.
Graticule illuminatlon: provided internally. Incandescent lamp and projecior/mirror system, with variable intensity control, Off, FLASH, and ON.
Power required: 4 ea Type-C, 1.5 V dry cells (graticule illumina. tion).

Synchronlzation: X.type contacts provided to trigger or synchronize other equipment with shutter release. Compatiblity

Direct: Hewlerr-Packard s-inch round and rectangular bezels ($140,180,1200$ series oscilloscopes; 8550 series spectrum analyzers, 780 series monitoring ascilloscopes, 8540,8410 network analyzer, and all other H ewlect.Packard instrumentation having a 5 -inch round CRT display.
Adapters for other oscilloscopes: refer to camera bezel adapters.
Dimensions: $7.9 / 16^{\prime \prime} \times 12.3 / 16^{\prime \prime} \times 5-13 / 16^{\prime \prime}(192 \mathrm{~mm} \times 310 \mathrm{~mm} \times$ 147 mm).
Weight: net, $61 / 2 \mathrm{lbs}(2,95 \mathrm{~kg})$; shipping, $11 \mathrm{lbs}(4,99 \mathrm{~kg})$.
Option 001: 1:0.7 object-10-image ratio, allows encire 5 -inch round
CRT to be photographed, add $\$ 50$.
Price: Model 198A Oscilloscope Camera, \$420.
"Polaroid"这 by Polarold Corp.

Description, 197A

Model 197A is a general purpose oscilloscope camera which can be used for most trace recording applications. All of the 197A controls are conveniently located outside of the camera. Control settings may be read at a glance and quickly changed if desired. Controls are also color-coded for optimum settings for most photos. The electronic shutter provides accurate exposure times from $1 / 30$ to 4 seconds. All solid-state circuits insure reliable operation. The shutter may be operated remotely by providing a closure to ground, and a contact closure is provided when the shutter is open to allow synchronization of other equipment with the camera,

A simple screwdriver adjustment allows the reduction ratio (i.e., the object to image ratio) to be varied from $1: 1$ to $1: 0.7$. This allows an optimum amount of the graticule to be photographed, which is useful for making multiple exposures or for different sized CRT's. The camera can be quickly focused using the focus knob and split-image focus plate furnished with the camera.
A technique that enhances the quality of scope photos is a vailable with the 197A camera. A low power ultraviolet (UV) light is used for exposing the black graticule lines in internal graticule CRT's. The UV light causes the CRT phosphor to glow uniformily over its entire surface. The white trace contrasts with the gray background and black graticule lines, making oscillograms taken with this camera easier to interpret.

197A

Specifications, 197A

Reduction ratio: continuously adjuscable from $1: 1$ to 1:0.7. Refer. ence scale provided on focus plate.
Lens: 75 mm . f/1.9 high transmission lens: aperture ranges $f / 1.9$ to $1 / 16$.
Shutter: electronically operated and timed shutter, with all solid. state circuits; shutter speeds are $1 / 30,1 / 15,1 / 8,1 / 4,1 / 2,1,2$. 4 sec , Time, and Bulb; shutter has a sync contact closure output for triggering external equipment and input jack for remore opera. tion.
Camera back: Polaroid ${ }^{\text {b }}$ Land Camera using pack firm Type 107 supplied; see options for other backs; backs may be interchanged withour refocusing and may be rotated in 90 .degree increments.
Mounting: quick lift on-off mounting wish positive lock; swing away to left.
Viewlng: low angle, direct viewing fexible face mask.
Multiple exposure: back moves vertically through 11 detented posi. cions at $1 / 2 \mathrm{~cm}$ per detent at $1: 0.9$ object-to-image rario.
Focus: adjustable focusing with lock.
Dimensions: $14^{\prime \prime}$ long, $101 / 2^{\prime \prime}$ high, $75 / \mathrm{g}^{\prime \prime}$ wide ($356 \times 267 \times 194$ mm) with hood; $12^{\prime \prime}$ long, $61 / 2^{\prime \prime}$ high, $75 / 8^{\prime \prime}$ wide ($305 \times 165 \times$ 194 mm) without hood.
Welght: ner, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping, $14 \mathrm{lbs}(6,4 \mathrm{~kg})$.
Power: $115 \mathrm{~V} \pm 10 \%$, $4810440 \mathrm{~Hz}, 6$ watis.
Accessories furnished: combination split image focusing plate and reduction ratio scale.
Price: Modei 197A Oscilloscope Camera, $\$ 595$.
Oplions
001: without uleraviolet light, deduct $\$ 50$.
003: Graflok@ back in place of Pularoid back; no charge.
012: modified for 230 V operation; no charge.
004: Polaroid roll back in place of Polaroid back, no charge.
"Polapold"気 by Polarold Corp.
"Grallok'退 by Graflex, Inc.

Description, 195A

Model 195 A is a high speed trace recording camera for phorographing high-speed low repetition-rate waveforms. An $80 \mathrm{~mm}, \mathrm{f} / 2.3$ lens with a $2: 1$ reduction ratio provides high light transmission for high writing speeds.

The electronic shutter employed in the 195A provides accurate exposure times from $1 / 30$ ro $\frac{1}{}$ seconds. All solid-state circuirs insure reliable operation. The shutter may be operated remotely by producing a closure to ground, and a contacr closure is provided when the shuter is open to allow synchronization of other equipment with the camera.

An ultraviolet light option allows a two-fold increase in writing speed by "post-fogging" the film. Ordinarily, a single, faint trace may not expose the film suffeciently to bring the density level above the brightness threshoid level. The gray background provided by the UV light, however, moves the race's "zero" exposure level into the gray region, where a slight increase in exposure, caused by the trace, becomes visible.

The 195A mounts directly to Hewletr-Packard Oscilloscopes with s-inch round, or rectangular CRTs without requiring a bezel adapter. The 195A will also swing away from the CRT face for easy viewing.

The camera back may be rotated from the normal forizontal position to a vertical position, alloning a 90^{5} rotation of the film format. The back can also be moved through 11 detented
positions for multiple exposures. The camera back may also be removed and replaced with a 4×5 Graflock ${ }^{\text {® }}$ back which allows use of cut or roll film, or a Polaroidit Pack Film back.

Specifications, 195A

Object-tolmage ratio: $1: 0.5$.
Lens: $80 \mathrm{~mm}, \mathrm{f} / 1.3$ high transmission lens; aperature ranges from f/1.3: $10 \mathrm{f} / 11$.
Shutter: electronically operated and rimed shutter, with all solidstate circuils; shutter speeds are $1 / 30,1 / 15,1 / 8,1 / 4,1 / 2,1,2$, 4 seconds. Time, and Bulb; shutter has a sjone contact closure output for triggering external equipment and input jack for remore operation. Shutter-Open Lighe provides visual indication when shumer is open and shotter speed control is ser to: T, B, and all other shutier speeds except $1 / 55$ and $1 / 30$ second.
Camera back: Polaroid' ${ }^{2}$ roll film holder standard; Polaroid (8) pack flm holder or Graflok backs available (see options) : backs may be interchanged without refocusing and may be rotated in 90 degree increments.
Mounting: quick lift on-off mounting with positive lock; swing away to left.
Vlewing: low-angle, direct viewing flexible face-mask,
Multiple exposure: back moves vertically through 11 detented positions.
Focus adjustable focusing with lock.
Dimenslons: $141 / 2^{\prime \prime}$ long. $93 / 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high ($368 \times 248 \mathrm{x}$ 172 mm) without hood.
Weight: net, $12 \mathrm{bbs}(5,4 \mathrm{~kg})$; shipping, $18 \mathrm{lbs}(8,2 \mathrm{~kg}\}$.
Power: $115 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz .
Accessories furnished: combination split image focusing plate and reduction ratio scale. HP Part No. 1000-0226.
Price: Model 195A Camera, 3975.
Optlons
001: with ultra violet light, add $\$ 50$.
002: Graflok back instead of roll back, no charge
003: Polaroid ${ }^{(1)}$ pack back instead of roll back, no charge.
004: modified for 230 V operation, no charge.

OSCILLOSCOPES

Model 195A is supplied with a Polaroid (8) Roll Film back and Model 197A is supplied with a Polaroid(8) Pack Film back. Either back may be ordered initially as options at no extra charge (refer to specifications), or the backs may be ordered separately. Polaroid ${ }^{(t)}$ Pack Fila back, Model 10353A, \$95. Polaroid Roll Film back, Model 10365A, \$95. Grafoke back, Model 10352A, \$85.

Note: these backs will not fit on the HP Model 198A Camera.

Models 195A, 197A, and 198A fit Hewlect-Packard S-inch rectangular and round CRT oscilloscopes and can easily be fitted to other oscilloscopes by means of bezel adapters. Model 10355A adapts to Tektronix and Eairchild 5 -inch round bezels, $\$ 20$. Model 10356A adapts 10 Tektronix 560 Scries rectangular bezels, $\$ 20$. Model 10357A adapts to Tektronix 640 Series rectangular bezels, \$2s. Model 10360A adapts Model 196A/B camera to the Hewlett. Packard rectangular bezel, $\$ 20$. Model 10361 A adapts Tektronix C12 camera to Hewlett-Packard rectangular bezel, \$20. Model 10362A adapis Tektronix C27 camera to Hewlett-Packard rectangular bezel, $\$ 20$. Model 10363 A adaprs Tektronix C30 or C40 cameras to Hewlet-Packard rectangular bezel, \$20. Model 10106A (not shown) adapts the Tektronix C30A or C31 camera to 1700 series oscilloscopes, $\$ 20$.

[^15]

The Model 10358B carrying case is constructed of fiberglass and aluminum with foam padding to protect the Model 195A, 197A, and 198A cameras to transit or storage. Price: $\$ 80$.

Other accessories

When the 4×5 Graflok back is used, various film packs and adapers may be used, some of which are shown below. Order these film packs from the manufacturer or your local camera dealer.

Model RH/50 70 mm roll film holder
50 exposures without reloading.
Grafok catalog No. 1240.
Beattie-Coleman 70 mm roll film holder available (type 4SR).

Graphic film pack adapter
Daylight load-16-exposure film packs.
Grafok caralog No. 1234.

Polaroid Land 4×5 film holder No. 545
Makes both print and negative in 20 seconds-outside the dark room.

Description, Models 1119A/B

Models $1119 \mathrm{~A} / \mathrm{B}$ are designed for use with standard $163 / 4$ inch wide Oscilloscopes. When used with scopes such as the 140 series, mounting hardware secures the instrument to the Testmobile. A Model 10479A Tilt-Table is availade for the 180 and 1200 series. Typical oscilloscope tilt angle is $\pm 40^{\circ}$ in 10° increments.

Specifications, 1119A/B

Oscilloscope compatibillty: 120, 130, 140 series direct; 180 and 1200 series with Model 10479A tilt tray: or 180 rack models with mounting plates ($\mathrm{P} / \mathrm{N} 01119-69501$).
Tilt angle: $\pm 40^{\circ}$ in 10° increments.
Dimenslons: see outhine drawing.
Wheel size: 4 -inches ($101,6 \mathrm{~mm}$).
Weight
Model $1119 \mathrm{~A}:$ ner, $34 \mathrm{lb}(15,4 \mathrm{~kg})$; shipping, $47 \mathrm{lb}(21,3 \mathrm{~kg})$.
Model 1119B: net, $46 \mathrm{ib}(20,9 \mathrm{~kg})$; shipping, $63 \mathrm{lb}(28,6 \mathrm{~kg})$.
Price
Model 1119A: Testmobile $\$ 110$.
Model 1119B: Testmobile (with Model 10480A
Storage Cabinet) $\$ 145$.
Optional accessories
Model 10480A: storage cabinet for 1119 A provides additional storage space fur accessories.
Weight: net, $20 \mathrm{lb}(9,1 \mathrm{~kg})$; shipping, $23 \mathrm{lb}(10,4 \mathrm{~kg})$.
Price: Model 10480 A (supplied with 1199B) $\$ 4 \mathrm{~s}$.
Model 10479A tilt tray: allows oscilloscopes to be placed on Testmobile without direct mounting.
Weight: net, 12 lb ($5,4 \mathrm{~kg}$); shipping, $18 \mathrm{lb}(8,2 \mathrm{~kg}$).
Price: Model 10479A tilt tray $\$ 35$.
Mounting plates: (HP Part No. 01119.69501) adapis 180 series rack model ascilloscopes to Testmobile.
Welght: net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: mounting plates (including detent wheel) $\$ 27$.

Description, 1119C/D

Models 1119C/D are for 180 and 1200 series cabinet style and 1700 series (with a 10105A Adaptes) oscilloscopes. Instruments are secured to brace assembly with mounting knobs that mate with matching holes in the scope. Typical rilt angles are $\pm 30^{\circ}$ in 10° increments. A tilt-rable shelf, Model 10479 B allows small instruments to be mounted.

Specifications, 1119C/D

OscIlloscope compatibility: 180 and 1200 series cabiner models, direst, 1700 series with Model 10105A Adapter. When used wish optional 104798B Tilt Tay, many other instruments may be placed on the Testmobile.
Tift angle: $\pm 30^{\circ}$ in 10° increments.
Dimenstons: see outline drawing.
Wheel size: 4 inches ($101,6 \mathrm{~mm}$).

Weight

Model 1119C: ner, $32 \mathrm{lb}(14,5 \mathrm{~kg})$; shipping. $43 \mathrm{lb}(19.5 \mathrm{~kg})$. Model 1119D: net, 43 lb ($19,5 \mathrm{~kg}$) ; shipping, $54 \mathrm{lb}(24,5 \mathrm{~kg}$). Price

Model 1119C: Testmobile $\$ 110$.
Model 1219D: Testmobile (with Model 10480B Storage Cabinet)
Optional accessorles
Model 104808: storage cabinet for 1119 C provides additional storage space for accessories.
Weight: ner, $11 \mathrm{lb}(5 \mathrm{~kg})$: shipping, $16 \mathrm{lb}(7,3 \mathrm{~kg})$.
Price: Model 10480B (supplied with 1i19D Testmobile) $\$ 45$.

Modet 10105A adapter plate: adapts 1700 series oscilloscopes to 1119C and 1119D Testmobiles.
Welght: ner, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: model 1010sA adapter $\$ 20$.
Model 10479B tilt tray: allows oscilloscopes to be placed on Testrobile without direct mountiag.
Weight: ret, 8 lb ($3,6 \mathrm{~kg}$); shipping, $12 \mathrm{lb}(5,4 \mathrm{~kg}$).
Price: model 10479B tile tray . 835.

Description, 1117B

Model 11178 for cabinet and rack instruments provides tilt tray angles from -15° to $+30^{\circ}$ in 712° increments. In addition, other instruments can be mounted in the standard relay racks of the lower compartment. Rack mounting depth is 23 . inches and power distribution is supplied.

Optional a ccessory drawers $3^{\prime \prime}$ and $8^{\prime \prime}$ deep are a vailable. The drawers may be installed in many vertical positions of the relay racks.

Specifications, 11178

Oscilloscope compatibility: cabinet or 19 -inch rack models. TIlt angle: -15° to $\div 30^{\circ}$ in $71 / 2^{\circ}$ steps.

TESTMOBILES
 Lightweight, compact, folds for transportation
 Models 1118A, 1116A

OSCILLOSCOPES

DimensIons: see ouline drawing,
Wheel size: 4 -inch ($101,6 \mathrm{~mm}$).
Welght: net, 91 lb ($41,3 \mathrm{~kg}$); shipping, 109 lb ($49,4 \mathrm{~kg}$).
Instrument mounting hardware supplled: 8 screws ($10-24 \times 3 / 4$) (HP Part No. 2680.0029), 8 Tinneman nuts (HP Part No. 0590.0128).

Price (less drawers): model 1117B Testmobile $\$ 225$.
Optional accessories
Model 10475A 3-inch drawer
Welght: net, 9 lb ($4,1 \mathrm{~kg}$); shipping, 13 lb ($5,9 \mathrm{~kg}$).
Price: model 10475A, 3-inch accessory drawer $\$ 40$.
Model 10476A B-Inch drawer
Weight: net, $11 \mathrm{lb}(5,4 \mathrm{~kg})$; shipping, $18 \mathrm{lb}(8,2 \mathrm{~kg})$.
Price: model 10476 A , 8 -inch accessory drawer $\$ 50$.

Description, 1118A

Model 1118A Testmobile is designed for 180 or 1200 series cabinet models, and (with a 10105A adapter) 1700 series oscilloscopes. Instruments can be tilted, rotated and vertically ad. justed. This tripod testmobile also folds for easy transportation.

Specifications, 1118A
Oscilloscope compatiblity: 180 and 1200 series cabinet models direct, 1700 series with 10150 A Adapter Plate. (Use Mlodel 119 C or D Tesmobile for 183 A or C Oscilloscopes.)
Tift angle: $\pm 45^{\circ}$.
Horizontal rotation: 360°.

Vertical height: 33 to 43 inches (838,2 to $1117,6 \mathrm{~mm}$).
Dimenslons: see outline draving.
Wheel size: 3 -inches ($76,2 \mathrm{~mm}$) with locks on moo wheels.
Weight: net, $13 \mathrm{lb}(5,9 \mathrm{~kg})$; shipping, $17 \mathrm{lb}(7,7 \mathrm{~kg})$.
Price: model 1118 A , Testmobile.
Optional accessory
Model 10105A adapter plate: adapts 1700 series oscilloscopes to 1118A Testmobiles.
Welght: net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: model 10105A adapter $\$ 20$.

Description, 1116A
Model 1116A is a lighr weight Testmobile constructed of chrome-plated tubular steel and is well suited for holding general purpose instrumentation.

Specifications, 1116A
Oscilloscope compatibility: 140 series, 180 series rack models, 1200 series rack models, and other rack width instruments.
Tilt angle: horizonral to 30° in 711° steps.
Dimenslons: see outline drawing.
Wheel slze: 4 inches ($101,6 \mathrm{~mm}$).
Welght: net, $32 \mathrm{lb}(15,5 \mathrm{~kg}$) ; shipping, $49 \mathrm{lt}(22,2 \mathrm{~kg})$.
Price: model ll16A Testmobile

GENERAL INFORMATION

Power supplies, as described on the following pages, are defined as instru. ments which transform ac input power into regulated de output power. This definition thus distinguishes power supplies from the more general category of electrical power sources which derive electrical power from other energy sources (e.g., batteries, solar cells, fuel cells), and excludes power supplies based on rotating machine principles or power supplies other than ac-to-dc types (e.g., ac-to-ac line regulators and frequency changers, dc-to-dc converters, and $\mathrm{dc} \cdot \mathrm{to} \cdot \mathrm{ac}$ inverters)

The power supply product information on the following pages is divided into two main sections: general purpose (pages 150 through 166), and special purpose (pages 167 through 171).

General Purpose Power Supplies

Within the general purpose section, the power supplies are organized in tabular form by output voltage in ascending order. Specifications for each model are presented in a single vertical column; each column is subdivided into four sub. sections: "Rating," "Performance," "Feanures," and "General."

Rating

Within the "Rating" subsection is the output voltage, output current, and model number. The following convention is observed in stating the output current ating: supplies with an adjustable current limit are listed as "O. XXXA"; supplies with a fixed, factoryset current limit are listed as "XXXA."

Performance

"Performance" information provided includes all the basic power supply specifications (load and line regulation, ripple and noise, temperature coefficient, srability, resolution, output accuracy, output impedance, and transient response). Definitions of all specifications are given in the left-hand portion of the table on page 152.

Generally speaking, Hewlett-Packard power supplies employ one of two basic circuit techniques, either (1) a transis. tor regulator, or (2) an SCR regulator. All low output power supplies use cir. cuit technique (1) because it resuits in both lower cost and better performance. Medium outpur power supplies may use either of the two techniques, or alternatively, a combination of the two in which a transistor regulator is preceded by an SCR regulator. Power supplies of
very high output employ circuit rechnique (2) because of its greater efficiency.
These two circuit techniques result in distinctly diferent performance characteristics, particularly with regard to reguiation, ripple, and transient response.

Typical specifications are as follows.

Spactflation	Transtator Regulated
Line \& Load Regulation	$0.001 \% 100.05 \%$
Ripple \& Noise	$50 \mu \mathrm{~V}$ to 1 mV
Transient Response	Less than $50 \mu \mathrm{~s}$
Speolfrastion	SCR Regulatod
Line \& Load Regulation	0.05% to 1%
Ripple \& Noise	0.1\% to 3\%
Transient Response	Less than 50-200 m

Features

The "Features" subsection of the specifications table describes the specific characteristics of various extra-performance features available on most HewlettPackard power supplies. Included are:

Output Mode: DC power supplies can provide one of four basic modes of operation: (1) Constant Voltage, where the ourpur voltage is maintained constant in spite of changes in load, line, or temperature; (2) Constant Current, where the outpur current is maintained constant in spite of changes in load, line, or temperature; (3) Citrent Limit, where the output current of a constant voltage power supply is limited to a predetermined maximum value (fixed or adjustable); and (4) Vollage Limit. where the output voltage of a constant current power supply is limited to a predetermined maximum value (fixed or ad. justable).

Auto-Series, Auto-Paraliel, and AutoTracking: Auto-Series operation is a means of obtaining a higher output voltage than that available from a single supply. Similarly, Auto-ParalleI operation is a means of obraining a higher output current than that available from a single supply. Auto Series and AutoParallel provide equal voltage and cur. rent sharing (respectively) under all load conditions; both allow the master supply alone to control the complete ensemble. Auto-Tracking operation is used when several different voltages refersed to a common bus must vary in proportion to the setting of a particular supply: it permits simultaneous turn on and turn-off of power supplies in the same system, thereby preventing application or re-
moval of main power sources withour proper bias potentials being present.

Remote Sensing: Remote sensing, a feature provided on practically all Hew. lett-Packard power supplies, is used to maintain good constant voltage load reg. ulation at loads remotely located from the power supply output terminals.

Remote Programming: Most HewlettPackard power supplies permit control of the regulated output voltage or current by means of a remotely varied resistance or voltage. Programming coefficients (the change in programming volt. age or current required for a unit change in the supply output voltage or current) and programming speeds are given in the specifications table for most remotely programmable supplies.

Overvoltage Protection Crowbar: A crowbar circuit, when connected across the output terminals of a constant volt. age power supply, provides protection against any overvoltage condition which might occur due to operator error or failure of the power supply or load. The primary characteristics (trip voltage range, trip voltage margin, and price) of the crowbars available with HewlettPackard supplies are described in the specifications table.

In addition to the above features, do output isolation and meter ranges are also given for each power supply.

General

Inpur powet ratings and connections, temperature ratings and cooling method, dimensions, weight, price, and options available are all given in the "General" specifications subsection

Photographs indicating front-panel control layout and package configuration of all power supplies listed in the general purpose (tabular) section are presented on pages 150 and 151. Noie that the photographs are grouped by type of supply; these groupings are for convenience in locating the photograph of a given supply, and are not indicated in any manner in the specifications table.

Page 166 contains a listing of all options and accessories available writh general purpose power supplies: the specific options available on a given power sup. ply are indicated in the "General" sub. section of the specifications table.

Special Purpose Power Supplies

The specia! purpose power supply section (pages 167 through 171) is organized by the particular type of supply,
each of which has it own special application areas.

Precision Constant Current Sources

Precision Constant Current Sources (page 167) are designed for applications requiting (1) more precise current regulation, (2) lower ripple and noise at low output current levels, and (3) higher output impedance and faster programming speed (better dynamic character. istics) than are available from a CV/ CC supply operating in the constant current mode. Application Note AN-128, available at no charge from your local Hewlert-Packard sales office, provides detailed applications information on Hewlett-Packard Precision Constant Current Sources.

Power Supply/Amplifiers

Power Supply/Amplifiers (page 168) are multi-purpose laboratory instruments capable of operation either as DC Power Supplies, or as High Speed, Programmable, Bipolar, DC to 20 kHz Power Amplifiers. Application Note AN.82, available at no charge from your local Hewlert-Packard sales office, presents a comprehensive description of the features and applications of Hewlett-Packard Power Supply/Amplifiers.
Also on page 168 is the Model 712C, a multiple-ourput supply designed to provide plate, bias, and filament voitages for laboratory development of vacuum tube circuits.

Modular Slot Suppsles

Modular Slot Supplies (Page 169) are intended for applications requiring a fixed, constant source of dc . The output of these supplies (nominally $6,12, \pm 15$, or 24 V) is adjustable over a $\pm 10 \%$ band, hence the name "Slor."

Digital Voltage Sources

Digital Voltage Sources (pages 170 and 171) are designed for applications requiring a computer-controllable highspeed, bipolar, accurately setrable source of $d c$ or low frequency ac power. These power supplies are actually complete digital-to-analog subsystems, incorporating input/output isolation, internal digital data storage, Hexible interfaces, programmable current latch, computer feedback signals, external analog input, and current monitoring terminals all in one compact package.

Also on page 171 is the 6933 B Digital-ro-Analog Converter; this instrument is similar to the Digital Voliage Sources except for its lowes output power rating and the elimination of the programmable current latch.

Hewlett-Packard offers another means of achieving digitally programmable dc power: The 6940A/6941A Multipro. grammer (page 404), in combination with any of the general purgose power
supplies listed on pages 152.165 as being available with Oprion 40. This combination allows control of up to 240 power supplies via a single minicomputer $1 / 0$ channel, with accuacy of 0.1% and programming speeds from 10 ms .

How to Select a Power Supply

(1) Determine whether your applica. tion requires a general purpose or special purpose power supply. If a special purpose supply is required, refer to the appropriate product page as previously described.
(2) If a general purpose supply is required, determine the desired mode of operation and proceed as follows:
For an application that primarily in. volves either Constant Voltage/Constant Current or Constant Vollage/Current Limit operation, enter the specifications table (page 152.165) at the desired vollage rating and select a supply that features "CV/CC" or "CV/CL," respectively, alongside the "Output Mode" heading.

In general. a power supply with an output voltage rating 10% higher than that required is recommended. This provides the necessary flexibility for testing and adjusting systems, or for performing "marginal checks" of a load circuit by varying the de power feeding it. In addition, for optimum performance, the current rating of the selected power supply should equal or exceed the maximum instantaneous (not average) output current demanded by the load. Peak load demands in excess of the current rating of the supply will not damage the supply; insread, the outpur current will be limited to a preselected value and the ourput voltage will drop to a loner value.
If the desired voltage/current combiration does not appear in the specifica. tions table, consider series and parallel combinations of power supplies. For automatic operation, check the "AutoSeries. Auto-Parallel, and Auto-Tracking" entry in the "Features" subsection of the table.
For an application that primarily involves Constant Current operation, use the "Output Current Index" appearing on this page to locate a suitable power supply in the specifications table.
(3) Once a power supply has been selected to fit the particular application, refer to pages $150-151$ and 166 . respectively. for photographs and option/accessory descriptions.
(4) Finally, ask your local HewlettPackard sales office for a copy of the "DC Power Supply Handbook" (AN. 90 A). This 138 -page book (available at no charge) is a comprehensive source of detailed information on the operation, performance, and connection of all Hew. lett-Packard regulated de power supplies.

Output Current Index (Genaral Purpase EV/CC Suppries Only)

Ampa	Volts	Model	Page
0.05	4000	6525A	165
0.1	100	6212A	153
0.1	320	62098	164
0.1	2000	8522A	165
0.2	50	6218A	181
0.2	160	62078	164
0.2	1000	6521A	165
0.4	25	6216A	157
0.5.1	50, 25	6220B	157
0.75	40	6202B	159
0.75, 1.5	40, 20	62008	159
0.75	100	6299A	163
1	10	6214 A	153
1	50	6228B	161
I	60	6294A	161
1.5	20	62018	155
1.5	40	6255A	159
1.5	40	6289A	159
1.5	50	6226B	161
1.5	500	6448B	165
2	25	62278	157
2.5	120	64438	163
3	7.5	62038	152
3	20	6253A	155
3	20	6284 A	155
3	24	6224B	156
3	40	62658	159
3	40	8290A	159
3	60	6296A	161
3	60	6271B	162
5	7.5	6281A	152
5	20	6285A	155
5	40	6266B	159
5	40	6291A	160
5	60	6438B	162
10	10	6282A	153
10	20	6263B	155
10	20	6285A	156
10	36	6433B	157
10	40	62678	180
15	20	64278	156
15	60	64398	162
15	60	62748	162
15, 20, 25	600, 500, 440	6483C	164
20	10	6256 B	153
20	20	62648	156
25	40	64348	160
30	40	62688	160
35	300	6479 C	164
45	20	6428B	156
50	10	62598	153
50	20	62618	156
50	40	6269B	160
50	64	6859A	162
50	220	6477C	164
100	10	6260B	154
100	36	6456B	158
100	110	6475 C	163
150	64	6472 C	162
200	15	6453A	154
300	36	6469 C	158
500.600	18.16	6466C	154
1000	8	6464 C	153

Special Purpose

Laboratory Supplies

High stability/calibrator; integrated circuit supply

General Purpose
Medium Power (120-2000 W) Laboratory Supplies

6263A, 62658, 62668, 6271B

6274日

High Power (300-11,000 W) Industrial Supplies

$6453 A-6459 A$

6428B, 6434B, 6439B

6427B, 64338, 64388, 64438

64488

6464C.6483C

$\stackrel{R}{\text { R }}$	DC Output: Voltaga and current spans indicate range over which output may be varied using front panel controls.	Volts	4-5.5V	0-7.5V	0-7.5V
$\stackrel{1}{N}$		Amps	8A	0-3A	O-5A
G	Modal		6384A	62038	6281A
	Laad Regulation: Voltage Load Regulation is given for a load current change equal to the current rating of the supply. Current Load Regulation is given for a loasd voltage change equal to the vollage rating of the supgly.	Vollage	1 mV	5 mV	Smv
		Current	NA	0.03\% plus $250 \mu \mathrm{~A}$	0.01\% plus $250 \mu \mathrm{~A}$
	Line Regulation: For a change in line volage between 103.5 and 126.5 Vac or 207 and 253 Vac at any output voltage and current within rating. Refer to Power (below) lar approprista line voltaga.	Voliage	1 mV	3 mV	0.01\% plus 2 mV
		Current	NA	0.01\% plus 250 mA	0.01\% plus $250 \mu \mathrm{~m}$
	Ripple and Noise: Rms/p-p (dc to 20MHz), at any lina voltage and under any load condition within rating.	Voirage	$1 \mathrm{mV} / 5 \mathrm{mV}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	200 $\mathrm{V} / 1 \mathrm{mV}$
		Current	NA	500 A	4 mA rms
	Temperature Caefficient: Output change ger degree Centigrade change in ambient following 30 minutes warm-up.	Voltage	3 mV	0.02\% plas 1mV	0.02\% plus $500 \mathrm{\mu V}$
		Curient	NA	0.02\% plus 2mA	0.02\% plus 2.5 mA
	Stability: Total drilt in output ovar 8 hour interval under consiant line, load, and snd ambient following 30 minutes warm-up.	Voltage	0.3\% phus 10 mV	0.1% plus 5 mV	0.1% glus 2.5 mV
		Curient	NA	0.1\% plus 10 mA	0.1% plus 12.5 mA
	Resalution: Minimum output voltage or current change that can be obtained using front panel controls.	Vollage	15 mV	5 mV	5 mV
		Current	NA	2 mA	2 mA
	Accuracy: Front Panel Meter (\% of full scale)		$\pm 3 \%$	$\pm 3 \%$	$\pm 3 \%$
	Outpui Voltage (thumbwheel-controllad supplies onlyl.		NA	NA	NA
	Output Impodance (Typical): Represented by a resistonce in series with an inductance.		0.001 ${ }^{\text {a }} 1 \mathrm{HH}$	$2 \mathrm{~m} \Omega .1 \mu \mathrm{H}$	$1 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$
	Loed Transient Gecovary; Time requirad for oulpur voltage recovery 10 within the given lavel al the nominal output voltage following a change in autput cur. rent equal to the current rating of the supply or 5 amps , whichever is smallor.	Time	50/s	50/4	$50 \mu \mathrm{~s}$
		Level	10 mV	10 mV	15 mV
	Output Mode: Canstant Voltage/Constant Curient, or Constant Voltage/Current Limited.		CV/CL	CV/CC	CV/CC
	Auto-Series, Auto-Paralla, and Auto-Tracking.		No	Yes	Yes
	Remote Sensing.		Yes	Yes	Yes
	RenoteProgramming: Resistañce Programming Coeificien!	Voltage	NA	200S $\mathrm{N} \pm 1 \%$	2002 $\mathrm{N} \pm 1 \%$
		Cutrent	N	500 $2 /$ A 10%	200 $2 / \mathrm{A} \pm 10 \%$
	Voltage Programmung Coethicient	Voltage	NA	IVIV $\pm 1 \%$	IVN $=1 \%$
		Current	NA	0.5V/A $+10 \%$	$0.2 \mathrm{~V} / \mathrm{A} \pm 10 \%$
	Speed: Typical time required to non-rapetitively program from zero to within 999% of the maximum rated output voltage, or from the maximum rated output voltage to within 0.1% of that voltage above zero. Up Programming Down Programming	No Load	NA	2 ms	1 ms
		Full Logd	NA	4 ms	2 ms
		No Load	NA	10 ms	10 ms
		Full Load	NA	5 ms	6 ms
	Ovarvoltage Trip Voltage henge: (approximate)		4.5-5.6V	2.5-10V	2.5-10V
		pping.	--	4\% of output +2 V	4% of output +2 V
	Crowar; Price:		Scandard	Option 11, 550	Option 11, \$50
	DC Outpue I solerion: Sugply may be floated at up to the given Sevsl above ground.		300 V	300 V	300 V
	Mater Ranges: (Accuracy is spacified as \% of full scale)		SV. $104 \pm 3 \%$	$\begin{aligned} & 0.9 \mathrm{~V}, 9 \mathrm{~V} \pm 3 \% \\ & 0.4 \mathrm{~A}, 4 \mathrm{~A} \pm 3 \% \end{aligned}$	$\begin{aligned} & 0.9 \mathrm{~V}, 9 \mathrm{~V} \pm 3 \% \\ & 0,6 \mathrm{~A}, 6 \mathrm{~A} \pm 3 \% \end{aligned}$
	Power:		$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{H} 2 \\ & 1.4 \mathrm{H} .120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.98 .10 \mathrm{~W} \\ & \hline \end{aligned}$	315Vac $\pm 10 \%$ 48-440 47 1.3A, 118 W
		arascions	3.Wire 5.FLEech	3.Wire EFEx.Cord	3.Wire.5.Ft. Cord
			Convection	Convection	Convection
	Oimensions (inchess):		$81 / 2 \mathrm{~W} \times 3 \% / 2 \mathrm{H} \times 12 \% \mathrm{O}$	$81 / 2 \mathrm{~W} \times 31 / 2 \mathrm{H} \times 12 \mathrm{Y} / \mathrm{O}$	$8 \% \mathrm{~W} \times 3 \% \mathrm{H} \times 14 \% \mathrm{O}$
	Waight:	Net	$12 \mathrm{lbs}, 5.4 \mathrm{~kg}$	$10 \mathrm{lbs}$.	$34 \mathrm{lds}, 8.4 \mathrm{~kg}$
		Sheo	15 sbs 6.8 sa	12.168 .5 .4 kg	16168.2280
	Price: Options Avaitable: (For complate destription, refer co paga 16 b		S250	\$179	\$230
			28	7,8,9,11,13,14,28	7,8,9,11,13,14,28

[^16]| 0-8V§ | 0-10V | 0.10 V | $0-10 \mathrm{~V}$ | $0-10 \mathrm{~V}$ | $0-10 \mathrm{~V}$ | B-10V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-1000A§ | 14 | O-1A | 0-2A | O-10A | 0-20A | 0-50A |
| 6464C | 6213A | B214A | 8113A | 6282A | 52568 | 62538 |
| 0,05\% plus 5 mV | 4 mV | 4 mV | 0.001\% plus $100 \mu \mathrm{~V}$ * | 0.01\% plus 1 mV | 0.01\% plus $200 \mu \mathrm{~V}$ | 0.0Y\% plus $200 \mu \mathrm{~V}$ |
| 0.1\% olus 1 A | NA | 500 A | NA | 0.05\% plus imA | 0.02\% olus $500 \mu \mathrm{~A}$ | 0.02\% plus 1 mA |
| 0.05\% plus 5 mV | 4 mV | 4 mV | 0.001\% | 0.01% plus 3 mV | 0.01\% plus $200 \mu \mathrm{~V}$ | 0.01\% oius $200 \mu \mathrm{~V}$ |
| 0.1\%plus IA. | NA | 750,4 | NA | 0.05\% plus imA | 0.02\% plus 500\%A | 0.02\% plus 2mA |
| $80 \mathrm{mV} / 1 \mathrm{Vt}$ | $200 \mu \mathrm{~V} / \mathrm{ImV}$ | $200 \mu \mathrm{~V} / \mathrm{ImV}$ | $40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$ | $500 \mu \mathrm{~V} / 25 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 10 \mathrm{mV}$ | $500 \mu \mathrm{~V} / 5 \mathrm{mV}$ |
| NA | NA | $150 \mu \mathrm{~A} / 500 \mu \mathrm{~A}$ | NA | 5 mA mm | 5 mA mms | 25 mA 'ms |
| 0.03\% plus 100 $\mu \mathrm{N}$ | 0.02\% plus 1 mV | 0.02\% plus 1 mV | 0.001\% plus $10 \mu \mathrm{~V}$ | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.01\% plus 200\%N | 0.01\% plus 200rV |
| 0.06\% plus 0.25A | NA | 6 mA | NA | 0.02\% plus 5 mA | 0.01\% plus 2 mA | 0.01% olas 4 mA |
| 0.3% plus 1 mV | 0.1% plus 5 mV | 0.1\% plus 5 mV | $0.01 \%+100 \mu \mathrm{~V}$ | 0.1% plus 2.5 mV | 0.03\% plus $500 \mu \mathrm{~N}$ | 0.03% plus 2 mV |
| 0.6\% plus tA | NA | 15 mA | NA | 0.1% plus 25 mA | 0.03\% plus 6 mA | 0.03\% plus 10mA |
| 8 mV | 5 mV | 5 mV | $20 \mu \mathrm{~V}$ | 2 mV | 1 mV | 1 mV |
| 1 A | NA | 75 $\mu \mathrm{A}$ | NA | 3 mA | 20mA | 50 mA |
| $\pm 2 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 2 \%$ | $\pm 2 \%$ |
| NA | NA | NA | 0.1% olus 1 mV | NA | NA | NA |
| -- | $5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $0.2 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | 0.001 ${ }^{\text {a }}$, $1 \mu \mathrm{H}$ | $100 \mu \Omega, ~ 2 \mu \mathrm{H}$ | $0.05 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ |
| $50 \mathrm{~ms}, 100 \mathrm{~ms} \dagger$ | 50us | 50, | NA | 50, | 50us | 501/5 |
| $1.5 \mathrm{~V}, 500 \mathrm{mV} 4$ | 15 mV | 15 mV | NA | 15 mV | 10 mV | 10 mV |
| CV/CC | CV/CL | CV/CC | CVICL | CV/CC | CV/CC | CV/CC |
| Yes | No | No | Yes | Yes | Y_{68} | Yes |
| Y_{65} | Na | No | Yes | Yes | Yes | Yes |
| 200ת/V $\pm 2 \%$ | NA | NA | $1 \mathrm{~K} \Omega \mathrm{~N} \pm \pm .1 \%$ | $200 \Omega / \mathrm{N} \pm 1 \%$ | $200 \Omega \mathrm{~N} \pm 1 \%$ | $200 \Omega / \mathrm{N} \pm 1 \%$ |
| 3.0S/A $\pm 2 \%$ | NA | NA | NA | $100 \Omega / \mathrm{A} \pm 10 \%$ | $10 \Omega / A \pm 10 \%$ | $4 \Omega / \mathrm{A} \pm 10 \%$ |
| 1.OV/V 51% | NA | NA | IV/V $\pm 0.1 \%$ | IV/V $\pm 1 \%$ | IV/V $\pm 1 \%$ | $1 \mathrm{~V} / \mathrm{V}=1 \%$ |
| 6. $2 \mathrm{mV} / \mathrm{A} \pm 7 \%$ | NA | NA | NA | $100 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | $25 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | $10 \mathrm{mV} / \mathrm{A} \pm 10 \%$ |
| -- | NA | NA | NA | 70 ms | 60ms | 70 ms |
| -- | NA | NA | NA | 200 ms | 60 ms | 70 ms . |
| - | NA | NA | NA | 9 sec | 5 sec | 200 ms |
| -- | NA | NA | NA | 40 ms | 40 ms | 10 ms |
| NA | NA | NA | 3-13V | 1-13V | 2-12V | 2-12V |
| NA | NA | NA | 4\% at output +2 V | 7\% of output 4 IV | 5\% of outout +IV | 5\% of output +2 V |
| NA | NA | NA | Option 11,550 | Dption 11, 556 | Standard | Slandard |
| 100 V | 300 V |
| 10V, 1200A $\pm 2 \%$ | $12 \mathrm{~V}, 1.2 \mathrm{~A} \pm 3 \%$ | $12 \mathrm{~V}, 1.2 \mathrm{~A} \pm 3 \%$ | $\begin{aligned} & 1.2 \mathrm{~V}, 12 \mathrm{~V} \pm 3 \% \\ & 250 \mathrm{~mA}, 2.5 \mathrm{~A} \pm 3 \% \\ & \hline \end{aligned}$ | $\begin{array}{r} 1.2 \mathrm{~V}, 12 \mathrm{~V} \pm 3 \% \\ -1.2 \mathrm{~A}, 12 \mathrm{~A} \pm 3 \% \end{array}$ | 12V, 24A $\pm 2 \%$ | 12V.60A $\pm 2 \%$ |
| Option 1,2,3.31,32 50A per phase @ 230 V \qquad | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.29 \mathrm{~A}, 28 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{~V} 8 \mathrm{C} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.3 \mathrm{~A}, 28 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 52 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 3.5 \mathrm{~A}, 200 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 5 \mathrm{~A}, 375 \mathrm{w} \\ & \hline \end{aligned}$ | $\begin{aligned} & 230 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 6 \mathrm{~A}, \mathrm{~B} 50 \mathrm{~W} \\ & \hline \end{aligned}$ |
| 4-Terminal Strip | 3-Wire, 5.Ft. Cord | 3-Wirs, 5.Ft. Cord | 3-Wire 5.Ft. Cord | 3-Wire, 5-FI, Cord | 3 Terminal Strip | 3-Tarminal Strip |
| Fan ${ }^{3}$ | Convection | Convection | Convection | Convecrion | Convection | Fan |
| $163 / 4 \mathrm{~W} \times 264 / 4 \mathrm{H} \times 261 / 8 \mathrm{D}$ | $51 / 4 \mathrm{~W} \times 3 \% \mathrm{H} \times 80$ | $5 \% \mathrm{~W} \times 3 \% \mathrm{HH} \times 80$ | $81 / 2 \mathrm{~W} \times 5 \% \mathrm{H} \times 121 / 2 \mathrm{D}$ | $81 / 2 \mathrm{~W} \times 5 \mathrm{KH} \times 160$ | $19 \mathrm{~W} \times 51 / 2 \mathrm{H} \times 171 / 2 \mathrm{D}$ | $18 \mathrm{~W} \times 7 \mathrm{H} \times 17 \% 0$ |
| $575 \mathrm{lbs}, 250 \mathrm{xg}$ | $4.5 \mathrm{bbs}, 2 \mathrm{~kg}$ | $4.8 \mathrm{lbs}, 2.2 \mathrm{~kg}$ | 11 lbs .5 kg | 25 lbs .13 .3 kg | $35 \mathrm{lbs}, 15.8 \mathrm{~kg}$ | 691 bs .31 .3 kg |
| fi29 1 ks 285 kg | 6.5 lbs .28 kg | 6.8 lbs, 3.1 kg | $14 \mathrm{lbs}, 6.3 \mathrm{~kg}$ | $30 \mathrm{lbs}, 13.6 \mathrm{~kg}$ | $40 \mathrm{lbs}, 18.1 \mathrm{~kg}$ | $78 \mathrm{lbs}, 35.3 \mathrm{~kg}$ |
| \$3500 | \$95 | \$120 | \$375 | \$350 | \$495 | \$695 |
| 1,2,3,5,23,31,32 | 28 | 28 | 11,28,40 | 5,7,8,9,11,13,14, 18 | $\begin{aligned} & 5,7,8,9,10,13,14,20 \\ & 27,22,27,28,40 \end{aligned}$ | $\begin{aligned} & 5,7,8,9,10,13,14 \\ & 20,21,22,26,27,40 \\ & \hline \end{aligned}$ |

[^17]POWER SUPPLIES cmulimuad

			NOW		Duâl Rangge2 Oual Ranga Outputs				
R A T	DC Volts	0-10V	0-15V		0-20V	0-40V	0-20V	0-40V	O-20V
1	Amps	0-100A	0-200A	0-600A 0-500A§	0.6A	0.3A	0.64	0.3A	0-1A
G	Mode!	62608	6463A	6466C	62048		6205B		6101a
$P$$E$$R$$F$$O$$R$$M$$M$$A$$N$$C$$E$	Load Regulation	$0.01 \% \text { plus } 200 \mu \mathrm{~V}$	0.2% glus 10 mV comb. line and load	0.05\% plus 5 mV	0.01\% plus 4mV		0.01\% plus 4mV		0.001\% glus $100 \mu \mathrm{~V}{ }^{*}$
	C	0.02\% plus 2 mA	1\% or 2A combined line and load	0.1% plus 0.6A	NA		NA		NA
	Line Regulation	0.01\% dlus $200 \mu \mathrm{~V}$	0.2% plus 10 mV comb. line and laad	0.05\% plus 5mV	0.01\% plus 4 mV		0.01\% plus 4mV		0,001\%
		0.02\% plus 2mA	1% or 2 A combined comb. line and load	0.1\% plus 0.6A	NA		NA		NA
	$\begin{array}{ll} \hline \text { Ripple and } & V \\ \text { Noise }(\text { rmspo-p) } & \text { C } \end{array}$	$500 \mu \mathrm{~V} / 5 \mathrm{mV}$	150 mV rmst	$180 \mathrm{mV} / 1 \mathrm{Vt}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$		$200 \mu \mathrm{~V} / 1 \mathrm{mV}$		$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$
		50 mA ¢ms	NA	NA	NA		NA		NA
	Temperature Coefficient	0.01\% plus $200 \mu \mathrm{~V}$	0.05\% plus 2mV	0.03\% plus $200 \mu \mathrm{~V}$	0.02\% plus 1 mV		0.02\% plus 1 mV		0.005\% plus $30 \mu \mathrm{~V}$
		0.01\% plus 8mA	1.2A	0.06% plus 0.15A	NA		NA		NA
	Stabilizy $\frac{V}{C}$	0.03\% plus 2 mV	0.25% plus 10 mV	0.2% plus 1 mV	0.1\% plus 5mV		0.1% plus 5 mV		0.01\% plus 300pV
		0.03\% pius 20mA	6A	0.5% plus 0.8A	NA		NA		NA
	Resolution $\frac{V}{C}$	1 mV	-	18 mV	10 mV		10 mV		0.002\% plus $100 \mu \mathrm{~V}$
		100 mA	-	0.54	NA		NA		NA
	Accuracy $\frac{\text { Motes }}{\text { Voltage }}$	$\pm 2 \%$	$\pm 2 \%$	$\pm 2 \%$	土3\%		$\pm 3 \%$		$\pm 3 \%$
		NA	NA	NA	NA		NA		NA
	Ousput 2	$0.02 \mathrm{~m} \Omega,\} \mu \mathrm{H}$	--	--	$25 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$		$25 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$		$0.5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$
	TransiantRecovery Time	5015	50 mst	$50 \mathrm{~ms}, 100 \mathrm{~ms} \mathrm{t}$	50,us		50us		NA
		10 mV	$150 \mathrm{mV} \uparrow$	$1.5 \mathrm{~V}, 600 \mathrm{mV}$ +	10 mV		10 mV		NA

$\begin{aligned} & E \\ & E \\ & A \\ & T \\ & U \\ & R \\ & E \\ & S \end{aligned}$	Output Mode	CV/CC	CV/CC	CV/CC	CV/CL	CV/CL	CV/CL
	Series, Par, Track.	Yes	Yos	Yes	Yes	Yes	Yes
	Remors Sensing	Yes	Yes	Yes	Yes	Yes	Yes
	R Res V	200 $2 / \mathrm{N} \pm 1 \%$	2002/V	$2002 / \mathrm{V} \pm 2 \%$	$200 \Omega \mathrm{~N} \pm 3 \%$	2005 /V 11%	$1 \mathrm{k} \Omega / \mathrm{V} \pm 0.1 \%$
	$E \quad$ Coof C	$2 \Omega / A \pm 10 \%$	$1 \Omega / \mathrm{A}$	$1.66 \Omega / \mathrm{A} \pm 2 \%$	NA	NA	NA
	$0 \quad$ Volt V	IV/V $\pm 1 \%$	0.4V/V	$1.0 \mathrm{~V} / \mathrm{V} \pm 1 \%$	IV/V $\pm 1 \%$	IV/V $\pm 1 \%$	SVIV
	T Coas C	$5 \mathrm{mV} / \mathrm{A} \pm 10 \%$	$30 \mathrm{mV} / \mathrm{A}$	$10.3 \mathrm{mV} / \mathrm{A} \leq 7 \%$	NA	NA	NA
	$\varepsilon \quad$ Up Pror NL	70 ms	--	--	2 ms (8 ms		150 ms
	P Speed FL	70ms	--	-	$7.5 \mathrm{~ms} \quad 30 \mathrm{~ms}$	$\underline{0.5 \mathrm{~ms}}$	150 ms
	${ }_{0}$ D Down Prog ${ }^{\text {NL}}$	200 ms	--	--	60 ms - 900 ms	60 ms - 90 ms	Osec
	G. Speed FL	5 ms	--	--	20 ms 80ms	20 ms -80ms	200ms
	Range	2-12V	9-17V	8-20V	2.5-44V	2.5-44V	2.5-23V
	Crowbar Margín	\$\% al output +2V	5\% of output +1 V	10\% of output V	4\% at outout +2 V	4\% al output +2 V	4\% of autout +2 V
	Price	Standard	Oplion 6. $\$ 350$	Option 06, \$500	Option 11,550	Oprion 11, \$100 (2)	Option 11, \$50
	Floating, up to:	300 V	300 V	100V	300 V	300 V	300 V
	Meter Ranges	12V, $120 \mathrm{~A}=2 \%$	20V. 200A $\pm 2 \%$	20V, 700A $\pm 2 \%$	$\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.075 \mathrm{~A} .0 .75 \mathrm{~A} \pm 3 \% \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} .50 \mathrm{~V} \pm 3 \% \\ & 0.075 \mathrm{~A} .0 .75 \mathrm{~A} \pm 3 \% \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & 120 \mathrm{~mA} .1 .2 \mathrm{~A} \pm 3 \% \end{aligned}$
$G$$E$$N$$N$$R$$A$A	Power	$\begin{aligned} & 230 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 12 \mathrm{~A}, 1600 \mathrm{~W} \\ & \hline \end{aligned}$	Option 1,2,3,31,32 14A per phase © 330V	Option 1,2,3,31,32 50A per phase 230 V	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.4 \mathrm{~A}, 24 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{VaC} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.5 \mathrm{~A} .50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vx} \pm 10 \% \\ & 48-63 \mathrm{Kz} \\ & 0.5 \mathrm{~A} 52 \mathrm{~W} \\ & \hline \end{aligned}$
	Connections	3-Terminal Strip	4.Pin Plug \& Jack	4.Terminal Strip	3. Wirs, 5-Ft. Cord	3-Wire, 5.Fi. Cord	3.Wire, 5.Ft. Cord
	Cooling	Fan	Fan	Fano	Convection	Convaction	Convection
	Dimensions (inches)	$19 W \times 74 \times 17 \% 0$	$19 \mathrm{~W} \times 14 \mathrm{H} \times 1840$	$163 / 4 \mathrm{~N} \times 261 / 4 \times 261 / 00$	$81 / 2 \mathrm{~W} \times 3 \mathrm{KH} \times 12 \% 0$	$81 / 2 \mathrm{~W} \times 3 \% \mathrm{HH} \times 124 / 20$	
	Weight $\mathrm{Net}^{\text {r }}$	$87 \mathrm{ios}, 43.8 \mathrm{~kg}$	$238 \mathrm{lbs}, 108 \mathrm{~kg}$	$500 \mathrm{lbs}, 226 \mathrm{~kg}$	$81 \mathrm{bs}, 3.6 \mathrm{~kg}$	$10 \mathrm{los}, 4.5 \mathrm{~kg}$	$10 \mathrm{lbs}, 4.5 \mathrm{~kg}$
	Weight Ship	106 lts .48 kg	$299 \mathrm{lbs}, 135 \mathrm{~kg}$	555 ibs 251 ka	$10 \mathrm{los}, 4,5 \mathrm{~kg}$	1210 $5.5 .4 \times 8$	$12 \mathrm{ks}, 5.4 \mathrm{ko}$
	Price	\$895	\$1375	52800	\$159	\$255	\$765
	Options	$5.7,8,9,10,13,44$, $16,20,21,22,27,40$	1,2,3,5,6,10,31,32	8,2,3,5,6,23,31,32	7,11,13,28	7,11.13,28	11,28,40

[^18]| Dual Ranae | | | | Two 0upuis | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-20V | 0-20V | 0-40V | 0-20V | 0-20V | 0-20V | 0-20V | $0-20 \mathrm{~V}$ |
| $0-1 A$ | 0-1.5A | 0-0.75A | 0-7.5A | 0-3A | 0-3A | 0-5A | 0-10A |
| B111A | 6200B | | 62018 | 6253A | 6284A | 6265A | 62638 |
| 0,005\% plus $100 \mu \mathrm{~V}$. | 0.01\% plus 4 mV | | 0.01\% plus 4 mV | 0.01\% plus 4 mV | 0.01\% plus 4 mV | 0,01\% plus 1 mV | 0.01\% plus 200 $\mu \mathrm{V}$ |
| NA | 0.03\% plus 250uA | | 0.03\% plus $250 \mu \mathrm{~A}$ | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.05\% plus ImA | 0.02\% plus 500رuA |
| 0.001\% | 0.01\% plus 4 mV | | 0.01\% plus 4 mV | 0.02\% plus 2 mV | 0.01\% plus 2mV | 0.04\% plus 1mV | 0.01\% plus $200 \mu \mathrm{~V}$ |
| NA | 0.01\% plus 250uA | | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.01\% alus $250 \mu \mathrm{~A}$ | 0.05\% plus 1mA | 0.02\% olus 500 $\mu \mathrm{A}$ |
| 40 $\mu \mathrm{V} / 800 \mathrm{NV}$ | 200ıV/ImV | | $200 \mathrm{pV} / 1 \mathrm{mV}$ | $200 \mu \mathrm{~V} / \mathrm{lmV}$ | $200 \mu \mathrm{~V} / 7 \mathrm{mV}$ | $500 \mu \mathrm{~V} / 25 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 10 \mathrm{mV}$ |
| NA | $500 \mu 4 \mathrm{rms}$ | | $500 \mu \mathrm{~A}$ | 2 mA mb | 2 mA rms | 3 mA mms | 3 mA ms |
| 0.001\% plus $10 \mu \mathrm{~V}$ | 0.02\% plus 1 mV | | 0.02\% plus ImV | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.02\% olus 500 jv | 0.01\% plus $200 \mu \mathrm{~V}$ |
| NA | 0.02\% plus 1mA | | 0.02\% plus ImA | 0.02\% plus 1.5 mA | 0.02\% plus 1.5 mA | 0.02\% plus 2.5 mA | 0.01% plus 2 mA |
| 0.01\% + 100 $\mu \mathrm{V}$ | 0.1% plus 5 mV | | 0.1\% plus 5 mV | 0.1% plas 2.5 mV | 0.1\% plus 2.5 mV | 0.1% plus 2.5 mV | 0.03\% plus $500 \mu \mathrm{~N}$ |
| NA | 0.1% plus 5 mA | | B. 3% plus 5 mA | 0.14 plus 7.5 mA | 0.1\% plos 7.5 mA | 0.1% plus 12.5 mA | 0.03\% plus 6ma |
| $200 \mu \mathrm{~V}$ | 10 mV | | 5 mV | 5 mV | 5 mV | 3 mV | 2 mV |
| NA | 2 mA | | 1 mA | 1 mA | 1 mA | 2 mA | 10 mA |
| $\pm 3 \%$ | $\pm 3 \%$ | | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 2 \%$ |
| 0.1\% plus 1mV | NA | | NA | NA | NA | NA | NA |
| $0.5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $20 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | | $20 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $4 \mathrm{~m} \Omega, 1 \mu R$ | $4 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $0.001 \Omega, 1 \mu H$ | $0.5 \mathrm{~m} \Omega, 1 \mu \mathrm{~K}$ |
| NA | 50, 15 | | 50\% | 50, 15 | 50 1 s | 50\% | S0hs |
| NA | 10 mV | | 10 mV | 15 mV | 15 mV | 15 mV | 10 mV |
| CV/CL | CV/CC | | CV/CC | CV/CC | EV/CC | CV/CC | CV/CC |
| Yes | Yes | | Yes | Y\&s | Yes | Yes | Yas |
| Yes | Yes | | Yes | Y85 | Yes | Yes | Yes |
| $1 \mathrm{k} \Omega N \pm 0.1 \%$ | $200 \Omega \mathrm{~N} \pm 1 \%$ | | $200 \Omega N \pm 1 \%$ | $200 \Omega / \mathrm{V} \pm 1 \%$ | 200л $\mathrm{V}=1 \%$ | 200תNV $\pm 1 \%$ | 200R/V $\pm 1 \%$ |
| NA | 500л/A | ik Ω / A | $1 \mathrm{k} \Omega / \mathrm{A} \pm 10 \%$ | 500 2 / $\pm 10 \%$ | 500Л/ $\mathrm{A} \pm 10 \%$ | 200S $/ \mathrm{A} \pm 10 \%$ | $100 \Omega / \mathrm{A} \pm 10 \%$ |
| IV/V $\pm 0.1 \%$ | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ | | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ | IV/V $\pm 1 \%$ | IV/V $\pm 1 \%$ | IV/V $\pm 1 \%$ | IVIV $\pm 1 \%$ |
| NA | 1V/A | 2V/A | $1 \mathrm{~V} / \mathrm{A}=10 \%$ | 0.33V/A $\pm 10 \%$ | 0.33V/A $\ddagger 10 \%$ | 200mV/A $\pm 10 \%$ | $50 \mathrm{mV} / \mathrm{A} \pm 10 \%$ |
| NA | 1 mS | 4 ms | 1 ms | 30 ms | 30 ms | 150 ms | 150 ms |
| NA | 3 ms | 12 ms | 3 mm | 80 ms | 80 ms | 150 ms | 160ms |
| NA | 15 ms | 30 ms | 15 ms | 400 ms | 400 ms | Srec | 7 has |
| NA | 4 ms | 10 ms | 4 ms | 100 ms | 400ms | 90 ms | 60 ms |
| 2.5-23V | 2.5-44V | | 2.5-23V | 2.5-23V | 2.5-23V | 2-22V | 2-23V |
| 4\% of output 42 V | 4\% of output +2V | | 4\% of output +2 V | 4\% of output +2V | 4\% of output +2 V | 7\% of output +1V | 5\% of ausput +1 V |
| Option 11. 850 | Option 11, 550 | | Option 11, \$50 | Option 11.\$110 | Option 11. 850 | Option 11, \$65 | Standard |
| 300 V | 300 V | | 300 V |
| $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & 120 \mathrm{~mA}, 1.2 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \end{aligned}$ | | $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V}=3 \% \\ & 4 \mathrm{~A}, 0.4 \mathrm{~A}=3 \% \end{aligned}$ | $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & 0.4 \mathrm{~A} .4 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & 0.6 \mathrm{~A}, \mathrm{BA} \pm 3 \% \end{aligned}$ | 24V, 12A $\pm 2 \%$ |
| $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 52 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{VBC} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.9 \mathrm{~A}, 70 \mathrm{~W} \end{aligned}$ | | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.8 \mathrm{~A}, 66 \mathrm{~W} \end{aligned}$ | $\begin{array}{\|l} \hline 115 \mathrm{Vac} \pm 10 \% \\ 48-440 \mathrm{~Hz} \\ 2,6 \mathrm{~A}, 235 \mathrm{~W} \\ \hline \end{array}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 1.5 \mathrm{~A}, 128 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 3.5 \mathrm{~A} .16 \mathrm{OW} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-83 \mathrm{~Hz} \\ & 4 \mathrm{~A} 350 \mathrm{~W} \\ & \hline \end{aligned}$ |
| 3.Wirs, 5.Ft. Cord | 3-Wire, 5.Ft. Cord | | 3-Wire, 5-Ft. Cord | 3.Wire, 5.Ft. Cord | 3.Wire, 5-Ft. Cord | 3.Wire, 5.Ft. Cord | 3-Wirs, 5-Fi. Cord |
| Convection | Convection | | Convection | Convection | Convection | Convection | Convection |
| 81/w $\times 5 \% \mathrm{HK} \times 12 \mathrm{KD}$ | 8\%/3N $\times 3 \% \mathrm{H} \times 12 \% \mathrm{O}$ | | $8 \mathrm{WW} \times 3 \mathrm{~K} 4 \times 12 \times 0$ | $18 \mathrm{~W} \times 3 \mathrm{YH} \times 14 \times \mathrm{D}$ | $81 / 2 W \times 3 K H \times 14 \% 0$ | $8 \% W \times 5 K H \times 160$ | $19 \mathrm{~W} \times 3 \mathrm{SH} \times 17 \mathrm{KD}$ |
| $11 \mathrm{lts}, 5 \mathrm{~kg}$ | $10 \mathrm{lts}, 4.5 \mathrm{~kg}$ | | $1016 \mathrm{c}, 4.5 \mathrm{~kg}$ | $28 \mathrm{lbs}, 12.7 \mathrm{~kg}$ | $14 \mathrm{lbs}, 6.4 \mathrm{ks}$ | 22 tbs 10 kg | 34. $\mathrm{hm}=15.4 \mathrm{kn}$ |
| $34 \mathrm{lbs}, 6.8 \mathrm{~kg}$ | $12 \mathrm{lbs}, 5.4 \mathrm{~kg}$ | | 12 fbs 5.4 kg | 3916 ll 17.7 kp | 16 lbs 7.2 xa | 24.3ts. 10.9 kr | 4) |
| S375 | \$189 | | \$179 | \$470 | 5230 | \$350 | S460 |
| 11,28,40 | 7,8,5,11,13,14,28 | | 7,8,8,11,13,14,28 | 7,8,9,10,11,13,14,28 | 7,8,9,11,13,14,28 | 5,7,8,9,11,13,14,18 | $\left[\begin{array}{l} 5,7,8,9,90,13,14,20, \\ 21,22,27,28,40 \end{array}\right.$ |

[^19]| A | DC Volts | 0-20V | 0-20V | 0-20V | 0-20V | 0-20V | 0-24V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | Amps | O-10A | 0-15A | O-20A | O-45A | 0-50A | O-3A |
| G | Model | 8285A | 8427] | 6264 B | 64288 | 62818 | B224B |
| ANCE | Luad Regulation | 0.01\% plus imV | 20 mV | 0.01\% plus $200 \mu \mathrm{~V}$ | 40 mV | 0.01\% plus $200 \mu \mathrm{~V}$ | 0.61\% plus 4mV |
| | | 0.05\% plus 1mA | 150 mA | 0.02\% plus 500 m A | 450 mA | 0.02\% plus ImA | 0.01\% plus $250 \mu \mathrm{~m}$ |
| | Line Regulation \qquad | 0.01\% plus ImV | 10 mV | 0.01\% plus $200 \mathrm{\mu V}$ | 20 mV | 0.01\% plus 200 NV | 0.01\% plus 2mV |
| | | 0.05\% plus 1 mA | 150 mA | 0.02\% plus 500 ${ }^{\text {a }}$ A | 450 mA | 0.02\% plus ImA | 0.01\% plus 250 ma |
| | $\begin{aligned} & \text { Aipple and } \\ & \text { Nolse if } \mathrm{ms} / \mathrm{p} \cdot \mathrm{D}) \end{aligned} \frac{\mathrm{V}}{\mathrm{C}}$ | $500 \mu \mathrm{~V} / 25 \mathrm{mV}$ | $40 \mathrm{mV} / 400 \mathrm{mV}+$ | $200 \mu \mathrm{~V} / 10 \mathrm{mV}$ | $40 \mathrm{mV} / 500 \mathrm{mVt}$ | $500 \mu \mathrm{~V} / 5 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 1 \mathrm{mV}$ |
| | | 5 mA rms | NA | 5 mA rms | NA | 25 mA rms | $200 \mu \mathrm{~A} / 1 \mathrm{~mA}$ |
| | Temperature Coefficient | 0.02\% pius 500 pv | 0.03\% plus 3 mV | 0.01\% olus 200 $\mu \mathrm{VV}$ | 0.03\% plus 3 mV | 0.01\% plus 200uV | 0.02% glus $500 \mathrm{\mu V}$ |
| | | 0.02\% plus 5mA | 45 mA | 0.01\% glus 2 mA | 135 mA | 0.01\% plus 4 mA | 0.02% plus 1.5 mA |
| | Stability | 0.1% plus 2.5 mV | 0.1\% plus 10 mV | 0.03\% plus $500 \mu \mathrm{~V}$ | 0.1% plus 10 mV | 0.03\% plus 2mV | 0.1% plus 2.5 mV |
| | | 0.1\% plus 25 mA | 150 mA | 0.03\% plus 8 mA | 450 mA | 0.03\% plus 10 mA | 0.1\% ples 7.5 mA |
| | Resolution $\frac{\mathrm{V}}{\mathrm{C}}$ | 3 mV | 10 mV | 2 mV | 10 mV | 2 mV | 20 mV |
| | | 3 mA | 7.5 mA | 20 mA | 22.5 mA | 50ma | 3 mA |
| | $\text { Accuracy } \frac{\text { Moter }}{\text { Voltape }}$ | $\pm 3 \%$ | $\pm 2 \%$ | $\pm 2 \%$ | $\pm 2 \%$ | $\pm 2 \%$ | $\pm 3 \%$ |
| | | NA | NA | NA | NA | NA | NA |
| | Ouzput 2 | $0.0018,1 \mu \mathrm{H}$ | $10 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $0.2 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $2 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $0.1 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | $5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ |
| | $\begin{aligned} & \text { Transient } \\ & \text { Recovery } \end{aligned} \begin{aligned} & \text { Time } \\ & \text { Lipvel } \end{aligned}$ | 50,4 | 200 mst | 50, 5 | 200 mst | 50 s | 5015 |
| | | 15 mV | 200 mVt | 10 mV | 200 mV | 10 mV | 10 mV |
| $F$$E$$A$$T$$U$$A$$E$$S$ | Output Morde | CVICC | CVICC | CV/CC | CV/Ce | CV/CC | CV/CE |
| | Series, Par., Track. | Yes | Yas | Yos | Yas | Yes | Yes |
| | Remore Sensing | Yes | Yes | $Y_{\text {es }}$ | Yes | Yes | $Y_{\text {es }}$ |
| | | 200 $2 / \sim \pm 1 \%$ | $200 \Omega N \pm 2 \%$ | 200ת/V $\pm 1 \%$ | 200ת $\mathrm{N} \pm \pm 2 \%$ | 200R/V 11% | $200 \Omega N \pm 1 \%$ |
| | | $100 \Omega / \mathrm{A} \pm 10 \%$ | 20S2/A 120\% | 10ת/A $\pm 10 \%$ | $B \Omega / A \pm 20 \%$ | $4 \Omega / \mathrm{A} \pm 10 \%$ | $500 \Omega / \mathrm{A} \pm 10 \%$ |
| | | IV/V $\pm 1 \%$ | IVIN | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ | IV/V | $1 \mathrm{~V} / \mathrm{N} \pm 1 \%$ | IV/V $\pm 1 \%$ |
| | | $100 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | -- | $25 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | -- | $10 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | 0.33V/A $\pm 10 \%$ |
| | | 150ris | - | 140 ms | - | 150 ms | 4 ms |
| | | 150 ms | - | 140 ms | -- | 150ms | 30ms |
| | | 9sac | - | 10 sec | - | 250ms | 50 ms |
| | | 70 ms | -- | 80 ms | -- | 25 ms | 15ms |
| | CrowbarRange
 | 2-22v | NA | 2.5-23V | NA | 2-23V | NA |
| | | 7\% of output +1 V | KA | 5\% of output +1 V | NA | 5\% of output +2 V | NA |
| | | Option 11, 555 | NA | Standard | NA | Standars | NA |
| | Floating, up to: | 300 y | 300 V |
| | Meter Ranges | $\begin{aligned} & 2.4 \mathrm{~V}, 24 \mathrm{~V} \pm 3 \% \\ & \mathrm{I} .2 \mathrm{~A}, 12 \mathrm{~A} \pm 3 \% \\ & \hline \end{aligned}$ | 24V, 18A $\pm 2 \%$ | 24V, $24 \mathrm{~A} \pm 2 \%$ | 24V, 50A $\pm 2 \%$ | 24V, $60 \mathrm{~A} \pm 2 \%$ | $\begin{aligned} & 3 \mathrm{~V}, 30 \mathrm{~V} \pm 3 \% \\ & 0.4 A, 4 A \pm 3 \% \end{aligned}$ |
| $\begin{aligned} & G \\ & E \\ & N \\ & N \\ & A \\ & A \\ & A \end{aligned}$ | Power | $\begin{array}{\|l\|l} \hline 115 V_{\mathrm{BC}} \pm 10 \% \\ 577-63 \mathrm{~Hz} \\ 5.5 \mathrm{~A}, 320 \mathrm{~W} \\ \hline \end{array}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 6.5 \mathrm{~A}, 450 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 8 \mathrm{~A}, 600 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 17 \mathrm{~A}, 1200 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 230 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 12 \mathrm{~A}, 150 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 1.8 \mathrm{~A}, 16 \mathrm{~W} \end{aligned}$ |
| | Connactions | 3-Wire, 5.Ft. Cord | 3-Wire, 5.Fı. Cord | 3.Terminal Strip | 3.Terminal Strip | 3.Terminal Strip | 3-Wire, 5.ft. Cord |
| | Cooling | Convection | Convection | Convection | Fan | Fan | Fan |
| | Dimansions (inches) | $8 \times W \times 5 \% \mathrm{H} \times 160$ | $19 \mathrm{~W} \times 3 \times \mathrm{H} \times 17 \% 0$ | $19 \mathrm{~W} \times 5 \% \mathrm{HH} \times 17 \%$ | $19 \mathrm{~W} \times 5 \mathrm{KH} \times 163 \mathrm{MD}$ | 19W $\times 7 \mathrm{H} \times 17 \% \mathrm{~L}$ | 51/8W $\times 6 \% \mathrm{H} \times 110$ |
| | Weight $\frac{\text { Ner }}{\text { Ship }}$ | $26 \mathrm{lbs}, 10.8 \mathrm{~kg}$ | $36 \mathrm{los}, 18.3 \mathrm{~kg}$ | $47 \mathrm{lbs}, 21.3 \mathrm{~kg}$ | $87 \mathrm{lbs}, 30.4 \mathrm{~kg}$ | $78 \mathrm{lbs}, 35.3 \mathrm{~kg}$ | $16 \mathrm{lbs}, 7.3 \mathrm{~kg}$ |
| | | $29 \mathrm{lbs}, 13.1 \mathrm{ko}$ | $501 \mathrm{ls}, 22.7 \mathrm{~kg}$ | $54 \mathrm{lbs,24.5} \mathrm{\times 9}$ | $85.1 \mathrm{ss}, 38.5 \mathrm{~kg}$ | $87 \mathrm{lts}, 39.4 \mathrm{~kg}$ | $21 \mathrm{lbs}, 9.5 \mathrm{~kg}$ |
| | Price | \$395 | \$395 | \$550 | S575 | \$785 | \$365 |
| | Options | $\begin{aligned} & 5,7,8,9,11,13,14 \end{aligned}$ | 5.10,17,18 | $\begin{aligned} & 5,7,8,9,10,13,14,20, \\ & 21,22,27,28,40 \end{aligned}$ | 5,10,17,18 | $\begin{aligned} & 5,7,8,9,10,13,14,20 \\ & 2,22,26,27,40 \\ & \end{aligned}$ | 13,14,28,40 |

[^20]

$4 m V$	4 mV	0.01\% dius 2 mV	0.01\% plus 1 mV	0.3% ar 30 mV	0.01\% plus 4 mV	36 mV
NA	$500 \mu \mathrm{~A}$	0.01\% plus 250pa	0.01\% plus 250uA	NA	NA	100 mA
4 mV	4 mV	0.01\% plus 2mV	1 mV	0.3% ar 15 mV	0.01\% plus 4 mV	18 mV
NA	500 10	0.01\% plus 250رA	100رuA	NA	NA	100 mA
$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	200رV/1mV	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$250 \mu \mathrm{~V} / 4 \mathrm{mV}$	$160 \mu \mathrm{~V} \mathrm{fms}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$36 \mathrm{mV} / 400 \mathrm{mVt}$
NA	$180 \mu \mathrm{~A} / 500 \mu \mathrm{~A}$	200 $\mu \mathrm{A} / 1 \mathrm{~mA}$	250 $\mu \mathrm{A} / 2 \mathrm{~mA}$	NA	NA	NA
0.02\% plus 1 mV	0.02\% plui imV	0.02\% plus 1 mV	0.02\% glus $200 \mu \mathrm{~V}$	-	0.02\% plus ImV	0.03\% plas 5 mV
NA	2 mA	0.02\% pius 1mA	0.02\% plus $300 \mu \mathrm{~A}$	NA	NA	30 mA
0.1% plus 5 mV	0.1\% plus 5 mV	0.1\% plus 5 mV	0.2% plus 2 mV	--	0.1\% plus 5 mV	0.1\% plus 15mV
NA	5 mA	0.1% plus 5 mA	0.2\% plus 3 mA	NA	NA	100 mA
5 mV	5 mV	40 mV	5 mV	--	10 mV	9 mV
NA	$20 \mu \mathrm{~A}$	1 mA	1 mA	NA	NA	5 mA
43\%	$\pm 3 \%$	$\pm 3 \%$	$\pm 2 \%$	--	$\pm 3 \%$	$\pm 2 \%$
NA	NA	NA	NA	NA	NA	NA
20ms, $1 \mu \mathrm{~K}$	$20 \mathrm{~m} \Omega, 1 \mu \mathrm{~K}$	$20 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$	$4 \mathrm{~m} \Omega, 2 \mu \mathrm{H}$	$0.2 \Omega, 30 \mu H$	$40 \mathrm{~m} \Omega, 2 \mu \mathrm{H}$	$10 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$
50Ms	50/s	5018	50Ms	--	50/s	$200 \mathrm{~ms} \dagger$
15 mV	15 mV	10 mV	10 mV	--	10 mV	200 mVt

CVICL	CVICS	CV/CC		CV/CC	CV/CL	cV/CL	CV/CC
No	No	$Y_{\text {B }}$		Yes	No	Yes	Yes
No	No	Yes		Yes	No	Y_{63}	Yes
NA	NA	200ת $/ \mathrm{N} \pm 1 \%$		2002/V $\pm 1 \%$	NA	300 $\Omega / \mathrm{L} \pm 1 \%$	$200 \Omega / \mathrm{V} \pm 2 \%$
NA	NA	$1 \mathrm{k} \Omega / \mathrm{A}$	2*S2/A	600 $2 / \mathrm{A} \pm 10 \%$	NA	NA	$30 \mathrm{R} / \mathrm{A} \pm 20 \%$
NA	NA	IVN $\pm 1 \%$	$1 \mathrm{~V} / \mathrm{V} \pm 1 \%$	$\underline{V} / \mathrm{N} \pm 1 \%$	NA	$1 \mathrm{~V} / \mathrm{V} \pm 1 \%$	IV/N
NA	NA	IV/A	2V/A	$500 \mathrm{mV} / \mathrm{A} \pm 30 \%$	NA	NA	-
NA	NA	12 ms	50 ms	20 ms	NA	12 ms - 50 ms	--
NA	NA	30 ms	120 ms	50ms	NA	30 ms - 120 ms	-
NA	NA	200 ms	400 ms	200 ms	NA		--
NA	NA	30 ms	120 ms	100 ms	NA	$140 \mathrm{~ms} \quad 50 \mathrm{~ms}$	--
NA	NA	NA		5-28V	NA	2.5-66V	NA
NA	NA	NA		7% of output +1.5 V	NA	4% of oulpul +2 V	NA
NA	NA	NA		Standard	NA	Option 11, \$50	NA
300 V	300 V	300 V		300 V	400 V	300 V	300 y
30V, 500mA $\pm 3 \%$	30V, 500 mA 土 3%	$\begin{aligned} & 6 \mathrm{~V}, 50 \mathrm{~V} \pm 39 \\ & 0.12 \mathrm{~A}, 1.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3 \% \\ & \mathrm{~A} \pm 3 \% \\ & \hline \end{aligned}$	30V. $2.4 \mathrm{~A} \pm 2 \%$	$\begin{aligned} & 10 \mathrm{~V}, 30 \mathrm{~V} \\ & 10,300,100,300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 7 \mathrm{~V}, 70 \mathrm{~V} \pm 3 \% \\ & 0.12 \mathrm{~A}, 1.2 \mathrm{~A} \pm 3 \% \\ & \hline \end{aligned}$	40V. $12 \mathrm{~A} \pm 2 \%$

$\begin{aligned} & 115 V_{\mathrm{BC}} \pm 10 \% \\ & 48-440 H_{2} \\ & 0.25 \mathrm{~A}, 25 \mathrm{~W} \\ & \hline \end{aligned}$	$185 \mathrm{Vac} \pm 10 \%$ 48-440Hz 0.25A, 26W	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 44 \mathrm{~W} \\ & \hline \end{aligned}$	115 or 230Vac $\pm 10 \%$ switch, $48-63 \mathrm{~Hz}$ 2.14, 260 We e115V	$\begin{aligned} & 11500230 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 18 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 4 \mathrm{~B}-440 \mathrm{H} 2 \\ & 1 \mathrm{~A}, 66 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{VBC} \pm 10 \% \\ & 57-63 \mathrm{HZ} \\ & 7 \mathrm{~A}, 450 \mathrm{~W} \\ & \hline \end{aligned}$
3-Wire, 5-Ft. Cord	3.Wire, 6.Ft. Cord	3.Wire, 5.Ft. Cord	3-Wire, 5-Ft. Cord	3-Wire, 5.Fi. Cord	3-Wire, 5.fi. Cord	3.Wire, 5.Fi. Cord
Convection	Convection	Convection	Convection	Convection	Convection	Convection
$5 \% \mathrm{~W} \times 3 \% \mathrm{~K} \times 80$	$5 \% \mathrm{~W} \times 3 \times 4 \times 80$	$51 / 8 \mathrm{~W} \times 5 \% \mathrm{KH} \times 110$	$734 \mathrm{~W} \times 676 \mathrm{H} \times 12380$	$7 \mathrm{~W} \times 43 / 8 \mathrm{H} \times 5 \% \mathrm{D}$	$88 / 2 \mathrm{~W} \times 3 \% \mathrm{H} \times 12 \% 0$	$19 \mathrm{~W} \times 3 \% \mathrm{KH} \times 17 \% 0$
$4.51 \mathrm{bs}, 2 \mathrm{~kg}$	$4.816 \mathrm{~s}, 2.2 \mathrm{~kg}$	$13 \mathrm{lbs}, 5,3 \mathrm{ko}$	$2416 \mathrm{c}, 11 \mathrm{~kg}$	$4168,18 \mathrm{~kg}$	$101 \mathrm{los}, 4.5 \mathrm{~kg}$	$33 \mathrm{lbs}, 14.9 \mathrm{~kg}$
$6.5 \mathrm{jbs}$.	$8.8 \mathrm{lgs}, 3,1 \mathrm{~kg}$	$15 \mathrm{lcss}, 6,8 \mathrm{~kg}$	$28 \mathrm{lbs}, 12.9 \mathrm{~kg}$	$71 \mathrm{bs}, 3.2 \mathrm{~kg}$	$13 \mathrm{lbs}, 5.4 \mathrm{~kg}$	$48 \mathrm{los}, 21.7 \mathrm{~kg}$.
\$95	S120	S276	\$495	S165	5179	S370
28	28	13,84,28,40	7,8,9,13,14	NA	7,11,13,28	5,10,17,18

-- indicates that information was not available at time of printing.
NA indicales Nor Applicabla.

Two Dual
Gange Outputs

[^21]| Dual Range | | | Two Outputs | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.40 V | 0-40V | 0-20V | 0-40V | 0-40V | 0-40V | 0.40 V | 0-40V |
| $0-0.75 \mathrm{~A}$ | 0-0.76A | 0-1.6A | 0-1.5A | 0-1.5A | 0-3A | 0-3A | 0-5A |
| 62028 | 62008 | | 6255A | 6289A | 6265B | 5290A | 6266B |
| 0.01\% plus 4 mV | 0.01\% plus 4mV | | 0.01\% plus 2mV | 0.01\% glus 2mV | 0.01\% plus $200 \mu \mathrm{~N}$ | 0.01\% plus 1 mV | 0.01\% plus $200 \mu \mathrm{~N}$ |
| 0.03\% plus $250 \mu \mathrm{~A}$ | 0.03\% puos $250 \mu \mathrm{~A}$ | | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.02\% plus $500 \mu \mathrm{~A}$ | 0.05\% plus 1mA | 0.02\% plus $500 \mu \mathrm{~A}$ |
| 0.01\% plus 4 mV | 0.01\% plus 4 mV | | 0.01\% plus 2 mV | 0.01\% plus 2mV | 0.01\% plus 200 $\mu \mathrm{V}$ | 0.01\% plus ImV | 0.01\% plus 200, V |
| 0.03\% plus $250 \mu \mathrm{~A}$ | 0.01\% pless 250 ${ }^{\text {a }}$ | | 0.01\% plus 250 $\mu \mathrm{A}$ | 0.01\% plus 250un | 0.02\% plus 500ua | 0.05\% plus 1 mA | 0.02\% plus $500 \mu \mathrm{~A}$ |
| $200 \mu \mathrm{~V} / \mathrm{mV}$ | $200 \mu \mathrm{~V} / \mathrm{TmV}$ | | $200 \mu \mathrm{~V} / \mathrm{ImV}$ | $200 \mathrm{~N} / \mathrm{ImV}$ | $200 \mu \mathrm{~V} / 10 \mathrm{mV}$ | $500 \mu \mathrm{~V} / 25 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 10 \mathrm{mV}$ |
| $500 \mathrm{\mu A}$ ems | sogua rms | | $500 \mu \mathrm{Arms}$ | 5000 L | 3 mA rms | 3 mA ms | 3 mA rms |
| 0.02\% plus 1 mV | 0.02\% plus 1 mV | | 0.02% plus $500 \mathrm{\mu V}$ | 0.02\% glus 500 p V | 0.01\% plus $200 \mu \mathrm{~V}$ | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.01\% plus 200 eV |
| 0.02\% plus 0.5 mA | 0.02\% plus 1mA | | 0.02\% plus 0.8 mA | 0.02\% plus 0.8 mA | 0.01\% olus 1 mA | 0.02\% plus 1.5 mA | 0.01\% plus 1 mA |
| 0.1% plus 5 mV | 0.1\% plus 5 mV | | 0.1% plus 2.5 mV | 0.1% plus 2.5 mV | 0.03% glus 500 MV | 0.1% plus 2.5 mV | 0.03\% plus $500 \mathrm{\mu V}$ |
| 0.1\% plus 2.5 mA | 0.1\% plus 5 mA | | 0.1% plus 4 mA | 0.1% plus 4 mA | 0.03% plus 3 mA | 0.1% plus 7.5 mA | 0.03\% plus 3 mA |
| 10 mV | 10 mV | | 10 mV | 10 mV | 5 ml | Smy | 5 mV |
| ImA* | 2 mb | | 2 mA | 2 ma | 3 mA | ImA | 5 mA |
| $\pm 3 \%$ | $\pm 3 \%$ | | $\pm 3 \%$ | $\pm 3 \%$ | $\pm 2 \%$ | $\pm 3 \%$ | $\pm 2 \%$ |
| NA | NA | | NA | NA | NA | NA | NA |
| $20 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | 20ms, 1 1 H | | $10 \mathrm{~m} \Omega$. 12 H | 10m $\Omega, 1 \mu \mathrm{H}$ | $2 \mathrm{~m} \Omega .1 \mu \mathrm{H}$ | $3 \mathrm{~m} \Omega$, 1/2 h | $\operatorname{Im} \Omega, 1 \mu \mathrm{H}$ |
| $\begin{aligned} & 50 \mu \mathrm{~s} \\ & 10 \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 50 \mu \mathrm{~s} \\ & 10 \mathrm{mV} \\ & \hline \end{aligned}$ | | $\begin{aligned} & 50 \mu \mathrm{~s} \\ & 15 \mathrm{mv} \\ & \hline \end{aligned}$ | $\begin{aligned} & 60 \mu \mathrm{~s} \\ & 16 \mathrm{mV} \\ & \hline \end{aligned}$ | $\begin{aligned} & 50 \mathrm{\mu s} \\ & 10 \mathrm{mV} \\ & \hline \end{aligned}$ | $\begin{aligned} & 50 \mu \mathrm{~s} \\ & 35 \mathrm{mV} \\ & \hline \end{aligned}$ | $\begin{aligned} & 50 \mu \mathrm{~s} \\ & 10 \mathrm{mV} \\ & \hline \end{aligned}$ |
| CV/CC | EV/CC | | CV/CC | CV/CC | [V/CC | CV/CC | CV/CC |
| Yes | $Y_{\text {es }}$ | | Y ${ }_{\text {gs }}$ | Yes | Yes | $\mathrm{Y}_{\text {os }}$ | Yes |
| Yes | Yes | | Yes | Yes | Y的 | Yes | Yes |
| 200 $2 / \mathrm{V} \pm 1 \%$ | 200ת $/ \mathrm{N} \pm 1 \%$ | | 200 Ω / $\pm 1 \%$ | $200 \Omega \mathrm{~N} \pm 1 \%$ | 200S $\mathrm{N} \pm 1 \%$ | 200ת/V $\pm 1 \%$ | 2002 $\mathrm{N} \pm 1 \%$ |
| 1 $\mathrm{K} \Omega / \mathrm{A} \pm \pm 10 \%$ | 500, $/ \mathrm{A}$ | 1 k S/A | 500 $2 / \mathrm{A} \pm 10 \%$ | $500 \Omega / \mathrm{A} \pm 10 \%$ | $300 \Omega /$ A $\pm 10 \%$ | 500S/ $\mathrm{A} \pm 10 \%$ | 2002/A $\pm 10 \%$ |
| IVN $\pm 1 \%$ | IVN $\pm 1 \%$ | | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ | IV/V \pm \% | IVN 1 1\% | IV/V $\pm 1 \%$ | IVIV $\pm 1 \%$ |
| 2V/A $\pm 10 \%$ | IV/A | 2V/A | 0.66V/A $\pm 10 \%$ | $0.56 \mathrm{~V} / \mathrm{A} \pm 10 \%$ | 187mV/ $A \pm 10 \%$ | $333 \mathrm{mV} / \mathrm{A} \pm 10 \%$ | $100 \mathrm{mV} / \mathrm{A} \pm 10 \%$ |
| 4 ms | 4 ms | 1 ms | 15 ms | 15 ms | 275 ms | 275 ms | 275 ms |
| 12 ms | 12 ms | 3 ms | 45ms | 45ms | 275 ms | 275 ms | 275 ms |
| 30 ms | 30ms | 15ms | 200 ms | 200 ms | 128ec | $\mathrm{Esec}^{\text {c }}$ | 13 sec |
| 30 ms | 10 ms | 4 ms | 40 ms | 4.0 ms | 400 ms | 150 ms | 275 ms |
| 2.5-44V | 2.5-44V | | 2.5-44V | 2.5-44V | 2.5-45v | 8-43V | 2.5-45V |
| 4\% of output +2 V | 4\% of output +2 V | | 4\% of output +2 V | 4\% of output +2 V | 5\% of oulput +1V | 7\% of output +1 V | 6\% of outpul +1 V |
| Option 11, 550 | Option 11, $\$ 50$ | | Option $11 . \$ 110$ | Option 11 \$50 | Stendand | 00tion $11 . \$ 55$ | Standard |
| 300 V | 300 V | | 300 V |
| $\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.09 \mathrm{~A}, 0.3 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \end{aligned}$ | | $\begin{aligned} & 6 \mathrm{~V}, 60 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \\ & \hline \end{aligned}$ | 50V, $4 \mathrm{~A} \pm 2 \%$ | $\begin{aligned} & 5 \mathrm{~V}, 50 \mathrm{~V} \pm 3 \% \\ & 0.4 \mathrm{~A}, 4 \mathrm{~A} \pm 3 \% \end{aligned}$ | 50V. $8 \mathrm{~A} \pm 2 \%$ |
| $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.8 A .88 W \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.9 \mathrm{~A} .70 \mathrm{~W} \end{aligned}$ | | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-400 \mathrm{Kz} \\ & 2.6 \mathrm{~A}, 235 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 115 \mathrm{VaC} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 1.3 \mathrm{~A} .110 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 3 \mathrm{~A} .180 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 3.5 \mathrm{~A} . \mathrm{J} 0 \mathrm{~W} \\ & \hline \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 4 \mathrm{~A} .325 \mathrm{~W} \\ & \hline \end{aligned}$ |
| 3 Wirs, 5-Fl. Cord | 3-Wire, 5-Fl. Cord | | 3-Wire, 5.ft. Cord | 3-Wire, 5.Ft. Cord | 3-Wire, 5.Fl. Card | 3.Wire, 5-ft. Cord | 3-Wire, 5.f1. Cosd |
| Convection | Convection | | Convection | Convection | Convaction | Convection | Convection |
| $8 \% / 2 \mathrm{~W} \times 38 / 4 \times 12 \% \mathrm{D}$ | $8 \mathrm{KW} \times 31 / 2 \mathrm{H} \times 12 \%$ \% | | $19 \mathrm{~W} \times 3 \mathrm{z} / \mathrm{K} \times 14 \% \mathrm{LD}$ | $8 \mathrm{Y} 2 \mathrm{~W} \times 3 \%_{2} \mathrm{H} \times 14 \% \mathrm{LD}$ | $19 \mathrm{~W} \times 34 \mathrm{H} \times 17 \%$ | $81 / 2 \mathrm{~N} \times 5 \% \mathrm{H} \times 16 \mathrm{D}$ | $19 \mathrm{~W} \times 31 / 2 \mathrm{H} \times 17 \% \mathrm{LC}$ |
| $10 \mathrm{lbs}, 4.5 \mathrm{~kg}$ | $10 \mathrm{lbs}, 4.5 \mathrm{xg}$ | | $28 \mathrm{lbs}, 12.7 \mathrm{~kg}$ | $14 \mathrm{lbs}, 6.4 \mathrm{~kg}$ | $34 \mathrm{lbs}, 15.4 \mathrm{~kg}$ | $26 \mathrm{lbs}, 11.8 \mathrm{~kg}$ | 34185.15 .4 kg |
| $12 \mathrm{lbs}, 5.4 \mathrm{~kg}$ | $12 \mathrm{lbs}, 5.4 \mathrm{~kg}$ | | $39 \mathrm{lbs}, 17.7 \mathrm{~kg}$ | $16 \mathrm{lbs}, 7.2 \mathrm{~kg}$ | 41 lbs , 18.6 kg | $28.165,12.7 \mathrm{~kg}$ | $41 \mathrm{lbs}, 18.6 \mathrm{~kg}$ |
| \$179 | \$198 | | \$470 | \$230 | S380 | 5351 | \$460 |
| 7,8,9,11,13,14,28 | 7.8,9,11,13,14,28 | | 7,8,9,10,11,13,14,28 | 7,8,9,11,13,14,28 | $\begin{aligned} & 5,7,8,9,10,13,14,20 \\ & 21,22,27,28,40 \end{aligned}$ | 5,7,8,9, 11, 13,24,18 | $\begin{aligned} & 5,7,8,9,10,13,14,20 \\ & 21,22,27,28,40 \end{aligned}$ |

[^22]

[^23]| | Dual Range | | Two Ouspurs | | Dual Range | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-50V | 0-50V | 0-25V | 0-50V | 0-50V | 0-60V | 0-30V | 0-60V | 0-60V |
| 0-0,2A | 0-0.5A | $0-1 \mathrm{~A}$ | 0-1A | 0-1.5A | 0.5A | 1A | $0-14$ | 0-3A |
| 6218A | 82208 | | 6228B | 6226B | 6206B | | 6284A | 6296A |
| 4 mV | 0.01\% plus 2 mV | | 0.01\% plus 1 mV | 0.01\% plus 2 mV | 0.01\% plus | 4 mV | 0.01\% plus 2 mV | 0.01\% plus ImV |
| 500رM A | 0,01\% plus 250\%A | | 0.014% plus $250 \mu \mathrm{~A}$ | 0.01\% plus 250رA | NA | | 0.01\% plus $250 \mu \mathrm{~L}$ | 0.05\% plus 1mA |
| $4 m \mathrm{~V}$ | 0.01\% plus 2 mV | | 1 mV | 0.01\% plus 2 mV | 0.04\% plus | 4 mV | 0.01\% plus 2mV | 0.01\% plus ImV |
| 50010 A | 0.01\% plus $250 \mu \mathrm{~A}$ | | $100 \mu \mathrm{~A}$ | 0.01\% plus $250 \mu 4$ | NA | | 0.01\% plus $250 \mu \mathrm{~A}$ | 0.05\% plus 1 mA |
| $200 \mu \mathrm{~V} / 1 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 1 \mathrm{mV}$ | | $250 \mu \mathrm{~V} / 4 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 1 \mathrm{mV}$ | $200 \mu \mathrm{~V} / 1 \mathrm{mV}$ | | $200 \mu \mathrm{~V} / \mathrm{lmV}$ | $500 \mu \mathrm{~V} / 25 \mathrm{mV}$ |
| $160 \mu A / 500 \mu A$ | 200pa/lma | | 250 $\mu \mathrm{A} / 2 \mathrm{~mA}$ | $200 \mu \mathrm{~A} / 1 \mathrm{~mA}$ | NA | | $500 \mu \mathrm{~A}$ | 3 mA mm |
| 0.02\% olus imV | 0.02\% plus 1 mV | | 0.02\% plus $200 \mu \mathrm{~V}$ | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.02\% plus | 1 mV | 0.02\% plus $500 \mu \mathrm{~V}$ | 0.02\% plus 500, V |
| 1 mA | 0.02\% plus ImA | | 0.02\% plus $\$ 50 \mu \mathrm{~A}$ | 0.02\% plus 0.8 mA | NA | | 0.02% plus 0.5 mA | 0.02\% plus 5.5 mA |
| 0.1% plus 5 mV | 0.1% plus 5 mV | | 0.2% glus 2 mV | 0.1% plus 2.5 mV | 0.1\% plus 5 | mV | 0.1\% plus 2.5 mV | 0.1% plus 2.5 mV |
| 2.5 mA | 0.1\% plus 5mA | | 0.2% plus 1.5 mA | 0.7% plus 4 mA | NA | | 0.1% plus 2.5 mA | 0.1% plus 7.5 mA |
| 10 mV | 40 mV | | 10 mV | -- | 10 mV | | 10 mV | 7 mV |
| $10 \sim A$ | 1 mA | | 0.5 mA | -- | NA | | 0.5 m A | 1 mA |
| $\pm 3 \%$ | $\pm 3 \%$ | | $\pm 2 \%$ | $\pm 3 \%$ | $\pm 3 \%$ | | $\pm 3 \%$ | $\pm 3 \%$ |
| NA | NA | | NA | NA | NA | | NA | NA |
| $40 \mathrm{~m} \Omega$, $1 \mu \mathrm{H}$ | $20 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ | | $10 \mathrm{~m} \Omega, 6 \mu \mathrm{H}$ | $10 \mathrm{~m} \Omega, 1 \mu H$ | $40 \mathrm{~m} \Omega, 2 \mu \mathrm{H}$ | | $15 \mathrm{~m} \Omega .1 \mu \mathrm{H}$ | $5 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$ |
| 50\% | $50 \mu \mathrm{~s}$ | | 50us | 50 $\mu \mathrm{s}$ | $50 \mu \mathrm{~s}$ | | 60ps | 50 ${ }^{\text {s }}$ |
| 15 mV | 10 mV | | 10 mV | 10 mV | 10 mV | | 15 mV | 15 mV |
| CV/CE | CV/CC | | CV/CC | CV/CC | CV/CL | | CV/CC | CV/CC |
| No | Yes | | Yes | Yes | Yes | | Yes | Yes |
| No | Yes | | Yes | Yes | Yes | | Yes | Yes |
| NA | 200S /V $\pm 1 \%$ | | $200 \Omega N \pm 1 \%$ | 200 | $300 \Omega / \mathrm{V}$ 土 | | $300 \Omega / \mathrm{V} \pm 1 \%$ | $300 \Omega / \mathrm{V} \pm 1 \%$ |
| NA | $2 \mathrm{k} \Omega / \mathrm{A}$ | ik Ω / A | $1 \mathrm{k} \Omega / \mathrm{A} \pm 10 \%$ | S00, $/ A \pm 10 \%$ | NA | | $1 \mathrm{k} \Omega / \mathrm{A} \pm 10 \%$ | 500 $2 / \mathrm{A} \pm 10 \%$ |
| NA | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ | | IV/V $\pm 1 \%$ | IV/V | 1V/V 10% | | IVIV $\pm 1 \%$ | $1 \mathrm{~V} / \mathrm{V} \pm 1 \%$ |
| NA | 2V/A | IV/A | IV/A $\pm 10 \%$ | IV/A | NA | | IV/A $\pm 10 \%$ | $333 \mathrm{mV} / \mathrm{A} \pm 10 \%$ |
| NA | 50 ms | 12ms | 40 ms | $=$ | 50 ms | 12 ms | 25 ms | 600 ms |
| NA | 120 ms | 30 ms | 100 ms | 2.4 ms | 120 ms | 30 ms | 80 ms | 600 ms |
| NA | 400 ms | 200 ms | 500ms | 15 ms | 600 ms | 360 ms | 2 sec | 5 sec |
| NA | 120 ms | 30 ms | 100ms | - | 50 ms | 140 ms | 175 ms | 200 ms |
| NA | NA | | 5-55V | NA | 2.5-85V | | 5-65V | $9-66 \mathrm{~V}$ |
| NA | NA | | 7% of oulput +1.6 V | NA | 4\% of outo | $u t+2 v$ | 4% of outoul +2 V | 7\% of output + IV |
| NA | NA | | Standerd | NA | Option 11, | \$50 | Option 11, 850 | Option 11, \$55 |
| 300 V | 300 V | | 300 V | 300 V | 300V | | 300 V | 300 V |
| $60 \mathrm{~V}, 250 \mathrm{~mA} \pm 3 \%$ | $\begin{aligned} & 6 \mathrm{~V}, \operatorname{siV} \pm 3 \% \\ & 0.12 \mathrm{~A}, 1.2 \mathrm{~A} \pm 3 \% \end{aligned}$ | | $60 \mathrm{~V}, 1.2 \mathrm{~A} \pm 2 \%$ | $\begin{aligned} & 6 \mathrm{~V}, 60 \mathrm{~V} \pm 3 \% \\ & 0.18 \mathrm{~A}, 1.8 \mathrm{~A} \pm 3 \% \end{aligned}$ | $\begin{aligned} & 7 \mathrm{~V}, 70 \mathrm{~V} \pm 3 \\ & 0.12 \mathrm{~A}, 1.24 \end{aligned}$ | $\begin{aligned} & 3 \% \\ & A \pm 3 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 V, 70 V \pm 3 \% \\ & 0.12 A, 1.2 A \pm 3 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 \mathrm{~V}, 70 \mathrm{~V} \pm 3 \% \\ & 0, A \mathrm{~A}, \triangle \mathrm{~A} \pm 3 \% \end{aligned}$ |
| $\begin{aligned} & 115 \mathrm{Vac} \pm 30 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.25 \mathrm{~A}, 26 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \geq 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 44 \mathrm{~W} \\ & \hline \end{aligned}$ | | 115 or $230 \mathrm{Vac} \pm 10 \%$ switch, $48-63 \mathrm{~Hz}$ $2.7 \mathrm{~A}, 260 \mathrm{~W}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 1.8 \mathrm{~A}, 184 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 115 \mathrm{VaC} \pm 11 \\ & 48-4 A 0 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 66 \mathrm{~W} \end{aligned}$ | | $\begin{aligned} & 115 \mathrm{~V} 8 \mathrm{c}=10 \% \\ & 48-440 \mathrm{~Hz} \\ & 1.3 \mathrm{~A}, 114 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 4.5 \mathrm{~A}, 25 \mathrm{~W} \\ & \hline \end{aligned}$ |
| 3-Wire, 6-F1. Cord | 3.Wire, 6.Ft. Cord | | 3.Wire, 5-Ft. Cord | 3-Wire, 5.Ft, Cord | 3.Wire, 5.F | 1. Cord | 3.Wire, 5-fe Cord | 3.Wire, 5-Ft. Cord |
| Convaction | Convection | | Convection | fan | Convection | | Convection | Convaction |
| 51/w $\times 31 / 2 \mathrm{H} \times 8 \mathrm{D}$ | $51 / 8 W \times 6 / 18 \times 110$ | | | $51 / 8 \mathrm{~W} \times 6 \mathrm{KH} \times 110$ | $8 \% / 8 \mathrm{~W} \times 3 \mathrm{y} 2 \mathrm{H}$ | + $\times 124,0$ | $8 \% / 2 \mathrm{~W} \times 3 \% / 2 \mathrm{H} \times 14 \% \mathrm{~L}$ | $8 \mathrm{~K} \mathrm{~W} \times 5 \% \mathrm{H} \times 160$ |
| $4.8 \mathrm{lbs}, 2.2 \mathrm{~kg}$ | | | $24 \mathrm{lbs}, 11 \mathrm{~kg}$ | $16 \mathrm{lbs}, 7.3 \mathrm{~kg}$ | $10 \mathrm{lbs}, 4.5$ | | $13 \mathrm{lbs}, 5.9 \mathrm{~kg}$ | $25 \mathrm{lbs}, 19.3 \mathrm{~kg}$ |
| 6.8 $1 \mathrm{lbs}, 3,3 \mathrm{~kg}$ | 151bs. 6.8×8 | | 28 ths 12.9 kg | 18 lbs 82 ka | 12 lbs 54 | | $15 \mathrm{lhs.6.8.kg}$ | $28 \mathrm{lbs}, 32.7 \mathrm{~kg}$ |
| \$120 | S275 | | \$495 | \$355 | \$179 | | 5230 | \$395 |
| 28 | 33,14,28,40 | | 7,8,9,13,14 | 13,14,28,40 | 7,11,13,28 | | 8,11,13,14,28 | 6,7,8,9,11,13,14,38 |

[^24]Na indleates Noe Appicable.

[^25]| 鳃NE | NEW | | | 氨NEW | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-100V | 0-100V | 0-100V | 0-100V | 0-100V | 0-110V § | 0-120V |
| 0.1 A | 0-0,1A | 0-200mA | 0-200mA | 0 m 750 mA | 0-100A§ | 0-2.5A |
| 6211A | 6212A | 6106 A | 5116A | 6299A | 6475C | 64438 |

8 mV	8 mV	0.001\% plus $100 \mu \mathrm{~V} *$	0.001\% plus 100 ${ }^{\text {V }}$	0.01\% plus $2 m \mathrm{~V}$	0.05\% plus 100 mV	120 mV
NA	500رA	NA	NA	0.01\% plus $250 \mu \mathrm{~A}$	0.1% plus 0.14	25 mA
4 mV	4 mV	0.001\%	0.001\%	0.01\% plus 2mV	0.05\% plus 100 mV	60 mV
NA	$500 \mu \mathrm{~A}$	NA	NA	0.01\% plus $250 \mu \mathrm{~A}$	0.1% plus 0.1A	25mA
$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$40 \mu \mathrm{~V} / 100 \mathrm{\mu V}$	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$220 \mathrm{mV} / 2 \mathrm{Vt}$	$240 \mathrm{mV} / 400 \mathrm{mVt}$
NA	$150 \mu \mathrm{~A} / 500 \mu \mathrm{~A}$	NA	NA	500uArms	NA	NA
0.02\% ¢ ¢ us 3 mV	0.02\% plus 1 mV	0.005% plus 100 mV	0.001% plus $10 \mu \mathrm{~V}$	0.02\% plus 500 ${ }^{\text {V }}$	0.03\% plus 5mV	0.03\% plus 20 mV
NA	0.5 mA	NA	NA	0.02% plus D.4mA	0.06\% plus 75mA	8 ma
0.1% plus fimV	0.1\% plus 5 mV	0,01\% plus 1 mV	0.01\% + 100 2 N	0.1% plus 2.5 mV	0.15% olus 20 mV	0.1\% plus 60 mV
NA	1.3 mA	NA	NA	0.1% plus 2mA	0.3% plus 300 mA	25 mA
20mV	20 mV	0.002\% plus $100 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$	20 mV	22 mV	30 mV
NA	$10 \mu \mathrm{~A}$	NA	NA	1 mA	0.14	1.3 mA
$\pm 4 \%$	$\pm 4 \%$	$\pm 3 \%$	$\pm 3 \%$	$\pm 3 \%$	$\pm 2 \%$	$\pm 2 \%$
NA	NA	NA	0.1\% plus 1 mV	NA	NA	NA
$80 \mathrm{~m} \Omega, 6 \mu \mathrm{H}$	$80 \mathrm{~m} \Omega, 8 \mu \mathrm{H}$	$10 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$	$10 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$	$30 \mathrm{~m} \Omega, 1 \mu \mathrm{H}$	--	$0.1 \Omega, 2 \mu \mathrm{H}$
$50 \mu \mathrm{~s}$	50 $/ \mathrm{s}$	NA	NA	50/4	$50 \mathrm{~ms}, 100 \mathrm{~ms} \mathrm{t}$	200 mst
15 mV	15 mV	NA	NA	15 mV	2,5V. IV t	600 mVt

cV/CL	CV/CC	CV/CL	CV/CL	$\mathrm{cv} / \mathrm{Cc}$	CV/CC	CV/CC
No	No	Yas	$\mathrm{Y}_{\text {9 }}$	Yes	Yes	Yes
No	No	Yes	Yes	Yes	Yes	Yes
NA	NA	$1 \times \Omega \Omega / V \pm 0.1 \%$	1kS2/V 00.1%	$300 \Omega / \mathrm{L} \pm 1 \%$	300 $2 / \mathrm{V}=2 \%$	$300 \Omega \mathrm{~N} \pm 2 \%$
NA	NA	NA	NA	$1 \mathrm{x} \Omega / \mathrm{A} \pm 10 \%$	105/A 23%	120S/ $\mathrm{A} \pm 20 \%$
NA	NA	V/V $\pm 0.1 \%$	IV/V $\pm 0.1 \%$	$1 \mathrm{~V} / \mathrm{V} \pm 1 \%$	SV/V $\pm(1 \% \pm \pm V)$	IV/V
NA	NA	NA	NA	$1.3 \mathrm{~V} / \mathrm{A} \pm 10 \%$	62mV/A $\pm 7 \%$	--
NA	NA	700 ms	NA	25 ms	--	\cdots
NA	NA	700 ms	NA	200 ms	--	--
NA	NA	tees	NA	1.588 C	--	--
NA	NA	700 ms	NA	200 ms	-	-
NA	NA	20-106V	20-108V	20-108V	55-120V	NA
NA	NA	4\% of output +2 V	4\% of oulput +2 V	4\% of output +2 V	10\% of output V	NA
NA	NA	Option 11, 550	Option 11, 550	Option 11,550	Option 06, \$400	NA
300 V	300 V	300 V	300 V	300 V	300 V	300 V
$120 \mathrm{~V}, 120 \mathrm{~mA} \pm 4 \%$	120V, 120ma $\pm 4 \%$	$\begin{aligned} & 12 \mathrm{~V}, 120 \mathrm{~V} \pm 3 \% \\ & 25 \mathrm{~mA}, 250 \mathrm{~mA} \pm 3 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V}, 120 \mathrm{~V} \pm 3 \% \\ & 25 \mathrm{~mA}, 250 \mathrm{~mA} \pm 3 \% \end{aligned}$	$\begin{aligned} & 12 \mathrm{~V}, 120 \mathrm{~V} \pm 3 \% \\ & 0.1 \mathrm{~A}, 1 \mathrm{~A} \pm 3 \% \end{aligned}$	125V, 120A $\pm 2 \%$	$150 \mathrm{~V}, 3 \mathrm{~A} \pm 2 \%$

$\begin{array}{\|l} \hline 115 \mathrm{Vac} \pm 10 \% \\ 48-440 \mathrm{~Hz} \\ 0.29 \mathrm{~A}, 27 \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{H} \\ & 0.29 \mathrm{~A}, 28 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-83 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 52 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 0.5 \mathrm{~A}, 52 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{VaC} \leq 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 1.5 \mathrm{~A}, 135 \mathrm{~W} \end{aligned}$	Option 1,2,3,31,32 50A per phase © 230 V	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 6.5 \mathrm{~A}, 400 \mathrm{~W} \end{aligned}$
3-Wire, 5-Ft, Cord	3-Wire, 5-Fl, Cord	3.Wire, 5.Fi. Cord	3.Wire. 5.FI. Cord	3-Wire, 5.FI. Eord	4.Terminal Strip	3-Wire, 5-Ft. Cord
Convertion	Convection	Convection	Convection	Convection	$5{ }^{\text {an }} \stackrel{ }{ }$	Convection
$5 \% \mathrm{~W} \times 3 \% \mathrm{H} \times 80$	$51 / 2 \mathrm{~W} \times 31 / 4 \mathrm{H} \times 8 \mathrm{D}$	$81 / 2 \mathrm{~W} \times 34 / 2 \mathrm{H} \times 121 / 2 \mathrm{D}$	$81 / 2 \mathrm{~W} \times 5 \% \mathrm{H} \times 121 / 20$	$81 / 2 \mathrm{~W} \times 31 / 2 \mathrm{H} \times 14 \% \mathrm{~L}$	$1674 \mathrm{~W} \times 261 / 4 \mathrm{H} \times 26 Y_{60}$	$19 \mathrm{~W} \times 3 \% \mathrm{H} \times 17 \% 0$
$4.5 \mathrm{lbs}, 2 \mathrm{~kg}$	$4.8 \mathrm{lbs}, 2.2 \mathrm{~kg}$	$10 \mathrm{lbs}, 4.5 \mathrm{~kg}$	$11 \mathrm{lbs}, 5 \mathrm{~kg}$	$13 \mathrm{lbs}, 5.9 \mathrm{~kg}$	$500 \mathrm{lbs}, 226 \mathrm{~kg}$	31 lbs .14 kg
6.5 lbs .2 .8 kg	6.8 tos, 3.1 kg	$12 \mathrm{los.54} 4 \mathrm{~kg}$	$14 \mathrm{lbs}, 6.3 \mathrm{~kg}$	$15 \mathrm{lts}, 6.8 \mathrm{~kg}$	$555 \mathrm{ibs}, 251 \mathrm{~kg}$	$45 \mathrm{lbs}, 20.4 \mathrm{~kg}$
\$106	\$130	\$285	\$375	S250	\$2800	5360
28	28	13,28	18,28	8,11,13,14,28	1,2,3,5,6,23,31,32	5,10, 17,18

[^26]NEW

$\begin{aligned} & G \\ & E \\ & N \\ & \mathbf{E} \\ & R \\ & A \\ & \text { L } \end{aligned}$	Powet		$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 60 \mathrm{~W} \end{aligned}$
	Connections		3-Wire, 5.-Ft. Cord
	Cooling		Convection
	Dimentions (inches)		$8 \% \mathrm{~W} \times 34 \mathrm{H} \times 12 \% 0$
	Weight	Net	10 lbs .4 .5 kg
		Ship	12 lbs .5 .4 kg
	Price		\$256
	Options		8,13,14,28

Option 1,2,3,31,32 50A per phase © 230V	$\begin{aligned} & \text { Option } 1,2,3,31,32 \\ & 50 \mathrm{~A} \text { per ohase } 9 \\ & 230 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-63 \mathrm{H}, \\ & 1 \mathrm{~A}, 60 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 V_{s c} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 8.7 \mathrm{~A}, 585 \mathrm{~W} \\ & \hline \end{aligned}$	Option 12,3,31,32 50A per phase @ 230 V
4-Terminal Strip	4-Terminal Strip	3.Wire, 5.F1. Cord	3.Wire, 5-Ft. Cord	4.Terminal Strip
Fans	Fano	Convection	Convection	Fans
$1634 \mathrm{~W} \times 261 / 4 \mathrm{H} \times 261 / 80$	$1634 \mathrm{~W} \times 261 / 4 \mathrm{H} \times 26786$	$81 / 2 \mathrm{~W} \times 31 / \mathrm{H} \times 12 \% \mathrm{O}$	$18 \mathrm{~W} \times 5 \% \mathrm{H} \times 163 / 40$	$1634 \mathrm{~W} \times 26 \% / 4 \mathrm{H} \times 2676 \mathrm{D}$
$500 \mathrm{lbs}, 226 \mathrm{~kg}$	$500 \mathrm{lts}$.	$10 \mathrm{lbs}, 4.5 \mathrm{~kg}$	$50165,22.6 \mathrm{~kg}$	$500 \mathrm{lbs}, 226 \mathrm{~kg}$
$555 \mathrm{lbs}, 251 \mathrm{~kg}$	$555 \mathrm{lbs}, 251 \mathrm{~kg}$	$12 \mathrm{lbs}, 5.4 \mathrm{~kg}$	$6518 \mathrm{~s}, 29.4 \mathrm{~kg}$	$6551 \mathrm{tss}, 251 \mathrm{~kg}$
\$2800	\$2800	\$255	\$625	\$2800
1,2,3,5,6,23,31,32	1,2,3,5,6,23,31,32	8,13,14,28	NA	1,2,3,5,6,23,31,32

(1) Published specilications apoly only whan (8) supply is delivering more than 5% of maximum rared output voleagg ICV operation) or
5% of maximum rated oupput curcent (Cc operation), and (b) load is drawing mare than loow. Respection (bl is lited when supply
is delifering more then 30% of meximum rated output voltage (CV operation) or 30% of maximum rated oviput current (CC operation).
121 For operation with a 50 Hz input (possible only with Option 05), output current is linearly derated from 100% at $40^{\circ} \mathrm{C}$ to 80% at $50^{\circ} \mathrm{C}$.
Δ Operating remperature range for this supply is 0 to $50^{\circ} \mathrm{C}$.
-- indicatas thet information was not avaliabla at time of printing.
NA indicates Not Apolicable.

1-600V	O-3000V	0-4600V	$0-2000 \mathrm{~V}$	0-3000V	0.3000 V	$0-4000 \mathrm{~V}$
5 mA -1.5A	0-200mA	5 mA	$0-100 \mathrm{~mA}$	6 mA	6mA	$0-50 \mathrm{ma}$
64488	8521A	6515A	6522A	61104	6516A	6525A
800 mV	0.005\% or 20 mV	0.01\% or 16 mV	0.005\% or 20 mV	0.001\% plus $100 \mu \mathrm{~V}$	0.01\% or 16 mV	0.005\% or 20 mV
15 mA	2\% or 1 mA	NA	2\% or 1mA	NA	NA	2\% or ImA
600 mV	0.005\% or 20 mV	0.01\% or 16 mV	0.006\% or 20 mV	0.001\%	0.01\% or 16 mV	0.005\% or 20 mV
16 mA		NA	1 mA	NA	NA	1 mA
$600 \mathrm{mV} / 2 \mathrm{~V}+$	1 mV sms	$2 \mathrm{mV} / 5 \mathrm{mV}$	imVims	$2 \mathrm{mV} / 5 \mathrm{mV}$	$2 \mathrm{mV} / 5 \mathrm{mV}$	YmV rms
NA	2 mA rms	NA	1 mA ims	NA	NA	$500 \mu \mathrm{~A} \mathrm{~mm}$
0.03\% plus 100 mV	0.012\% plus 1 mV	0.02\% plus 2 mV	0.012\% plus 1 mV	0.001\% plus $50 \mu \mathrm{~V}$	0.02\% plus 2mV	0.012\% olus 1 mV
5 mA	0.2% plus 0.2 mA	NA	0.2\% plus 0.1 mA	NA	NA	0.2\% plus 0.05 mA
0.1% plus 300 mV	0.036\% plus 3 mV	0.05\% plus 5mV	0.036\% olus 3 mV	0.01\% plus $500 \mu \mathrm{~V}$	0.05\% plus 5 mV	0.036\% plus 3 mV
15 mA	0.25\% plus 0.5 mA	NA	0.25% olus 0.25 mA	NA	NA	0.25% plus 0.12 mA
60 mV	20 mV	100 mV	40 mV	20 mV	1 V	80 mV
0.75 mA	--	NA	--	NA	NA	--
$\pm 2 \%$	$\pm 2 \%$	$\pm 2 \%$	$\pm 2 \%$	$\pm 3 \%$	$\pm 2 \%$	$\pm 2 \%$
NA	1\% of setting	NA	1% of setting	0.9\% plus 100 mV	NA	1\% of setting
$0.5 \Omega, 10 \mu \mathrm{H}$	--	--	--	--	--	--
200 mst	50 s	$100 \mu \mathrm{~s}$	50, ${ }^{\text {s }}$	NA	100/4	50, 15
3 V 1	0.005\% or 20 mV	0.01\% or 16 mV	0.005\% or 20 mV	NA	0.01\% or 16 mV	0.005\% or 20 mV

CV/CC	CV/CC	CV/Cl	CV/CC	CV/CL	CV/Cl	CV/CE
Yes, axcent Auto-Ser.	No	No	No	No	No	No
Yes	No	No	No	No	No	No
300 $/ \mathrm{V} \pm 2 \%$	NA	NA	NA	NA	NA	NA
600S/A $\pm 20 \%$	NA	NA	NA	NA	NA	NA
IV/V	NA	NA	NA	NA	NA	NA
--	NA	NA	NA	NA	NA	NA
--	NA	NA	NA	NA	NA	NA
--	NA	NA	NA	NA	NA	NA
--	NA	NA	NA	NA	NA	NA
--	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
300 V	2000V	1000 V	2000V	1000 V	1000 V	2000 V
700V, 1.8A $\pm 2 \%$	$1 \mathrm{KV}, 200 \mathrm{~mA} \pm 2 \%$	$1800 \mathrm{~V} \pm 2 \%$	2kV, $100 \mathrm{~mA} \pm 2 \%$	$3500 \mathrm{~V}, 7 \mathrm{~mA} \pm 3 \mathrm{~m}$	$3500 \mathrm{~V} \pm 2 \%$	$4 \mathrm{kV}, 50 \mathrm{~mA} \pm 2 \%$

$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 16 \mathrm{~A}, 1200 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{~Hz} \\ & 4 \mathrm{~A}, 210 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 60 \pm 0.3 \mathrm{H} 2 \\ & 162 \mathrm{~mA}, 19 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 48-440 \mathrm{zz} \\ & 4 \mathrm{~A}, 270 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 50 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \% \\ & 57-63 \mathrm{~Hz} \\ & 1 \mathrm{~A}_{4} 40 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \mathrm{Vac}=10 \% \\ & 48-440 \mathrm{~Hz} \\ & 4 \mathrm{~A}, 270 \mathrm{~W} \\ & \hline \end{aligned}$
3-Tarminal Strip	3.Wire, 5.Ft, Cord	3-Wire, 5.Ft. Cord	3-Wirs, 5.Fi. Cord	3.Wire, 5.Ft. Cord	3.Wire, 5.Ft. Cord	3Wise, 5-FI. Cord
Fan	Convection	Convecrion	Convectlon	Canvection	Convaction	Convection
$19 \mathrm{~W} \times 5 \% \mathrm{HH} \times 163 / 4 \mathrm{D}$	$19 \mathrm{~W} \times 51 / \mathrm{H} \times 18 \mathrm{D}$	$8 \mathrm{KW} \times 3 \% \mathrm{H} \times 11 \overline{3 / 40}$	$19 \mathrm{~W} \times 5 / \mathrm{H} \times 18 \mathrm{~L}$	$8 \% W \times 5 \% \mathrm{H} \times 160$	$81 / 2 \mathrm{~W} \times 51 / 4 \mathrm{H} \times 180$	$19 \mathrm{~W} \times 51 / \mathrm{H} \times 180$
$61 \mathrm{lbs}, 27.6 \mathrm{~kg}$	$42 \mathrm{lbs}, 19 \mathrm{~kg}$	$9 \mathrm{lbs}, 4.9 \mathrm{~kg}$	$42 \mathrm{los}, 19 \mathrm{~kg}$	$19 \mathrm{lbs}, 8.6 \mathrm{~kg}$	$17 \mathrm{lbs}, 7.7 \mathrm{~kg}$	$42165,19 \mathrm{~kg}$
$72 \mathrm{lbs}, 32.6 \mathrm{~kg}$	$63 \mathrm{lbs}, 28.5 \mathrm{~kg}$	$11 \mathrm{lbs}, 5.0 \mathrm{~kg}$	$63 \mathrm{lbs}, 28.5 \mathrm{~kg}$	$23 \mathrm{lbs}, 10.4 \mathrm{~kg}$	$21168,9.5 \mathrm{~kg}$	63 lbs .28 .5 kg
\$695	\$795	5235	\$785	\$520	\$316	\$795
5,10,17.18	NA	13	NA	5,18	5.18	NA

[^27]
POWER SUPPLIES antimusd

Options and Accessorles

Options are customer-requested, factory-performed, mechanical and/or electrical modifications to standard instruments. A list of all options available on Hcw -lett-Packard dc power sup. plies is given below. To determine which options are available for a particular supply, refer to the appropriate product page.

OPTIONS

001: $208 \mathrm{Vac} \pm 10 \%$, $3 \cdot \mathrm{phase}$ input, 57.63 Hz . No charge.
002: $230 \mathrm{Vac} \pm 10 \%$, 3 -phase input, 57.63 Hz , No charge.
003: $460 \mathrm{Vac} \pm 10 \%$, 3 -phase inpur, 57.63 Hz .
$6464 \mathrm{C}, 6166 \mathrm{C}, 6469 \mathrm{C}, 6472 \mathrm{C}, 6475 \mathrm{C}, 6477 \mathrm{C}, 6479 \mathrm{C}, 6483 \mathrm{C}$, $\$ 200$; all other models, no charge.
005 : 50 Hz ac inpur. Standard instrument is wired for nominal 60 Hz ac input. Option 005 includes realignment, and in some cases, internal rewiring.
6110A, 6516A, $\$ 50$.
6453A. 6456B, 6459A. \$25.
6464C, 6466C, 6469C, 6472C, 6475C, $6477 \mathrm{C}, 6479 \mathrm{C}, 6483 \mathrm{C}$, no charge; all other models, $\$ 10$.
006: internal overvoleage protection crowbar. Protects delicare loads against porter supply failure or operator error. Monitors the output voltage and places a virtual short circuir (conducring SCR) across load within $10 \mu \mathrm{~s}$ after preset trip voltage is exceeded. For complete specifications, refer to ap. propriate product page.
007: ten turn output soltage control. Replaces concentric coarse and fine voltage control.
$6205 \mathrm{~B}, 6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}, 550$; all other models, $\$ 25$.
008: ten-turn output current control. Replaces concentric coaise and fine current control.
$6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}, 550$: all other models, $\$ 25$.
009: ten-turn ourput voltage and current controls. Consists of Options 007 and 008 on same instrument.
6227B, 6228B, 6253A, 6255A. 590, all other models, $\$ 45$.
010: classis stides. Enables convenient access to porver supply interior for maintenance. Chassis slides are attached to supply at factory.
$6253 \mathrm{~A}, 6253 \mathrm{~A}, 6427 \mathrm{~B}, 6428 \mathrm{~B}, 6433 \mathrm{~B}, 6434 \mathrm{~B}, 6438 \mathrm{~B}, 6439 \mathrm{~B}$, $6443 \mathrm{~B}, 6448 \mathrm{~B}, 5125$.
$6453 \mathrm{~A}, 6456 \mathrm{~B}, 6459 \mathrm{~A}, \$ 195$; all other models, $\$ 50$.
031: internal overvoltage protection crowbar. Protects delicate loads against power supply failure or operator error. Monitors the outpur voltage and places a virtual short circuit (conducring SCR) across load within $10 \mu \mathrm{~s}$ after preset trip voltage is exceeded. For complete specifications, refer to appropriate product page.
013: three-digit graduated decadial voltage control. Includes single 10 -rarn concrol replacing coarse and fine voltage controls.
$6205 \mathrm{~B}, 6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}, \$ 120$.
$6207 \mathrm{~B}, 6209 \mathrm{~B}, 6220 \mathrm{~B}, 6224 \mathrm{~B}, 6226 \mathrm{~B}, 6294 \mathrm{~A}, 6299 \mathrm{~A}, 6515 \mathrm{~A}$, $\$ 35$: all other models, $\$ 60$.
014: three-digit graduated decadial current control. Includes singic 10 -turn concrol replacing coarse and fine curtent controls.
$6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}, \$ 120$.
$6220 \mathrm{~B}, 6224 \mathrm{~B}, 6266 \mathrm{~B}, \$ 35$: all other models, $\$ 60$.
016: $115 \mathrm{Vac}=10 \%$, single phase input. Factory modification
includes installation of a 115 V input poner transformer to replace the standard 230 V transformer, $\$ 75$.
017: 208 Vac $\pm 10 \%$, single phase inpur. Factory modification includes installation of a 208 V inpur power transformer to replace the standard 115 or 230 V transformer, $\$ 75$.
018: $230 \mathrm{Vac} \pm 10 \%$. single phase inpur. Factory modificarion includes installation of a 230 V input power transformer to replace the standard 115 V transformer.
6110A, 6282A, 6285A, 6286A, 6290A, 6291A, 6296A, 6516 A , \$50; all other models. $\$ 75$.
020: voltage programming adjust. Allows the voltage programming coefficient and zero output voltage to be easily and accurately adjusted via an access hole in the rear panel. $\$ 25$.
021: current programming adjust. Allows the current programming coefficient and zero oucput current to be easily and accuracely adjusted via an access hole in the rear panel, $\$ 25$.
022: voltage and current programming adjusts. Consists of Options 020 and 021 on same instrument, $\$ 45$.
023: rack kir for mounting one $6.164 \mathrm{C} \cdot 6183 \mathrm{C}$ supply in stan. dard 19" rack, \$2s.
026: ils Vac $\pm 10 \%$. single phase inpur. Factory modification consists of reconnecting the multi-tap input power transformer (and other components where necessary) for 115 V operation, $\$ 10$.
027: $208 \mathrm{Vac} \pm 10 \%$, single phase input. Factory modification consists of reconnecting the multi-rap input porer eransformer (and other components where necessary) for 208 V operation.
$6259 \mathrm{~B}, 6260 \mathrm{~B}, 6261 \mathrm{~B}, 6268 \mathrm{~B}, 6269 \mathrm{~B}, \mathrm{~s} 15$: all ocher models, $\$ 10$.
028: $230 \mathrm{Vac} \pm 10 \%$, single phase input. Factory modification consists of reconnecting the multi-tap input power trans. former (and other components where necessary) for 230 V operation, $\$ 10$.
031: $380 \mathrm{Vac} \pm 10 \%$, 3 -phase input, $57.63 \mathrm{~Hz}, \$ 275$
032: $400 \mathrm{Vac} \pm 10 \%$, 3 -phase input, $57.63 \mathrm{~Hz}, \$ 275$.
040: interfacing for multiprogranmer operation. Prepares standard Herlect-Packard porer supplies for resistance programming by the 6980A Multiprogramimer or 69.f1A Multiprogrammer Exrender.
$6220 \mathrm{~B}, 6224 \mathrm{~B}, 6226 \mathrm{~B}, 6256 \mathrm{~B}, 6259 \mathrm{~B}, 6260 \mathrm{~B}, 6261 \mathrm{~B}, 6263 \mathrm{~B}$, $6264 \mathrm{~B}, 6265 \mathrm{~B}, 6266 \mathrm{~B}, 6267 \mathrm{~B}, 6268 \mathrm{~B}, 6269 \mathrm{~B}, 6271 \mathrm{~B}$, 6274B, $\$ 60$.
6101A. 6102A, 6111A, 6112A, 6113A, \$30.

ACCESSORIES

14513A: rack kit for mounting one $31 / 2^{\prime \prime}$ high, half rack ($81 / 2$ " wide) supply, $\$ 20$.
14515A: rack kit for mounting ane $544^{\prime \prime}$ high, half rack ($81 / 2^{\prime \prime}$ wide) supply, $\$ 23$.
14525A: rack kit for mounting iro $51 / 4^{\prime \prime}$ high, half rack ($81 / 2^{\prime \prime}$ wide) supplies, $\$ 12$.
14523A: rack kit for mounting two $31 / 2^{\prime \prime}$ high, half rack ($81 / 2^{\prime \prime}$ wide) supplies, \$10.
14521A: rack kit for mounting three 6211A-6118A supplies. \$25.
Option 101: rack kit for mounting two 6211A.6218A supplies (includes one filler panel), \$35.
Option J02: rack kir for mounting one 6211A.6218A supply (includes two filler panels), 535
6950A, Option 547; filler panel for one 6211A-6219A supply. Used with rack kic 14521d, \$10.
14545A: set of 4 snap.on casters for one 6-164C.6483C supply. $\$ 35$.

Precise regulation and resolution

Models 6177B, 6181B, 6186B

POWER SUPPLIES

Specifications

Load regulation: less than 25 ppm of output +5 ppm of range switch setting for a load change which causes the output voltage to vary from zero to maximum.
Une regulatlon: less than 25 ppm of output +5 ppm of range switch setting for change in the line voltage from 103.5 to 126.5 Vac (or 126.5 to 103.5 Vac) at any output current and voluge within rating.
Load transient recovery time: less than $200 \mu \mathrm{~s}$ for output current recovery to within 1% of the nominal output current following a full load change in output voltage.
Tomperature coefficient: outpur change per degree C is less than 75 ppm of output current +5 ppm of range switch setting.
Stability: less than 100 ppm of output current +25 pPm of range switch setting. Stability is measured for eight hours after one hour warm-up under conditions of constant line, load, temperature, and output setting.
Resolution: 0.02% of range switch serting.
Temperature rating: operating, 0 to $55^{\circ} \mathrm{C}$; storage, -40 to $+75^{\circ} \mathrm{C}$.
Dimensions
6177B, 6181日: $73 / 4^{\prime \prime}(19,7 \mathrm{~cm})$ wide, $3 \cdot 7 / 16^{\prime \prime}(8,8 \mathrm{~cm})$ high, $123 / 8^{\prime \prime}(30,87 \mathrm{~cm})$ deep.
6186B: $73 / 4^{\prime \prime}(19,7 \mathrm{~cm})$ wide, $6.17 / 32^{\prime \prime}(15,67 \mathrm{~cm})$ high, $123 / 8^{\prime \prime}(30,87 \mathrm{~cm})$ deep.
Weight
6177B, 6181B: $10 \mathrm{lbs}(4,53 \mathrm{~kg})$ net, $13 \mathrm{lbs}(5,9 \mathrm{~kg})$ shipping.
6186B: $13 \mathrm{lbs}(5,9 \mathrm{~kg}$) net, $17 \mathrm{lbs}(7,7 \mathrm{~kg})$ shipping.
Options 014: three digit graduated decadial current control, add $\$ 35$ 028: 230 Vac, single phase input (Modeis 6177B and 61818

6177B, 6181B

61868
only), add $\$ 10$.

Mader			61778	61816	6786B
Output Current			0-500 mA	$0-250 \mathrm{ma}$	$0-100 \mathrm{~mA}$
Voltage Compliance			$0-50 \mathrm{Vdc}$	$0-100 \mathrm{Vdc}$	$0-300 \mathrm{Vdc}$
Output Ranges		A	0-5 mA	0-2.5 mA	0-1 mA
		B	$0-50 \mathrm{~mA}$	0-25 mA	0-10 mA
		C	0-500 mA	$0-250 \mathrm{~mA}$	0-100 mA
AC Input			$115 \mathrm{Vac}=10 \%, 48-63 \mathrm{~Hz}$; 0.6 A. 55 W at 115 Vac For 230 Vac see Option 028	$\begin{aligned} & 115 \mathrm{Vac}=10 \%, 48-63 \mathrm{~Hz} ; \\ & 0.6 \mathrm{~A}, 55 \mathrm{~W} \text { at } 115 \mathrm{Vac} \\ & \text { For } 230 \mathrm{Vac} \text { ses 0ption } 028 \end{aligned}$	$115 / 230 \mathrm{Vac}, 48-63 \mathrm{~Hz}$ $0.9 \mathrm{~A}, 90 \mathrm{~W}$ at 115 Vac $115 / 230 \mathrm{Vac}$ switch
Constant Current Remote Programming	Voltage Control (Accuracy: 0.5% of oulpul current $+.04 \%$ of range)	Range A	$200 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{~V} / \mathrm{mA}$	$10 \mathrm{~V} / \mathrm{mA}$
		Range B	$20 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{~V} / \mathrm{mA}$
		Range C	$2 \mathrm{mV} / \mathrm{mA}$	$10 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mA}$
	Resistance Control (Accuracy: 1\% of output control $+.04 \%$ of range)	Range A	$400 \mathrm{hms} / \mathrm{mA}$	2 K ohms/mA	10K ohms $/ \mathrm{mA}$
		Range B	$40 \mathrm{ohms} / \mathrm{mA}$	$2000 \mathrm{hms} / \mathrm{mA}$	IK ohm/mA
		Range C	$40 \mathrm{mms} / \mathrm{mA}$	20 ohms/mA	100 ohms/mA
Voltage Limit Remote Programming	Voltage Control (Accuracy: 20\%)		$1 \mathrm{~V} / \mathrm{V}$	$1 \mathrm{~V} / \mathrm{V}$	$1 \mathrm{~V} / \mathrm{V}$
	Resistance Control		870 ohms/V	440 ohms/V	820 chms/V
	Accuracy		20\%	20\%	15\%
Output Impedance (R in parallel with C)*		Range A	$\mathrm{R}=330 \mathrm{Meg}, \mathrm{C}=500 \mathrm{pF}$	$\mathrm{R}=1330 \mathrm{Meg}, \mathrm{C}=10 \mathrm{pF}$	$\mathrm{R}=10,000 \mathrm{Meg}, \mathrm{C}=900 \mathrm{pF}$
		Range B	$R=33 \mathrm{Meg}, \mathrm{C}=0.005 \mu \mathrm{~F}$	$\mathrm{R}=133 \mathrm{Meg}, \mathrm{C}=100 \mathrm{pF}$	R $=1,000 \mathrm{Meg}, \mathrm{C}=700 \mathrm{pF}$
		Range C	$R=3.3$ Meg. $C=0.05 \mu \mathrm{~F}$	$R=13.3 \mathrm{Meg}, C=1000 \mathrm{pF}$	$B=100 \mathrm{Meg}, \mathrm{C}=1500 \mathrm{pF}$
Ripple and Noise: rms/p.p (dc to 20 MHz) Either output terminal can be grounded		Range A	$0.40 \mu \mathrm{~A} \mathrm{rms} / 5 \mu \mathrm{~A} \mathrm{P}$-p	$0.20 \mu \mathrm{Arms} / 0.5 \mu \mathrm{~A} p-\rho$	$50 \mathrm{nA} \mathrm{ms} / 2 \mu \mathrm{~A} \mathrm{p} \cdot \mathrm{p}$
		Range B	$4.0 \mu \mathrm{Arms} / 40 \mu \mathrm{~A} P-\mathrm{p}$	$2.0 \mu \mathrm{Alms} / 7.5 \mu \mathrm{~A} \mathrm{P} \cdot \mathrm{D}$	$0.5 \mu \mathrm{Arms} / 25 \mu \mathrm{~A} p-\mathrm{D}$
		Range C	$40 \mu \mathrm{~A}$ rms $/ 250 \mu \mathrm{~A} \rho-\mathrm{p}$	$20 \mu \mathrm{Arms} / 100 \mu \mathrm{AP} \cdot \mathrm{p}$	$5 \mu \mathrm{Arms} / 500 \mu \mathrm{Ap-p}$
Programming Speed: from 0 to 99% of range switch setting with a resistive load. **(Output Current Modulation)			$500 \mu \mathrm{~S}$	$500 \mu \mathrm{~s}$	1 ms
Meler Ranges (Accuracy 2% of iull scale)			$\overline{6}, 60,600 \mathrm{~mA}, 60 \mathrm{Vdc}$	3,30, $300 \mathrm{~mA} ; 120 \mathrm{Vdc}$	1.2, 12, $120 \mathrm{~mA} ; 360 \mathrm{Vdc}$
Price			$\$ 475$	\$475	\$600

[^28]
DC POWER SUPPLY/AMPLIFIER

Bipolar output; frequency response to 20 kHz
Models 6823A, 6824A, 712C

Models 6823A and 6824A are general-purpose laboratory instruments capable of a variety of operating modes. Two or more of these units can be connected in Auto-Series to obtain greater voltage capability. High speed constant current opera. tion can be obtained by simply adding an external resistor in series with the load and making minor changes in the rear barrier strapping.

When used as a DC Power Supply, either model can be con. trolled from the front panel, of remotely programmed with resistance or voltage. As a power amplifier, each unit offers a signal-to-noise ratio of 80 dB at full output with low distortion, and 20 dB gain from dc to 20 kHz .

Specifications

POWER SUPPLY			
MODEL		6823A	8824A
OUTPUT:	DC Voltage	-20 to +20 Vdc	-50 to +50 Vdc
	OC Current	$0-0.5 \mathrm{~A}$	O-1.0A
LOAD REGULATION:		0.02\% plus 5 mV	
LINE REGULATION:		0.02% plus 5 mV	
RIPPLE \& NOISE:		2 mV rms	10 mV rms
LOAD TRANSIENT RECOVEAY TIME:		Less than $100 \mu 50 \mathrm{c}$ to within 5 mV $+0.02 \%$ of the nominal output.	
POWER AMPLIFIER			
OUTPUT:	DC Voitage	40 V P.p	100 V P-P
	DC Current	0-0.5 A	0-1.0A
VOLTAGE GAIN:		Variable 0-10 (20 dB) output inverted	
FREQUENCY RESPONSE:		At foll output $=3 \mathrm{~dB}$ from dc to 20 kHz .	
MAX. PHASE SHITT:		$\begin{aligned} & \text { de }-180^{\circ}, 100 \mathrm{~Hz}-181^{\circ} \cdot 1 \mathrm{kHz}-183^{\circ}, \\ & 10 \mathrm{kHz}-205^{\circ}, 20 \mathrm{kHz}-225^{\circ} \end{aligned}$	
DISTORTION:		<0.02\% @ 1 kHz and full output	
INPUT IMPEDANCE:		2 k ohms approx.	
COMMON SPECIFICATIONS			
AC INPUT:		$125 \mathrm{VaC}=10 \%$ phase, $48-440$ Hz @ 115 vac	$115 \mathrm{Vac}=10 \%$, phase, $48-63 \mathrm{~Hz}$; 1.3 A, 96 W (a) 115 Vac
PRICE:		5236	5375
OPTIONS AVAILABLE*:		028 (\$10)	007 (\$35), 028 (\$10)
ACCESSORIES AVAILABLE*			

*Sea page 166.

MODEL 712C MULTIPLE-OUTPUT SUPPLY

Specifications

Output
DC main (CV/CC): 0 ro 500 V at 0 to 200 mA .
DC fixed bias: -300 V al 0 to 50 mA .
DC variable bias: 0 to -150 V at 5 mA .
AC unregulated: 6.3 VCT at 10 A .
Input: $115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}, 2 \mathrm{~A}$ at 115 Vac (230 Vac input not arailable).
CV Load Regulation: The constant voltage load regulation is given for a load current change equal to the current rating of the supply. DC main: $0.01 \%+5 \mathrm{mV}$.
DC fixed bias: 50 mV .
DC variable bias is tied to fixed bias, hence source regulation is same for fixed bias. Jnternal impedance is 0 to 10,000 ohrms, depending on bias control setting.
CC Load Regulation: The constant ourrent load regulation is given for a load voltage change equal to the voltage rating of the supply. DC main: 0.25 mA .

Price: $\$ 545$.
Option 005: 50 Hz inpur, add $\$ 25$.

These single and dual output modular supplies are intended for applications requiring a fixed constant voltage source of dc． The nominal output voltage is regulated to 0.05% and may be offiset from the design center by up to 2 volts．The output voltage design center can be varied $\pm 10 \%$ without derating the outpur curcent．Above $\pm 10 \%$ ，the output current is derated as illustrated in the graphs．All supplies are short circuit proof and wrill not be damaged by overload．Since the output is float－ ing，any supply can be used as either a positive or negative source．

Overal dimenslons：

	Moualing facs	Modete fungth
Size 2：	$33 / /^{\text {² }}(8,6 \mathrm{~cm}) \times 44^{4}(10,5 \mathrm{~cm})$	$4 / 88^{\prime \prime}(10.5 \mathrm{~cm})$
Size 3：	$3 y_{4}{ }^{* \prime}(8,6 \mathrm{~cm}) \times 4 Y_{1}{ }^{\prime \prime}(10,5 \mathrm{~cm})$	$6^{\prime \prime}(15,2 \mathrm{~cm})$
Size 4：	$316^{*}(8,6 \mathrm{~cm}) \times 51 / 8^{\circ}(13 \mathrm{~cm})$	$6^{* \prime}(15,2 \mathrm{~cm})$
Size 5：	$31 / /^{\prime \prime}(8,6 \mathrm{~cm}) \times 5$／$^{\prime \prime}(13 \mathrm{~cm})$	7．5／16 ${ }^{\text {（ }} 18.6 \mathrm{~cm}$ ）
Sire 6：	$4 \mathrm{M}^{*}(10,8 \mathrm{~cm}) \times 51 / \mathrm{s}^{\prime \prime}(13 \mathrm{~cm})$	$11^{*}(27.9 \mathrm{~cm})$

MODEL	DC OUTPUT （Reler la Deazling Oharts）			AC INPUT			RIPPLE \＆NOISE		SI2E	＊PRICE		
		$\begin{aligned} & \text { NOMINAL } \\ & \text { VOLTS } \end{aligned}$	AMPS	volts	AMPS	WATTS	RMS	P．P（m） de to 24 MHz		1.9	10－19	20－49
60063A		6	1.5		0.3	26		3	3	\＄87	\＄ 85	\＄ 81
60065A		δ	3		0.75	63	$\frac{2}{6}$	3	5	\＄110	\＄107	\＄103
60066A		6	8	N	1.5	150	\％	δ	6	$\$ 197$	\＄191	\＄186
601228		12	0.5	\％	0.16	15.7	\cdots	3	2	\＄ 72	\＄ 70	\＄ 68
60123B		12	1	9	0.3	26	，	3	3	\＄ 79	\＄ 77	\＄ 74
601258	㟧	12	2.2	\％	0.75	62	－	4	5	\＄100	\＄ 97	\＄94
60126B	雨	12	6	응	1.75	153	E	6	6	\＄179	\＄174	\＄169
802428	－	24	0.25	H	1.5	15.5	58	3	2	\＄ 72	\＄ 70	\＄ 68
60243B		24	0.5	\％	0.3	26	O	3	3	\＄ 79	\＄ 77	\＄ 74
602448		24	1	$\stackrel{\sim}{3}$	0.5	45	응	3	4	\＄ 88	\＄85	\＄83
60245B		24	1.5		0.75	65	E	9	5	\＄100	\＄ 97	\＄ 98
60246B		24	3.5		2	160	E	12	8	\＄179	\＄174	\＄159
601530		± 15	0.0 .2		0.3	26	$300 \mu \mathrm{~V}$	2	3	\＄ 97	\＄ 93	\＄ 91
601550	合	$=15$	0.0 .75		0.75	64	$300 \mu \mathrm{~V}$	2	5	8133	\＄129	\＄125

＊OEmpricing is avaliabla lo original equipment manufacturers．Contaci your tocal Hewiett－Packard sales offlce．
If chart does not inciude a SLOY supply to fill your needs，ask your；HP Sales Engineer for the Custom Slor Series data sheet．

Description

Digitally Controlled Voltage Sources are complete digital-to-analog links between a computer (or other digital source) and any application requiring a fast, accurately settable source of dc or low frequency ac power. Initially, these applications may be thought of as requiring a digital-to-analog converter with augmented output power capability, a digitally controlled power supply, or a digitally controlled waveform synthesizer. However, such applications generally require more than a programmable power supply or the simple tandem combination of a D / A converter and an operational amplifier. Interface circuitry must be added to insure compatabiilty between the computer and the D/A converter, and isolation must be provided between input and output. Other functions required include reference and $\mathrm{B}+$ sources, ioternal storage to increase computer operating efficiency and roinimize programming overshoots, programmable current limiting protection for the out. put power amplifier and the load, and feedback signals to inform the computer of the voltage source status.

Specifications

	81288	81888	1318
AC INPUT: Standard	$115 / 230 \mathrm{Vac}, 48-63 \mathrm{~Hz}$ $6.4 \mathrm{~A}, 780 \mathrm{~W}$ (1) 115 Vac 115/230 Vac switch-selected	$115 \mathrm{Vac} \pm 10 \% .48-440 \mathrm{~Hz}, 1.2 \mathrm{~A}, 100 \mathrm{~W}$	
Optan 228		$230 \mathrm{Vac}=10 \%$, 48-440 $\mathrm{Hz}, 0.6 \mathrm{~A}, 100 \mathrm{~W}$	
DC OUTPUT: Blnary Instruments (Option J20, Q62, or 064) XI Ranga XIG Range	-16.384 to +16.3835 Vdc at 5A Source -50 to +50 Vdc 10 5A Source	-15.384 to +16.3835 Vdc at IA Source -50 to +50 Vdc at 1 A Source	-16.384 to +16.3835 Vdc at 0.5 A Source -100 to +100 Voc at 0.5 A Source
8421 BCD Instrumants (Option 061 or 063) X1 Range $X 10$ Range	-9.999 to +9.999 Vdc at 5A Source $-50 \mathrm{to}+50 \mathrm{Vdc}$ al $5 \AA$ Source	-9.999 to +9.999 Vdc at IA Source -50 to +50 Vdc at IA Source	-9.999 to +9.999 Vdc at 0.5A Source -99.99 to +99.99 Vóc at 0.5 A Source
SInk Currant Compllanoo The instrument will meet its specifications when an active load forces current into the more positive output er from the load if the sink current is less than the maximum allowable value. The output voltage magnitude automatically increases to limit the sink current to the allowabia level.	Sink current is limited to a value ranging linearly from Externally applied terminal-to-terminal voltages in excess of 55 V will damage the instrument.	Sink current is limited to a value ranging linearly from Externally applied terminal-to-terminal vollages in excess of 55 V will damage the instrument.	Sink cursent is limited to a value ranging linearly from Externally applied terminal-to-terminal vollages in excess of 110 V will damage the instrument.
ANALOQ OUTPUT: All DCVS models will meet all specifications when the load operating point lies within the region bounded by the bold liries. The dotted lines shown the locus of the maximum voltage and current values allowed by the internal gross timit protective circuits.			
RESOLUTION: Change in output voltage for a change Binary Instruments (Option J20, 062, or 064)	X1 Range: 0.5 mV X10 Range: 5 m		
${ }^{\text {842\% }}$ BCD Instrumants (Option 061 or 063)	$\begin{aligned} & \hline \mathrm{Xl} \text { Range: : } 1 \mathrm{mV} \\ & \times 10 \text { Range: } 10 \mathrm{mV} \\ & \hline \end{aligned}$		

	6128 B		6130 B		81318
BASIC ACCURACY (90 DAYS): DC voltage accuracy at $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 115 \mathrm{Vac}$ input, no load, following 30 minutes warm-up	$X 1$ Range: 1.5 mV XIO Range: 15 mV		XI Range: 1 mV X10 Range: 10 mV		
8421 BCD Instruments (0ption 061 or 063)	$X 1$ Range: 200 pY XIO Range: 2 mV		X1 Range: $400 \mu \mathrm{~V}$ X10 Range: 4 mV		
LOAD REGULATION: Change in output voltage at the remote sensing terminals for any load current change within ratings.$\begin{aligned} & \text { Xl Range: } 150 \mu \mathrm{~V} \\ & \times 10 \text { Range: } 500 \mu \mathrm{~V} \\ & \hline \end{aligned}$					
TEMPERATURE COEFFICIENT: Change in output voltage per ${ }^{\circ} \mathrm{C}$ change in ambient temperature. 					XI Range: $160 \mu V /{ }^{\circ}{ }^{\circ}{ }^{\circ}$ XIO Range: $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
8421 BCD Instruments (0ption 051 or 063)	$\begin{aligned} & \text { X1 Range: } 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \text { Xi0 Range: } 500 \mu \mathrm{~V}^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { X1 Range: } 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \text { XIO Range: } 1 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
PROGRAMMING TIME: Maximum time required for output volkage to settle within 0.1% of programmed voltage change after simultaneous receipt of data and gate signals with a resistive load connected across the output terminals: 300μ sec. Voltage range change requires 2 msec .					
STABILITY: DC output voltage drift under constant line, load, and ambient temperature for 8 hours after 30 minutes warm-up. Blnary Imatrumenta (Option J20, 062, or 064) XI Range: $500 \mu \mathrm{~V}$ XI Range $500 \mu \mathrm{~V}$ X10 \&ange: 5 mV					
B421 BCD Instrumenta (0ption 061 or 063)	$\begin{aligned} & \text { X1 Range: } 300 \mu \mathrm{~V} \\ & \text { X10 Range: } 1.5 \mathrm{mV} \end{aligned}$				$\begin{array}{\|l\|} \hline \mathrm{XI} \text { Range: } 300 \mu \mathrm{~V} \\ \times 10 \text { Range: } 3 \mathrm{mV} \\ \hline \end{array}$
RIPPLE AND NOISE: RMS and peak-to-peak (de to 50 MHz), at any line voltage and under any load condition within rating	$12 m V p \cdot D$$3 \mathrm{mV} \text { rms }$		$\begin{aligned} & 7 \mathrm{mV} \rho-\rho \\ & 3 \mathrm{mV} \mathrm{~ms} \end{aligned}$		
LOAD TRANSIENT RECOVERY TIME: Time required for the output voltage to recover within 0.1% of full range voltage following a full load current change:$150 \mu \mathrm{Sec}$.					
METERS: The front panel includes a volimeter and ammeter with the ranges indicated at right. Accuracy is 3% of full scale.	$\begin{aligned} & \text { VOLTS } \\ & -60 \text { to }+60 \\ & -10 \text { to }+10 \end{aligned}$	$\begin{aligned} & \text { AMPS } \\ & -6.0 \text { to }+6.0 \\ & -1.5 \text { to }+1.5 \\ & -.60 \text { to }+.60 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOLTS } \\ & -60 \text { to }+60 \\ & -10 \text { to }+10 \end{aligned}$	$\begin{aligned} & \text { AMPS } \\ & -1.2 \text { to }+1.2 \\ & -.30+3 \\ & -.12 \text { to }+.12 \end{aligned}$	$\begin{array}{ll} \hline \text { VOLTS } & \text { AMPS } \\ -120 \text { to }+120 & -.06 \text { to }+.06 \\ -2010+20 & -.15 \text { to }+.15 \\ & -.6 \text { to }+.6 \\ \hline \end{array}$
ANALDG INPUT: DC OAIN: ${ }^{\mathrm{X}} 1$ Range $\times 10$ Ranga	$\begin{aligned} 1 & \pm 0.2 \% \\ 10 & \pm 0.2 \% \end{aligned}$				
BANDWIDTH TO -3 di POINT:	Approximately 9.0 kHz		Approximately 25 kHz		
$\begin{aligned} & \text { STABILITY (8 HOUR8): } \\ & \text { XI Ranga } \\ & \text { X10 Range } \\ & \hline \end{aligned}$	Stability of input signal $+500 \mu \mathrm{~V}$ Stability of input signal +5 mV				
IMPEDANCE:	$10 \mathrm{k} \Omega$				
MAXIMUM INPUT VOLTAGE: X1 Range X10 Renge	$\begin{aligned} & \pm 20 \mathrm{~V} \\ & \pm 5.0 \mathrm{~V} \\ & \hline \end{aligned}$				$\begin{aligned} & =20 \mathrm{~V} \\ & =10 \mathrm{~V} \\ & \hline \end{aligned}$
CURRENT SENSINQ: COEFFICIENT:	. $25 \mathrm{Volt} /$ /mp		1 Volt/Amp		
ACCURACY:	$\pm 5 \%$		$\pm 2 \%$		
IMPEDANCE:	750%		900n		

General

Dimenslans:
61298: $163 / 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $113 / 8^{\prime \prime}$ deep ($42,55 \times 26,67 \times$ $54,3(\mathrm{~m})$.
$6130 \mathrm{~B}, 6131 \mathrm{~B}: 163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $155 / \mathrm{B}^{\prime \prime}$ deep $(42,55 \mathrm{x}$ $13,34 \times 39,69(\mathrm{~m})$.

Weight:

6129B: net 72 lbs (33 kg): shipping 78 lbs (35 kg)
$6130 \mathrm{~B}, 6131 \mathrm{~B}$; net $32 \mathrm{lbs}(15 \mathrm{~kg})$; shipping $48 \mathrm{lbs}(22 \mathrm{~kg})$.
Price: Model 6129B, \$2700. Models 61308, 6131B, \$1800. Standard or special option must be specified.
Note: Isolation, storage, and current latch features may be deleted on special order. Prices for this version are $\$ 2200$ for the 6129 B , and $\$ 1300$ for the 6130 B and 6131 B . Contact your HP field engineer for special ordering information.
Standard Options: (no additional charge, except for option 028). 028: transformer tap change for $230 \mathrm{Vac} \pm 10 \%$, single phase inpu: on 61308 and 6131 B . Price $\$ 10$.
J20: Binary interface for 12661 A DVS programmer.
061: BCD interface for NPN open collector circuits.
062: Binary interface for NPN open collector circuits.
063: BCD interface for microcircuit logic levels.
064: Binary interface for microcircuit logic Jevels.
Special Options: If none of the standard interface options meet your requirements, quotations for special options may be obtained from your HP feld engineer.

Model 6933B D/A Converter

The Model 6933B Digital-Analog Converter is a complete D/A subsystem in one package. It is similar to the Models 6129B, 6130B, and 6131B Digitally Controlled Power Sources except for its lower output rating ($\pm 10 \mathrm{~V}$ at 0.10 mA) and the elimination of the programmable current limit feature.
Price: $\$ 1500$. Standard or special option must be specified.
Standard Optlons: Options J20, 061,062, 063, and 064 are the same as described for Models 6129B, 6130B, and 6131B, and are avaidable at no charge.
Special Options: Quotations for special options may be obtained from your HP field engineer.

The Cartesian coordinate graph is one of the most effective methods for presenting relared daca clearly. As a result, X-Y recorders have found wide application in areas from general purpose laboratory use to a specialized system readout.

Applications

X.Y recorders are frequently used for the recording of spectra, since the sweep. ing device need not have a linear sweep as a function of time. Hewletr-Packard sweepers and spectrum analyzers-from audio through microwave-produce outpurs directly compatible with HewlettPackard $\mathrm{X} \cdot \mathrm{Y}$ recorders. Sampling devices, such as fault locators, real-time spectrum analyzers, sampling oscillo. scopes and time domain reflectometers benefit from the signal averaging caused by the null detecrion recording method used in all Hewlett-Packard X-Y recorders, reducing the effect of wideband noise. The final graph is significantly more accurate, precise and easier to reproduce than oscilloscope photos of the same event. An $\mathrm{X}-\mathrm{Y}$ recorder is indis. pensable when permanent records are needed for such X vs Y data as semi. conductor device curves, hysteresis charts. or records of physical variables such as pressure vs temperature.
Recorders are extremely effective where precise X.Y plots are needed, either to obtain accurate dara or to allow rapid interpretation of data. An X-Y recorder automatically and conveniently plots the value of an independent variable versus a dependent variable, directiy on conventional graph paper, working from readily derived electrical signals.

Basic Operation of X.Y Recorders

The precision needed for accurace X.Y graphs is accomplished in Hewlett-Pack. ard recorders by the use of physically and electrically linear feedback elements (often called slidewires) coupled directly to the marking pen and the X -axis arm. Both X and Y axis slidewires are physi. cally mounted along the travelling paths of the arm and pen carriage, avoiding any error-producing mechanical linkages.

The feedback generated from these slidewires is a voltage directly proportional to the position of the pen with respect to the "zero" position originally chosen. This voltage is balanced against the signal input by a diferential ampli. fier. The ourput of the amplifier drives the pen motors, and the pen, until a null

balance condition is reached. The accuracy of the final graph, shen, is determined by the linearity of the slidewire and the ability of the servo system to drive the pen to the exact point desired (also called repearability, deadband or resettability). Hewlett-Packard specifications include such potential errors in a single Accuracy specification.

X-Y recordings may also be made from computer-generated data or other digital devices by the 7591 A Point Plotting System (page 177) or the 7200 series Graphic Plotters noted on page 402. The 7591A accepts analog inputs through a D / A converter or from analog outputs from systems such as HewlettPackard multichannel analyzers; the 7200 series receives data directly in digital form. Both plotters are directly compatible with HP 2100 series compurers. X.Y plocters are also available for use with HP 9100 and 9800 series calcula. tors.

Writing System

Most X-Y recorders use either a capillary or fiber pen/ink system and standard graph paper. Hewietr-Packard single-pen recorders utilize a self-conrained disposable pen/ink system which allows quick, easy pen changes for renewal or color change. Red, blue, green and black colors are available, and interchangeable between recorders using disposable pens.

Autogrip Paper Holddown

Any graph paper may be used on Hewlett-Packard X.Y recorders, up to the $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 17^{\prime \prime}$ maximum size of the recorder chosen. Paper is held
to the recording surface electrostatically with the Autogrip holddown system, which grips any paper tightly and silently without vacuum pumps or me chanical clips.
Hewlett-Packard graph paper is made to specification so that resecting of zero and full scale is unnecessary between successive recordings. Tolerances of margin and spacing are held to well within recotder specifications, as are perpendicularity and parallelism of graph lines and paper edges.

Selecting an X-Y Recorder

Hewlett-Packard X.Y recorders are a vailable in 2 chart sizes: $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ and $11^{\prime \prime} \times 17^{\prime \prime}$. Since all $11^{\prime \prime} \times 17^{\prime \prime}$ recorders also handle $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper, this choice must be determined by instrument size requirement or cost. Laboratory general-purpose recorders are available in both paper sizes, in single or two pen versions, and with built-in or plug in preamplifers. All recorders are available with metric or English scaling.

Orher selection considerations are sensitivity (up to $100 \mathrm{aV} / \mathrm{in}$. on the 7001 A), speed and acceleration (the 7004 B and 703.2 A are the fastest lab recorders). or the need for an automatic chart advance (available on the 2FA, 7001 A and 7004 B).

For OEM or other dedicated applications, the Models 7040A and 7041A provide the utmost in reljability and low cost. Both are designed so that custom. ized systems can be made in a production environment, and are available with funcrional discounes to OEM purchasers.

GENERAL PURPOSE Low Cost
 Models 7005B and 7035B

 $X-Y$ RECORDERSModels 7005 B and 7035 B are low cost, solid-state $\mathrm{X} . \mathrm{Y}$ Recorders for general purpose applications. Each axis has an independent servo system with no interaction between chanoels. The recorders graph two related functions from two de signals representing the functions. The ultra-compact design is convertible to rack mounting by addition of two wing brackets (supplied). Metric scaling and calibration are optional.

The input terminals accept either open wires or plug.type connectors. Five calibrated ranges from $1 \mathrm{mV} / \mathrm{io}$. to $10 \mathrm{~V} / \mathrm{in}$. are ptovided in each axis. A variable range control permits scaling of signal for full scale deflection. Standard features ioclude high input impedance (one megohm on all but the first two ranges). floated and guarded signal pair input, 0.2%
accuracy, Autogrip electric paper holddown, electeic pen lift, adjustable zero set, lockable zero and variable range controls, and rear input connector. A plug-in time base (Model 17108A) operates on either axis to provide five sweep speeds from 0.5 to $50 \mathrm{~s} / \mathrm{in}$.

Each closed-loop servo system employs a high-gain solidstate servo amplifer, Hewlett-Packard servo motor, long-life balance potentioneter, photochopper, low pass filter, guarded inputs, precision attenuator and balance circuit. Both models are designed for easy maintenance with most components mounted on a printed circuit board and accessible by removing the rear cover. Both balance potentiometers are accessible for inspection or cleaning by removing a snap-on strip.

Specifications

Performance spectflcations

Input ranges: English: 1, $10,100 \mathrm{mV} / \mathrm{in}$; 1 and $10 \mathrm{~V} / \mathrm{in}$; Metric: $0.4,4,40,400 \mathrm{mV} / \mathrm{cm}$ and $4 \mathrm{~V} / \mathrm{cm}$. Continuous vernier between ranges.
Type of inputs: floated and guarded signal pair; rear input connector.
Input resistance:

Range	Input reshatance
$1 \mathrm{mV} / \mathrm{in}(0.4 \mathrm{mV} / \mathrm{cm})$	Potentiometric
	(essentially infinite at nuli)
Variable	$11 \mathrm{k} \Omega$
$10 \mathrm{mV} / \mathrm{in}(4 \mathrm{mV} / \mathrm{cm})$	$100 \mathrm{k} \Omega$
Variable	100 kS
$100 \mathrm{mV} / \mathrm{in}(40 \mathrm{mV} / \mathrm{cm})$	$1 \mathrm{M} \Omega$
Variable	$1 \mathrm{M} \Omega$
$1 \mathrm{mV} / \mathrm{in}(400 \mathrm{mV} / \mathrm{cm})$	$1 \mathrm{M} \Omega$
Variable	$1 \mathrm{M} \Omega$
$10 \mathrm{~V} / \mathrm{in}(4 \mathrm{~V} / \mathrm{cm})$	$1 \mathrm{M} \Omega$
Vartable	$1 \mathrm{M} \Omega$

Ingut filter: $>30 \mathrm{~dB}$ ar $60 \mathrm{~Hz} ; 18 \mathrm{~dB} /$ octave above 60 Hz .
Maximum allowable sourte Impedance: no restrictions except on fixed $1 \mathrm{mV} / \mathrm{in}$. ($0.4 \mathrm{mV} / \mathrm{cm}$) range. Up to $20 \mathrm{k} \Omega$ source impedance will not alter recorder's performance.
Accuracy: $\pm 0.2 \%$ of full scale.
Linearity: $\pm 0.1 \%$ of fuil scale.
Resettability: $=0.1 \%$ of full scale.
Zero set: zero may be set up to one full scale in any direction from zero index. Eockable zero controls.
Slewing speed: $20 \mathrm{in} . / \mathrm{s}, 50 \mathrm{~cm} / \mathrm{s}$ nominal at 115 V .

Interfarence rejection: condizions for the following data is line frequency with up to $1 \mathrm{k} \Omega$ berween the negative input and guard connection point.

Ran¢0		DC (CMR)	AC (CMA)
English	Metric		
$1 \mathrm{mV} / \mathrm{in}$	$0.4 \mathrm{mV} / \mathrm{cm}$	$130 \mathrm{d8}$	100 dB
$10 \mathrm{mV} / \mathrm{in}$	$4 \mathrm{mV} / \mathrm{cm}$	110 dB	80 dB
$100 \mathrm{mV} / \mathrm{in}$	$40 \mathrm{mV} / \mathrm{cm}$	9088	60 dB
$1 \mathrm{~V} / \mathrm{in}$	$400 \mathrm{mV} / \mathrm{cm}$	70 dB	40 dB
$10 \mathrm{~V} / \mathrm{in}$	$4 \mathrm{~V} / \mathrm{cm}$	50 dB	20 dB

General specifications

Paper holddown: Autogrip electric paper holddown grips any chart up to size of platen.
Pen likt: electric pen lift capable of being remotely controlled.
Dimenslons: 7005B: 171/2" high, $171 / 2^{\prime \prime}$ wide, $4.5 / 16^{\prime \prime}$ deep
(445 $\times 445 \times 110 \mathrm{~mm}$) $.7035 \mathrm{~B}: 10.15 / 32^{\prime \prime}$ high, $1712^{\prime \prime}$ wide, $43 / 4^{\prime \prime}$ deep ($266 \times 445 \times 121 \mathrm{~mm}$).
Waight: nef, $18 \mathrm{lb}(8 \mathrm{~kg}$); shippiag, $24 \mathrm{lb}(10,9 \mathrm{~kg})$.
Power: lis or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approximately 45 VA .
Time base accessory: Model 17108A self-contained external time base has five spreep speeds.

Price \$ 175

Price:

Mode! 7005B-11 in x 17 in. Chart Size $\$ 1235$

$$
\text { Model } 7035 \mathrm{~B}-81 / 2 \text { in. } \times 11 \text { in. Chart Size } \$ 285
$$

Options:

1. Metric calibration N/C
2. Retransmituing porentiometer on X-axis $5 \mathrm{k} \Omega \pm 3 \%$

HIGH PERFORMANCE
Plug-in versatility and fast response
Models 7004B and 7034A

The 7004 B and the 7034 A are flexible to meet the constantly changing requirements of laboratory measurements. Plug-in modules and a variety of accessonies form a versatile high-performance X-Y Recorder. Circuitry common to all plug.in modules (power supplies, interfaces, etc.) is located in the main frame. This allows the user to purchcase additional low-cost plug-ins to expand the measurement capabilities of the system. The plug-in approach allows the user to purchase only the capabilities required.
With an acceleration of more than $1500 \mathrm{in} . / \mathrm{s}^{2}$, and slewing speed of $30 \mathrm{in} . / \mathrm{s}$, the 70048 and 7034 A record more phenomena than earlier X.Y recorders.

These recorders use the most advanced technology available.

They use all-silicon integrated circuitry and the proven Autogrip electrostatic paper holddown.

Guarded input circuits are provided to utilize the superior performance fully. Guarding eliminates the effects of unwanted ac and de common-mode voltages which can be troublesome in low level recording signals from thermocouples, strain gages and similar sources.

Plug.in modules provide a versatile X.Y Recorder for a variety of applications. If your application changes, the needed measurement capability is available by simply adding an inexpensive plug-in. In addition to these advantages, their high dynamic performance allows recorders to be used in practically any X-Y Recorder application.

Performance specifications

Number of plugeins: frame will accept the equivalent of four single-width plug ins, two per axis.
Type of Input: floating and guarded signal pair. Available at the front panel or at the rear connectos.
Zero set: zero may be set ± 1 full scale from zero index.
Zero check switches: pushbutton zero check switch in each axis allows verification of recorder's zero position withour removal or shorting of the input signal.
Malntrame accuracy: 0.2% of fs.
Range vernler: lockable, covers 2.5 times range setting.
Slewing speed: more than $30 \mathrm{in} . / 5(75 \mathrm{~cm} / \mathrm{s})$ independent of line voltage and frequency.
Acceleration: more than $1500 \mathrm{in}, / \mathrm{s}^{2} 3800 \mathrm{~cm} / \mathrm{s}^{-1}$).
Reference stability: berter than $0.003 \% /{ }^{\circ} \mathrm{C}$.
Terminal based linearity: $\pm 0.1 \%$ of fs .
Resettabillty: $\pm 0.05 \%$ of fs .

General specifications

Paper holddown: Autogrip paper holddown grips charts of any size up to size of platen.
Pen litt: local and remote control (concact closure or TTL).
Dimensions: 7004B: 171/2" wide, $171 / 2^{\prime \prime}$ high, $43 / 4^{\prime \prime}$ deep ($445 \times 445 \times 121 \mathrm{~mm}$). $7034 \mathrm{~A}: 171 / 2^{\prime \prime}$ wide, $1012^{\prime \prime} \mathrm{high}$, $43 / 4^{\prime \prime}$ deep ($445 \times 267 \times 121 \mathrm{~mm}$).
Weight: 7004 B : ner, $28 \mathrm{lbs}(12,7 \mathrm{~kg}$); shipping, $42 \mathrm{lbs}(19,0$ kg). 7034 A : net, $16 \mathrm{lbs}(7,3 \mathrm{~kg}$); shipping, $31 \mathrm{lbs}(14,1 \mathrm{~kg}$).
Power: 115 or 230 volts ac $\pm 10 \%$, 50 to 400 Hz , approximately 85 VA (depending on the plug-ins used).
Price
Model $700 \mathrm{fB}-11^{\prime \prime} \times 17^{\prime \prime} \quad \$ 1445$
Model 7034A.81/2" x $11^{\prime \prime}$ \$1295

Options

01 Metrically scaled and calibrated N/C
02 X -axis retransmitting potentiomerer, $5 \mathrm{k} \Omega \pm 0.1 \%$ linearity (7004 B ooly)
\$ 75
04 Power supply for 17005 -04 incremental chart advance (7004 B only)

PLUG-IN MODULES For recorder Models 7004B and 7034A

The DC Coupler couples the input signal to the recorder main frame. The input signal range of $100 \mathrm{mV} / \mathrm{in}$ (50 mV / cm) may be adjusted to $250 \mathrm{mV} / \mathrm{in}(125 \mathrm{mV} / \mathrm{cm})$ with a vernier control on the recorder front panel.

DC Amplifier
Model 17171A

The DC Pre-amplifer is a stable, low noise, de amplifier. The 14 calibrated input ranges aze supplemented by a vernier control on the recordet front panel to provide a continuously variable range from $0.5 \mathrm{mV} / \mathrm{in}$. ($0.25 \mathrm{mV} / \mathrm{cm}$) to $25 \mathrm{~V} / \mathrm{in}$. (12.5 V / cm).

The Time Base plug-in makes X-T or Y.T recordings pos. sible. It employs all-silicon solid-state construction including the latest integrated circuirs. Standard features include eight speeds, automatic reset and pen lift at completion of sweep, and remote start control. A vernier control on the recorder front panel extends the swreep speed through $250 \mathrm{~s} / \mathrm{in}$. (125 s / cm).

The Null Detector plug-in provides closed-loop plorting of data in point form, at up to 50 pps . Plotting is accomplished with the Model 17012B/C Point Plotter. The 17012B/C cable plugs into a jack on the 17173A panel and the plotting head is substituted for the recorder pen.

Upon receipt of a seek signal and after the recorder reaches balance, the Null Detector commands the 17012B/C Point Plotter to plot and initiates a plot-complete pulse.

17170A Specifications

Input range: a single fixed calibrated range of $100 \mathrm{mV} / \mathrm{in}$. (50 $\mathrm{mV} / \mathrm{cm}$).
Input resistance: constant, $1 \mathrm{M} \Omega$.
Common-mode rejection: 120 dB at $d c$ and 70 dB at 50 Hz and above with 100 ohms between low side and guard connection point with source impedance $10 \mathrm{k} \Omega$ or less.
Price: Model 17170A

17171A Specifications

Input ranges: English: $0.5,1,2,5,10,20,50 \mathrm{mV} / \mathrm{in} ., 0.1,0.2$, $0.5,1,2,5,10 \mathrm{~V} / \mathrm{in} . ;$ Metric: $0.25,0.5,1,2.5,5,10,25 \mathrm{mV} /$ $\mathrm{cm}, 0.05,0.1,0.25,0.5,1,2.5 .5 \mathrm{~V} / \mathrm{cm}$.
|nput reslstance: $1 \mathrm{M} \Omega$.
Maximum allowable source resistance

Range	Hax, Souroe Reslatanse
$0.5 \mathrm{mV} / \mathrm{in} .(0.25 \mathrm{mV} / \mathrm{cm})$	$10 \mathrm{k} \Omega$
$1 \mathrm{mV} / \mathrm{n} .(0.5 \mathrm{mV} / \mathrm{cm})$	$20 \mathrm{k} \Omega$
$2 \mathrm{mV} / \mathrm{n} .(1.0 \mathrm{mV} / \mathrm{cm})$	$40 \mathrm{k} \Omega$
$5 \mathrm{mV} / \mathrm{n} .(2.5 \mathrm{mV} / \mathrm{cm})$	$100 \mathrm{k} \Omega$
$10 \mathrm{mV} / \mathrm{n}(5.0 \mathrm{mV} / \mathrm{cm})$	$200 \mathrm{k} \Omega$
$20 \mathrm{mV} / \mathrm{m} .(10.0 \mathrm{mV} / \mathrm{cm})$	$400 \mathrm{k} \Omega$
$50 \mathrm{mV} / \mathrm{m} .(25 \mathrm{mV} / \mathrm{cm})$ and up	$1 \mathrm{M} \Omega$

Common-mode rejection: 120 dB at dt and 100 dB at. 50 Hz and above with 100 ohms between low side and guard connection point (at $0.5 \mathrm{mV} / \mathrm{in}$. or $0.25 \mathrm{mV} / \mathrm{cm}$). On other ranges CMR decreases 20 dB per decade step in attenuation.
Systern accuracy; $\pm 0.2 \%$ of full scale.
Zero drift: $<1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ with a maximum of $25 \mu \mathrm{~V}$ from 0 in $59^{\circ} \mathrm{C}$.
Price: Model 17171A \$ 275
Option: 01 metrically scaled N / C

17172A Specifications

Sweep speods: English: $0.5,1,2,5,10.20,50,100 \mathrm{~s} / \mathrm{in}$; Merric: $0.25,0.5,1,2.5,5,10,25,50 \mathrm{~s} / \mathrm{cm}$.
System accuracy: $\pm 1 \%$ of full scale on the six fastest ranges. $\pm 2.5 \%$ on the remaining two ranges.
Terminal based linearlty: $\pm 0.5 \%$ of full scale.
Price: Model 17172A
$\$ 200$
Optlon: 01 metrically scaled N/C

17173A Specifications

Plot rate: up to 50 plots/s.
Enable-disable: required disable voltage +3 volts minimum to +20 volts maximum. Required enable voltage: 0 V dc or no connection. Other voltage combinations arailable on request.
Muting: local or remote.
Plotting accuracy: $\pm 0.25 \%$ of full scale.
Input: all inpurs, except analog inputs, are available through rear input connectors in the module. Analog inpurs are applied 10 the input terminals of the main frame. Mating connector supplied.
Price: Model $17173 \mathrm{~A} \quad \$ 225$
Options

01.	+3 to +20 V enable, 0 V disable	add $\$$	25
02.	-3 to -20 V disable, 0 V enable	add $\$$	25
03.	-3 to -20 V enable, 0 V disable	add $\$$	25

The DC Offset plug-in provides the recorder with the capabilities of recording small signals superimposed on a steady. state de voltage. The offset plug-in suppresses the steady-state dc voltage allowing recorder sensitivity to be increased.

The Filter plug-in rejects ac input signal components. Insertion of the 17175A in front of any other signal conditioning inpur module will improve normal mode rejection.

The Scanner plug-in electrically scans between two inputs. similar to the chopped mode on an oscilloscope, and provides the capability of plotting two dependent variables vs, one inde. pendent variable. The Scanner plug-in, utilizing the Model $17012 \mathrm{~B} / \mathrm{C}$ high speed point plotter, can scar two selectable inputs (module or main franse) in two scan modes (mulriplexing both inputs or singularly). The scan rate is adjustable from 0.1 $\mathrm{s} / \mathrm{scan}$ to $4 \mathrm{~s} / \mathrm{scan}$.

DC Attenuator

Model 17178A

The DC Attenuator offers a stable, passive attenuator with eight ranges. A vernier control on the recorder control panel allows continuously variable settings between fixed ranges of the 17178A.

17174B Speciflcations

Offset: less than ! mV to approximately 1 valt.
Controls: two lackable, ten-turn high resolution controls (less than 1 mV to approximately 10 mV and less than 1 mV to approximately l V). An offset polarity switch allows upscale or down. scale zero offset.
Offset voltage stabllity: greater than $0.005 \% /{ }^{\circ} \mathrm{C}$.
Insertion loss: less than 0.05%.
Prlce: Model 17174 B

17175A Specifications

Input voltage range: -5 to +50 V dr, 10 V ac maximum peak-topeak.
Maximum source impedance: $1 \mathrm{k} \Omega$, higher impedance decreases filter response.
Rejection: more than 55 dB at 50 Hz and higher ($1 / 45$ rise time) or more than 70 dB at 50 Hz and higher (1 s rise time). Front panel selectable.
Insertion loss: 1%; fiter may be switched out with no change in insertion loss.
Price: Model 17175A \& 75

17176A Specifications

Input: module input; frone panel miniature binding posts isolated from ground (high and lon only). Main frame input; utilizes existing input connectors on main frame.
Attenuator: fixed attenuator in decade steps from XI to X0.001. Variable attenuator provides continuous coverage.
Input impedance: $100 \mathrm{k} \Omega$.
Accuracy: 0.2% of full scale.
Scan rate: adjustable from 0.1 to $4 \mathrm{~s} / \mathrm{scan}$.
Price: Model 17176A

17178A Specifications

Input ranges: English: $0.1,0.2,0.5,1,2.5,10,20 \mathrm{~V} / \mathrm{in}:$ Merric: $0.05,0.1,0.25,0.5,1,2.5,5,10 \mathrm{~V} / \mathrm{cm}^{2}$.
Input resistance: $1 \mathrm{M} \Omega$.
Common-mode rejectlon: 120 dB at dc and 70 dB at 50 Hz and above with 100 ahms between low side and point where the guard is connected (at $100 \mathrm{mV} / \mathrm{in}$. or $50 \mathrm{mV} / \mathrm{cm}$). On orher ranges CMR decreases 20 dB per decade step in attenuation.
System accuracy: $\pm 0.2 \%$ of full scale.
Price: Model 17178A
$\$ 100$
Option: 01 metrically scaled

17012B/C Specifications

The 7004 B or 7034 A , equipped with the 17012 B or 17012 C Point Plotter respectively, is capable of point plotting when used with the appropriate plug-in. The 17173A. Null Detector plug.in allows rapid point ploting for applications such as a high speed readout for a multichannel pulse height analyzer. The 17176A Scanner plug-in allow's plotring of two inputs on a single axis to form a $X \cdot Y_{1}, Y_{2}$ or $X_{2}, X_{1}-Y$ recorder.

Plotting rate is up 1050 points per second: poner is sup. plied from the cecorder.
Price: Model 17012B (fits Model 70048) \$ 95
Model 17012 C (fits Model 7034A) \& 95

PLUG-IN MODULE; POINT PLOTTING SYSTEM

 GRAPHIC RECORDERS
AC/DC CONVERTER/DC PREAMPLIFIER Model 17177A

The $A C / D C$ Converter/DC Preamplifier plug in combines a de preamplifiec with the ability to record ac signals in a single unit. Both ac and de signals can be recorded over an input signal range from $5 \mathrm{mV} / \mathrm{in} .(2.5 \mathrm{mV} / \mathrm{cm})$ to $20 \mathrm{~V} / \mathrm{in}$. ($10 \mathrm{~V} / \mathrm{cm}$). The average-responding ac amplifier features an extremely flat frequency response, holding to within $\pm 0.5 \%$ of full scale over the entire frequency range from 5 Hz to 100 kHz . Front panel, pushbutton switches select ac or dc operation, and the lower ac limit of 5 Hz or 50 Hz . The double-width module may be used in either axis.

Specifications
Input ranges: $9 \mathrm{mV} / \mathrm{in}$. to $20 \mathrm{~V} / \mathrm{in}$. ($2.5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$) in $1,2,5$ steps.
Minimum usable input (ac only): $\pm 0.2 \%$ of full scale.
Maximum allowable input: 300 V peak.
Type of input: floating and guarded signal pair. Rear inputs not available.
Input impedance: $1 \mathrm{M} \Omega$ shunted by less than 40 pF .
Maximum altowable source resistance: 10 ks .
Common-mode rejection: 80 dB at dc and 50 Hz and above with 1005 between low side and guard connection point and at $5 \mathrm{mV} / \mathrm{in}$. ($2.5 \mathrm{mV} / \mathrm{cm}$). On other ranges $C M R$ decreases 20 dB per decade step in attenuation.
Rise/fall time (ac only, 10.90%)
Fast response (50 Hz to 100 kHz): 0.5 s maximum.
Slow response (5 Hz to 100 kHz): 2.5 s maximum.
Calibration (ac only): responds to average value of input wave. form; calibrated in rms value of sine wave.
Accuracy: dc $\pm 0.5 \%$ of full scale; ac (expressed as percent of full scale).

Slow Response

60 Hz	100 Hz	$60 \mathrm{kHz} \quad 100 \mathrm{kHz}$	
$\pm 0.5 \%$	$=0.25 \%$	$=0.5 \%$	
30 Hz			60 kHz
100 kHz			
$\pm 0.5 \%$	$\pm 0.25 \%$	$\pm 0.5 \%$	

Linearity: ac (expressed as percent of full scale, measured from 0.5% of full scale to full scale).

| 5 Hz | 50 Hz | 50 kHz 100 kHz |
| :---: | :---: | :---: | :---: |
| $\pm 0.35 \%$ | $\pm 0.25 \%$ | $\pm 0.35 \%$ |

Warm-up time: 3 minutes nominal.
Zero drift (referred to input): $\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Oftset: up to one full scale of offset by use of recorder's zero. Size: double width, occupies both plug-in spaces in axis.
Price: HP 17177A, $\$ 500$.
Options
00I: Merric scaled, no charge.
POINT PLOTTING SYSTEM Model 7591A

The fastest and most economical way to point plot analog data from computers, pulse height analyzers, signal averagers, or multi-channel analyzers is to use the versatile HP 7591A Point Plotting System.

The 7591A wras designed to accept plug-in accessories to meet high-speed point-plotting requirements and to plot on any size of flat sheet up to 11 in. $x 17$ in. on roll or fan-fold paper. The 17005A Incremental Chart Advance provides frame advance, incremental advance, time-base and major-division advance with a position accuracy of ± 0.005 inch: incremental advance is an ideal way to increase plot resolution. The 17173A Null Detector plug-in and the 170128 Point Plotter give you closed.loop plotting at rates up to 3000 plots/minute.

The 2FA and 136A are two-pen X.Y1, Y_{2} graphic recorders available with English or Metric scaling for bench or rack mounting. Features inciude a built-in time base on the X axis with 5 calibrated sweeps, 11 input voltage ranges with a continuous vernier that scales input voltages to fit the paper, a full-scale zero set and suppression, local and remote pen lift and potentiometric inputs. Two-pen capability makes these recorders extremely useful for plotting 3 parameters simultaneously.

The two pens traverse the full X axis with no more than 0.1 inch horizontal separation. The servo drives are independent and free of electrical ground. The servo amplifiers and power supplies are combined in a single compact modular unir. A simplified self-balancing system using linear slidewires and a continuous zener-controlled reference provides for non-interacting and accurate recording versatility. Autogrip electric paper holddown provides a positive grip on chart paper up to the size of the platen. Operation is silent and maintenance free.

Specifications

Performance Specifications

Input ranges: $0.5,1,5,10,50 \mathrm{mV} / \mathrm{in} . ; 0.1,0.5,1,5,10,50 \mathrm{~V} / \mathrm{in}$. Merric models: $0.2,0.5,2,5,20,50 \mathrm{mV} / \mathrm{cm} ; 0.2,0.5,2,5,20$ V / cm. Variable range mode all positions.
Input resistance: one megohm at null on all fixed ranges. Variable range mode. 100,000 ohms on four most sensitive ranges and one megohm on all others. On the Model 2FA, potentiomerric input is available on the four most sensitive ranges of each axis by removing an internal strap. On the Model 136 A, potentiometric input is available on the four most sensitive ranges of the X-axis by removal of an ineernal strap and on both Y axes by a front panel switch.
Maximum allowable source impedance: up to $10 \mathrm{k} \Omega$ source impedance will not alker recorder's performance on the four lowest ranges. No source impedance restrictions on aanges above 10 $\mathrm{mV} / \mathrm{in}$.
Tlme Sweeps: (an X axis only) 0.5, 1, 5. $10.50 \mathrm{~s} / \mathrm{in}$: metric: $0.2,0.5,2,5,20 \mathrm{~s} / \mathrm{cm}$. Accuracy, 5% of full scale.
Accuracy: 0.2% of full scale.
Linearity; 0.1% of full scale.
Resettability: 0.1% of full scale on all ranges.
Reference stability: better than $0.002 \% / /^{\circ} \mathrm{C}$.

Slewing speed

2FA serles: 60 Hz operation: $10 \mathrm{in} / \mathrm{s}(25 \mathrm{~cm} / \mathrm{s})$ on the X -axis; $20 \mathrm{in} . / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s})$ on Y_{s} and $Y_{\text {: }}$ axes max. 50 Hz operation $8 \mathrm{in} . / \mathrm{s}(20 \mathrm{~cm} / \mathrm{s})$ on the X-axis; $16 \mathrm{in} . / \mathrm{s}(40 \mathrm{~cm} / \mathrm{s})$ on Y, and $Y=a x \in s$ max.
136A/AM: 60 Hz operation: $20 \mathrm{in} / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s})$ on the Xaxis; $15 \mathrm{in} . / \mathrm{s}(38 \mathrm{~cm} / \mathrm{s})$ on Y_{1} and Y_{2} axes max. 50 Hz operation: $16 \mathrm{in} . / \mathrm{s}(40 \mathrm{~cm} / \mathrm{s})$ on the $\mathrm{X} \cdot 2 \mathrm{axis} ; 12 \mathrm{in} . / \mathrm{s}(30 \mathrm{~cm} / \mathrm{s}\rangle$ on the Y_{1} and Y : axes max.

General Specifications

Paper holddown: Autogrip paper holddown electronically grips charts of any size up to size of platen.
Pen lift: local and remote.
Power: 115 or $230 \mathrm{~V}, 50$ or $60 \mathrm{~Hz}, 130 \mathrm{VA}$.
Dimensions: 2FA/2FAM (bench) : $181 / 4^{\prime \prime}$ deep, $171 / 2^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high ($464 \times 445 \times 206 \mathrm{~mm}$) ; 2FRA/2FRAM (rack): $8^{\prime \prime}$ deep, $19^{\prime \prime}$ wide, $19-7 / 32^{\prime \prime}$ high ($203 \times 483 \times 488 \mathrm{~mm}$) ; $136 \mathrm{~A} / \mathrm{M}$ (bench): $14^{\prime \prime}$ high, $177 / 8^{\prime \prime}$ wide, $6.3 / 16^{\prime \prime}$ deep (355 x $454 \times$ 157 mm); (rack) $14^{\prime \prime}$ high, $19^{\prime \prime}$ vide, $6.3 / 16^{\prime \prime}$ deep (355 x $483 \times 157 \mathrm{~mm}$).

Weight: 2FA series: net, $42 \mathrm{lb}(18,9 \mathrm{~kg})$; shipping, 55 lb (24.75 kg). 136A/AN: net, $34 \mathrm{lb}(15,45 \mathrm{~kg}$); shipping, 47 ib (21,3 kg).
Price: 2FA/2FRA (English), 2FAM/2FRAM (Mettic) $\$ 3450$ 136A/136AR (English), 136AM/136AMR (Merric) S2750
Options

2FA Option Number	138A Optlon Number	Desoription	Prloes
01	02	Rear input connectors (supplied with mating connectors)	add \$15
02	-	Event marker	add $\$ 100$
-	03	§ \mathbb{v}_{0} retransmitting potenti-ometer-X axis	add \$100
03	04	Disposable pen tips	N/C

SPECIAL PURPOSE For OEM and dedicated applications Models 7040A, 7041A

The 7040A and 7041A X.Y recorders are designed specifically for dedicated, single-purpose recording applications. The 7040A is a medium-speed unit for the majority of uses, while the 7041A is a high-speed unit featuring exceptionally fast acceleration for applications where recordag time is critical or incoming data is at a high rate. Both units use the same rugged cast aluminum mainframe which forever eliminates the need for critical mechanical adjustments, the Autogrip holddown system which is silent and trouble-free with no moving parts, and a quick-change disposable pen.

Over 40 inexpensive options allow the recorder to be easily customized for nearly any specific task. Most can be easily and quickly installed or changed in the field should the recording requirement change. If some manual control is needed, a control panel (Option 038) may be added which provides the basic recorder functions such as zero set, servo, pen and chart handling. Other options include a time base, a plugin X -axis event marker, TTL logic remote control and retransmitting. potentiometers for both axes. The 7040 series option system avoids the cost and potential reliability problems associated with the extra, unused components when using a general. purpose recorder in a dedicated application.

A functional and quantity discount is available for both units when qualified for the OEM purchase agreement.

Specifications

Input ranges; single range from $0.5 \mathrm{mV} / \mathrm{in}$. to $1 \mathrm{~V} / \mathrm{in}$. (0.2 to $500 \mathrm{mV} / \mathrm{cro}$), specified by option choice.
Type of input: floating, i Ms on all ranges, 200 V de plus peak ac max; internal polarity switch; inputs through rear barrier strip or optional connector.
Common mode rejection: $100 \mathrm{~dB} \mathrm{dc} ; 80 \mathrm{~dB}$ at line frequency.

Slewing speed

7040A: $20 \mathrm{in} . / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s}) \mathrm{min}$.
7041A: $30 \mathrm{in} . / \mathrm{s}(75 \mathrm{~cm} / \mathrm{s}$) min.
Accelaration (peak)
7040A: Y axis $1000 \mathrm{in} . / \mathrm{s}^{2} ; \mathrm{X}$ axis $500 \mathrm{in} . / \mathrm{s}^{2}$.
7041A: Y axis $3000 \mathrm{in} . / \mathrm{s}^{2}$; X axis $2000 \mathrm{in} . / \mathrm{s}^{2}$.
Accuracy: $\pm 0.2 \%$ of full scale.
Sweep: optional, single range.
Zero set: external control provided by user; front panel controls available as Option 038.
Paper holddown: Autogrip electric paper bolddown grips charts $11^{\prime \prime} \times 17^{\prime \prime}$ and international A3 size or smaller.
Pen lift: electric pen lift controlled remotely by contact closure; TTL logic level provided by Option 039.
Dimenslons: $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ deep ($356 \times 483 \times 169$ mm): rack mounting structure integral with unit.
Weight: net, $29 \mathrm{lbs}(13,2 \mathrm{~kg}$) ; shipping, $37 \mathrm{lbs}(16.8 \mathrm{~kg}$).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approx 130 VA . Prices

```
Model 7040A
\(\$ 890\)
```

Model 7041A
$\$ 1050$
Note: OEM discounts available on both models.

Options
Input range (specify one range option for each axis; must be both English or both metric)

Note: other sweep ranges available on special order.
035 Event marker, upper margin of X axis $\$ 75$
036 X axis retransmitting potentiometer (19.2 kJ) \$50
037 Y axis retransmitting potentiometer ($13.1 \mathrm{k} \Omega$) $\$ 50$
038 Control panel; for line, pen lift, chart, servo standby, zero. and zero check; add $13 / 4^{\prime \prime}$ (44 mm) to height
$\$ 125$
039 TTL logic remote control; for pen lift and servo standby; also event marker if installed
040 Rear connector; X, Y input signals and retransmitring potentiometers, time base controls, Autogrip servo standby, pen lift, event marker and Option 039 control lines brought to a single locking connector
041 Side trim panels and dust cover ($14^{\prime \prime}$, for standard unit)
042 Side trim panels and dust cover ($153 / 4^{\prime \prime}$, for unit with Option 038 installed)
$100 \mu \mathrm{~V} /$ Inch Sensitivity - Model 7001A

The 7001A X.Y recorder has high sensitivity, high common mode rejection and specially guarded and shielded circuitry. Units are availabie for bench (7001A) or rack mounting (7001AR), and with metric or English scaling.
Sweep features include automatic reset, adjustable sweep length and automatic recycling. The time base may be s witched to operate on either axis. Zero offset for each axis may be preser in 5 -inch calibrated steps up to 4 scale lengths on the Y axis and 3 scale lengths on X with continuous adjustability between steps. Zero check pushbutton switches are provided on each axis. Input impedance is $1 \mathrm{M} \Omega$ at null on all ranges, with potentiometric input possible on the 6 most sensitive ranges by internal strap or optional front panel switch.

Specifications

Input ranges: 19 ranges, $0.1 \mathrm{mV} / \mathrm{in}$, to $20 \mathrm{~V} / \mathrm{in}$. in a $1,2,5$
sequence ($0.05 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ in a $1.2 .5,5$ sequence).
Continuous vernier between ranges.
Type of input: foating and guarded signal pair.
Maximum allowable source Impedance: $10 \mathrm{k} \Omega$ on fiisr 6 ranges; no restrictions on ranges above $5 \mathrm{mV} / \mathrm{in}$.
Interference rejaction: dc CMR 140 dB on first 3 ranges; 120 $d B$ at power line frequency on first 2 ranges.
Slewing speed: 20 in/s each axis at $60 \mathrm{~Hz} ; 16 \mathrm{in} / \mathrm{s}$ at 50 Hz . Accuracy: $\pm 0.2 \% \mathrm{fs}$.
Reference stability: betrer than $0.005 \% /{ }^{\circ} \mathrm{C}$.
Time sweeps: 0.5. 1, 2, 5, 10, 20, 50, $100 \mathrm{~s} / \mathrm{in}(0.25,0.5,1$, $2.5,5,10,25,50 \mathrm{~s} / \mathrm{cm})$. Accuracy $\pm 2 \%$.
Power: $1 \mathrm{LS} / 230 \mathrm{~V}, 50$ to 60 Hz , approximately 120 VA .
Dimensions: bench: $61 / 2^{\prime \prime}$ high, $171 / 2^{\prime \prime}$ wide, $17^{\prime \prime}$ deep (164 x $445 \times 432 \mathrm{~mm}$) ; rack: $17 \cdot 7 / 16^{\prime \prime}$ high $\times 19^{\prime \prime} \times 53 / 8^{\prime \prime}$ ($443 \times$ $483 \times 136 \mathrm{~mm}$).
Weight: net, $35 \mathrm{lbs}(15.9 \mathrm{~kg}$) : shipping, $46 \mathrm{lbs}(20.9 \mathrm{~kg}$).
Price: $7001 \mathrm{~A} / \mathrm{AR}$ (English), $7001 \mathrm{AM} / \mathrm{AMR}$ (metric) $\$ 2175$ Options

001	Potentiomerric switch (first 6 ranges)	
004	X axis retransmitting potentiometer ($5 \mathrm{k} \Omega \mathrm{s}$)	
005	Rear input terminals	
006	Y axis retransmitting potentiometer ($\mathrm{s} \mathrm{k} \Omega$)	
007	Retransmirting potentiometers on both axis	\$ 150
009	Event marker (X axis)	\$ 100
010	Disposable pen tips	N/C

Recorder Accessories

17005A Incremental Chart Advance

The 17005 A is a versatile accessory for $11^{\prime \prime} \times 17^{\prime \prime}$ bench type $\mathrm{X} . \mathrm{Y}$ recorders. In the frame advance mode, the chart advance permits successive X.Y plots to be made during unattended operation, indexing to within $0.005^{\prime \prime}$ of the original chatt location. The major division advance mode allows successive X-Y plots to be made along the chare at $3^{\prime \prime}$ intervals. The time base mode converts the recorder from X.Y to strip chart recorder operation, while the incremental mode advances the chart in response to an external signal. Compatible Hewlett-Packard recorders are the $2 \mathrm{AA}, 7000 \mathrm{~A}, 7001 \mathrm{~A}$, and $7004 \mathrm{~B} . \mathrm{Opt} 04$.

Specifications

Frame advance mode
Advance dlstance: 24 in . (60 cm); time: less than 205.
Accuracy: ± 0.005 in. ($0,0129 \mathrm{~cm}$) non-cumulative.
Major division advance mode
Advance distance: 3 in . $(7,5 \mathrm{~cm})$; time: less than 2.5 s .
Accuracy: $\pm 0.005 \mathrm{in}$. ($0,0125 \mathrm{~cm}$) non-cumulative.
Time base mode
Speeds: $1,5,10,50.100 \mathrm{~s} / \mathrm{in}(0.4,2,4,20,40 \mathrm{~s} / \mathrm{cm})$.
Accuracy: $\pm 2 \%$.
Incremental advance mode
Plot density: $200,100,50,20,10$ plors $/ \mathrm{in}$. $(80,40,20,8$, 4 plots $/ \mathrm{cm}$).
Max advance rate: $100,90,50,20,10$ plots $/ \mathrm{s}$.
Accuracy: $\pm 0.002 \mathrm{in} .(0,005 \mathrm{~cm})$ non-cumulative.
Power: supplied by recorder.
Weight: net, 11 lbs (5 kg); shipping, $16 \mathrm{lbs}(7,3 \mathrm{~kg}$).
Price: Model 17005A
Options
001 Fan fold adapter
$\$ 125$
002 Metric scale \quad N/C
004 Compatibility with 7004B-Opt. 04 N/C

17108A Time Base

The 17108A is a self-contained external time base designed to plug directly into the input terminals of the 7035 B and operate on either axis. An adapter supplied allows the use with a variety of Hewlett-Packard recorders. Any number of recorders may be driven simultancously, provided the com. bined parallel input resistance is $20 \mathrm{k} \Omega$ or more.

Specifications

Sweep speeds: $0.5,1,5,10,50 \mathrm{~s} / \mathrm{in} .(0.2,0.4,2,4,20 \mathrm{~s} / \mathrm{cm}$).
Accuracy: 5% of recorder full scale.
Linearity: 0.5% of (ull scale ($20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$). Output voltage: 0 to 1.5 V .
Power: replaceable mercury battery (100 hr).
Price: 17108A
17108AM (metric) \$175

Much of the instrumentation which extends, refines or supplements human perception produces information in the form of electrical analog signals. Records of such data are, of course, necessary. Electrical data acquired in serial fashion, comprising a chain of meaning. fui changes in a signal, record naruraliy on continuous instruments such as strif chart recorders. The character of the sig. nal will determine the appropriate recording instrument. Permanent records of slowly changing analog values are conveniently made by Hewlett-Packard servo-driven strip chart recorders; oscillographic recorders can handle signals from de to 150 Hz .

Parallel-inpur digital data may also be direcely recorded using the Model 580 A or 581 A Digital to Analog converter. Outputs from most HewletrPackard counters. digital voltmeters and orher digital measuring devices are converted to analog signals for recording on any strip chart recorder, and the galvanometer output feeds directly to the low Z input of the 8809 A signal coupler on plug.in oscillographic recorders.

Strip Chart Recorders
Laboratory and industria! recorders are available that produce records in rectilinear coordinates with considerable accuracy-typically 0.2%. Two-pen models permit both channels to realize the full resolution of the chart width simultaneously, since the pens can over. lap on the same chart without interference.
Selection of a servo-driven strip chart secorder depends upon the specific application. Highest sensitivity is offered by the 7100 series pluge in secorders (7100B, $7101 \mathrm{~B}, 7127 \mathrm{~A}, 7128 \mathrm{~A}$) writh choices to $100 \mu \mathrm{~V}$ full scale. Another plug-in measures temperature directly from a thermocouple input. The 71008 and 7101 B offer 12 chart speeds, the 5 " Model 680 eight speeds and the 7127 A and 7128A four speeds.

For OEM or other dedicated applications, the 7123 and 7143 offer the ut-
most reliability at lowest cost. Both usilize a linear motor servo system with only one moving past, achieving reliability through simplicity, Many options are available to customize the recorder for a particular task. OEM discounts are available on all Hewlett-Packard servodriven strip chart recorders.

Options are available on all units to match a particular application. Some of the most popular are:
Event markers-to register external events in time relationship to the chart recording.
Retransmitting potentiometers - additional slidewires which provide an electrical output proportional to the pen position for controlling external devices.
Limit switches-to provide control or alarm signals when the recorder pen reaches a pre-set limit.
Chart integrator-a second recording on the same chart which counts the integral of the maio signal.

Types of Writing Systems

Hewlett-Packard strip chart recorders provide three types of writing systems: ink, electric and thermal writing. Thermal and ink writing are used on HewletrPackard oscillographic recorders.

Electric writing as well as ink is available on all Hewlett-Packard servo driven strip chart recorders. With the elimina. tion of ink refilling, long term unattended recording with maximum reliability is pos. sible. Hewletr-Packard low voltage electric writing features crisp, clean, permanent records with the advantage of in. stant sraft-up. The record is not sensitive to light or pressure, thus eliminating special handling; it is permanent without processing.

Thermal Writing Oscillographic Recorders and Systems

A wide need exists in data recording for continuous, highly visible records of analog signals with maximum reliability and instant record availability. These requirements are well filled by HewlettPackard therma! writing oscillographic recorders, which use the heated stylus technique to produce truly rectilinear chart traces on heat sensitive Perma. paper.(3)

Hewlect-Packard thermal recorders are a vailable with 2, 4, 6, 8 and 16 channels and are comparible with standard Hew-lett-Packard recording preamplifiers. All recorders and preamplifiers are available

as systems in upright cabinets, less cabinet for mounting in standard RETMA equipment enclosures or in portable cases for field or laboratory use.
Sensitivities to $50 \mu \mathrm{~V}$ full scale are available with recorder systems using plug.in preamps. Nine preamps are available to cover a wide variety of measuring tasks, including the use with carrier-excited transducers. On systems with six channels or more, multi-channel bank amplifiers are available for applica. tions where the versatility of-plug-ins is not needed.

Ink Writing Oscillographic Recorders and Systems

The ink writing oscillographic recorder used in the 7858 B and 7878 A systems is a compact, g-channel recorder that produces rectilinear traces on HewlettPackard Z.fold or roll chart paper. The Z-fold chart paper permits instant access to any part of the recording. Roll and Z-fold paper may be used on either recorder interchangeably.

The 7858 B uses any combination of the nine recorder preamps, while the 7878 A is available with a choice of either medium gain or low gain bank ampli. fiers.

The recording fluid, a permanent ink thar dries rapidly on contact with the paper. permits high resolution copying of recorded data.

10 in. PLUG-IN RECORDERS
 Ink and electric writing

Models 7100B, $7101 \mathrm{~B}, 7127 \mathrm{~A}, 7128 \mathrm{~A}$

Ten-inch strip chart recorders are widely used in laboratory and industrial applications. Hewlett-Packard strip chart recorders feature high performance, low cosr, and solid-state construction for reliability, compactness, and light weight. Models 7100 B and 7128 A have two servo pen drives and require two input modules. The 7101B and 7127A aye single pen units and take one input module. Ordering information should specify basic frame and exact input modules required.

Each main frame is equipped with selectable chart speeds (4 for 7127A, 7128A: 12 for $7100 \mathrm{~B}, 7101 \mathrm{~B}$) and a modular chart magazine. The chart magazine will swing our to a 10° or 30° angle for convenient note writing. An optional integrator that computes the area under the chart curve is available.

Specifications

Performance speclfications

Recording mechanlsm

Ink: serio actuated ink pen drive.
Electric: a stylus with associated electronics and electro-sensitive paper are furnished.
Chart dimenslons: (ink writing) 120^{\prime} chart rolls, $11^{\prime \prime}$ wide with $10^{\prime \prime}(250 \mathrm{~mm})$ calibrated writing width. (Electric wrising) 100^{\prime} chast rolls, $11^{\prime \prime}$ wide with $10^{\prime \prime}(250 \mathrm{~mm})$ calibrated writing widch.
Chart speeds: 7100B/71018 (English): 1, $2 \mathrm{in} / \mathrm{hr} ; 0.1,0.2$, $0.5,1,2 \mathrm{in} . / \mathrm{min} ; 0.1,0.2,0.5,1,2 \mathrm{in} . / \mathrm{s} .7100 \mathrm{BM} / 7101 \mathrm{BM}$ (Metric): 2.5, $5,15,30 \mathrm{~cm} / \mathrm{hr} ; 1.25,2.5,5,15,30 \mathrm{~cm} / \mathrm{min}$; 1.25, $2.5,5 \mathrm{~cm} / \mathrm{s}$. 7127A/7128A (English): $1 / 4,1 / 2,1,2 \mathrm{in} . /$ min.
Linearity: terminal based, 0.1% of full scale.
Resettability: 0.1% of full scale.
(Other specifications listed under plug-in modules.)

General specifications

Power: 115 or $250 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 65 \mathrm{VA}$ for 7100 B and 7128 A ; 42 VA for Models 7101B and 7127A. 115 or 230 V , so Hz models available as option.

Dlmensions: 7100B/7101B series (cabinet): 11-31/32" high, $171 / 2^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep ($304 \times 445 \times 210 \mathrm{~mm}$). $7100 \mathrm{BR} /$ 7101 BR (rack): $8.23 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep (222 x $483 \times 210 \mathrm{~mm}$). $7127 \mathrm{~A} / 7128 \mathrm{~A}$ series (cabinet): $9-3 / 32^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep ($231 \times 425 \times 210 \mathrm{~mm}$). (rack; brackets supplied) $8-23 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, 81/4" deep ($222 \times$ $483 \times 210 \mathrm{~mm})$.

Weight: 7100 B series: net, $28 \mathrm{lb}(12,7 \mathrm{~kg})$; shipping, 39 lb ($17,7 \mathrm{~kg}$). 7101 B series: net, 28 lb ($12,7 \mathrm{~kg}$); shipping, 33 lb (17,3 kg). 7127A series: net, $25 \mathrm{lb}(11,4 \mathrm{~kg}$); shipping, $35 \mathrm{lb}(15,9 \mathrm{~kg}) .7128 \mathrm{~A}$ series: net, $28 \mathrm{lb}(12,7 \mathrm{~kg})$; shipping, $38 \mathrm{lb}(17,3 \mathrm{~kg})$.

Prices
Dual channel: 7100 BR (English), $7100 \mathrm{BM} / \mathrm{BMR}$ (metric) $\$ 1500 ; 7128 \mathrm{~A}$ (English only) \$1250.
Single channel: 7101B/BR (English), $7101 \mathrm{BM} / \mathrm{BMR}$ (metric) $\$ 1000 ; 7127$ A (English only) $\$ 850$.

Options

$\begin{aligned} & 71008 \\ & 71018 \end{aligned}$	$\begin{aligned} & 7127 \mathrm{~A} \\ & 7128 \mathrm{~A} \end{aligned}$	Debeription	Addilional prios	
			$\left\lvert\, \begin{aligned} & 71001 \\ & 71018 \end{aligned}\right.$	$\begin{aligned} & 7127 A \\ & 712 B A \end{aligned}$
04	14	$5 \mathrm{k} \Omega$ retransmitting potentiometer (channel I)	50	\$50
05	01	High-low limit swithes (channel 1)	50	50
06	08	Remote control of electric pen lift	50	50
07	02	Remote on-off chart control	25	25
10	03	50 kz operation	N / C	N/C
11	13	Locking glass door	50	50
12	04	Event marker (ink) left side	35	35
14	06	Event marker (ink) both sides	70	70
15	07	Integrator ($7127 \mathrm{~A}, 7101 \mathrm{~B}$ series of channel 2 of 7128A, 7109B series)	795	795
16	15	$5 \mathrm{k} \Omega$ retransmitting potentiometer (channel 2)	50	50
17	09	High-low limit switches (channel 2)	50	50
18	10	High-low limit switchos (bath channels)	100	100
19	17	Electric writing	75	75
20	20	Scale with "0" right side	N / C	N/C
22	22	Event marker (elec) left side	35	35
23	23	Event markers (elec) both sides	70	70
24	24	Disposable pen tips (servo pens only)	N/C	N/C
25	25	Soft zero right side	N / C	N/C
-	26	GC compatibility	-	N / C
-	11	Carrying handle	supplied	25
-	16	Retransmitting potentiometer (both channels)	-	100
-	H01	$6,12,24,48 \mathrm{in}$./ hr ,	-	N / C
-	H02	$11 / 2,3,6,12 \mathrm{in}$./4r.	-	N/C

Note: 7100B, 7101B: Option 15 is not compatible with options 14, 16, 19, 22, or 23 . Options 15, 19, and 25 require special paper. 7127A, 7128A: Options 06, 1S, 16, 17, 22, or 23 camot be installed when instrument is equipped with Option 07. Options 07, 17, and 25 require special paper. Electric and ink writing systems are not compatible. Event markers must be of same type as the main writing system.

Multiple Input Span Modules

The Models 17500A (5 mV full scale) and 17501 A (1 mV full scale) Multiple Span plug-ins offer high input resistance and a continuously variable span control. Common mode cejection is high and input impedance is one megohm at null on all calbrated spans.

Temperature Modules
The Model 17502A Temperature Measuring Input Module has a single span selectable to match almost any commonly used thermocouple. Corrections for changes in ambient temperature are made within the module, eliminating need for a remote compensation junction. Non-linear thermocouple output is converted in the module to a linear function of tempera. rure permitring use of standard ruled graph paper.

High Sensitivity Modules

The 17505A High Sensitivity Input Module expands the sensitivity capability to $100 \mu \mathrm{~V}$ full scale. Maximum sensitivity allows input signal variations smaller than $1 \mu \mathrm{~V}$ to produce accurate measurable recordings. The 17506 A plug-in may be ordered with any single span from $100 \mu \mathrm{~V}$ to 100 V fuil scale. Both feature floating inpurs up to 500 V dc .

17500A/17501A Specificatíons

Voltage spans: 17500A: 5, 10, 50, $100,500 \mathrm{mV} ; 1,5,10,50,100$ V full scale. 17501A: $1,2,5,10,20,50,100,200 \mathrm{mV}$; $0.5,1$, 2, 5. 10, 20, 50, 100 V full scale.
Accuracy: $\pm 0.2 \%$ of full scale.
Input resistance: 1 megohm at null on all fixed calibrated and variable spans except $100 \mathrm{k} \Omega$ in the variable mode on the four most sensitive spans on the 17500 A only. Potentiometric operation is available on the 17500 A on the four most sensitive spans and to the 17501A on the six most sensitive spans.
Interference rejoction: de common mode; 120 dB on the four most sensitive spans of the 17500 A and the three most sensitive of the 17501 A . Line frequency, 100 dB on the four most sensitive spans of 17500A and the three mose sensitive of 17301 A .
Zero-sat: adj. full scale, plus one full scale of suppression. 5 scales of zero suppression available on the 17501A.
Maximum source impedance: up to $10 \mathrm{k} \Omega$ source impedance will not alter the recorder's performance on the four most sensitive spans of the 17500 A and the six most sensitive of the 17501A. No source impedance restrictions on spans above 100 mV fs.
Reference stabllity: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Weight: net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2,2 \mathrm{~kg})$.
Prices

Model 17500A	\$ 325	Model 17501A	\$ 375
Options			
01 five-scale 2	suppres	A only)	
	use with	(8" span)	N/C

17502A Specifications

Voltage spans: single span to match coid-junction thermocouples of types J, K, R, S, and T at ranges as listed on the data sheei. Accuracy: $\pm 0.5 \%$ or $\pm 1^{\circ} \mathrm{C}$, (whicherer is greaier) ; refer to NBS CIR 961, dated 1955.
Input resistance: potentiomerric.
Interference rejection: dc common mode, 120 dB ; line frequency, 100 dB .
Weight: net, $4 \mathrm{lb}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lb}(3,2 \mathrm{~kg})$.
Price: Model 17502A
$\$ 400$

17505A/17506A Specifications

Voltage spans: 17505A: .1, 2, .5, 1, 2, 5, 10, 20, 50, 100, 200, 500 mV ; $1,2,5,10,20,50,100 \mathrm{~V}$ full scale. 17506 A : any one of the above spans (specify).
Accuracy: $\pm 0.25 \%$ of full scale.
|nput resistance: $1 \mathrm{M} \Omega$ at null.
Interference rejection: dc CMR: 120 dB on most sensitive span. Line frequency CMR: 100 dB on most sensitive span. Line frequency normal mode: 17505A: switchable, 60 dB or 100 dB . 17506A: 100 dB .
Zero set: $\dagger 2,-1.5$ scales. Optional calibrated offser of +1 to -10 scales in one seale steps on 17505A.
Zero stability: $\pm 1 \mu \mathrm{~V}$ after one hour.
Maximum source impedance: $10 \mathrm{k} \Omega$ on nine most sensitive spans; no source impedance restrictions on spans above 100 mV fs.
Reference stability: $0.005 \% / /^{\circ} \mathrm{C}$.
Welght: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $5 \mathrm{lbs}(2,2 \mathrm{~kg})$.
Price

```
Model 17505A S400
```

Model 17506A (specify voltage span) $\$ 250$
Addicional range cards for 17506A \$ 25

Options

001 Calibrated offset: $\dagger 1$ to -10 scales in one scale sieps Accuracy $\pm 0.25 \%$ per step. (17505 A only.) $\$ 100$
002 Calibrated for integrator use ($8^{\prime \prime}$ span) N/C
00350 Hz operacion N / C

5 in. COMPACT RECORDER
 Ink or electric writing Model 680

The Models 680 and 680 M 5 -inch strip-chart recorders provide a wide range of performance for general or special. ized use. The 680 is equipped with multi-range input, multispeed chart transport, full-range zero set, and electric pen lift, features essential for general purpose applications. The instrument is available with standard (English) or metric scaling (680 M). It is useful as a monitor for instrumentation with dc outputs and for digital devices utilizing D.A converters.

The recorder features modular construction with all-transistor circuitry, high accuracy, fast response, synchronous motor chart drive, and full-view tilting chart magazine. Standard features include instant chart speed transfer, local and remote gen lift control, tear-off or chart roll storage, and cartridge-fed ink pen. Optional electric writing provides crisp, clean, permanent records for long-term unattended recording.

Specifications

Parformance specificatlons

Recording mechanism:
Ink: servo-actuated ink pen.
Electro sensitlve: a stylus and associated electronics for electrosensitive paper are furnished in place of the ink pen.

Chat dimensions:

Ink: $6^{\prime \prime}$ by 100^{\prime} roll chatts, $5^{\prime \prime}(12 \mathrm{~cm})$ writing width. Approximately $4^{\prime \prime}$ by $6^{\prime \prime}$ visible chart area during operation.
Electrosensitive: $6^{\prime \prime}$ by 65^{\prime} roll charts, $5^{\prime \prime}(12 \mathrm{~cm})$ writing width.
Response time: one half second or less for full scale.
Chart speeds: eight synchronous-motor-controlled speeds at $1,2,4,8$ in./min; $1,2,4,8 \mathrm{in}$. /ht. Metric model: $2.5,5,10,20 \mathrm{~cm} / \mathrm{min} ; 2.5,5,10,20 \mathrm{~cm} / \mathrm{hr}$.

Spans: ten calibrated spans of $5,10,50,100$, and 500 $\mathrm{mV} ; 1,5,10,50$, and 300 V full scale. Metric model has spans of $6,12,60,120$, and $600 \mathrm{mV} ; 1.2,6,12$, 60 , and 120 V . An extra span of 1 mV , full scale, is available at extra cost (1.2 mV on metric model).
Input: input resistance is 200,000 ohms per volt (166,666 ohms/volt on metric models), full scale, through 10 volt span; 2 megohms on all others. Potentiometric input on most sensitive span permits operation with essentially zero current drain at null. Constant $100 \mathrm{k} \Omega$ input resistance on all spans optionally available on both models.
Reference stabillty: $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$.
Zero set: continuously adjustable over full recorder span.
Accuracy: better than 0.2% of full scale.
Resettability: 0.1% of full scale.
Linearity: 0.1%.
Interlerence rejectlon: dc common mode rejection better than 100 dB on the most sensitive range.

General specifications

Реп IIft: local and remote.
Power requirements: $115 / 230 \mathrm{~V}, 60 \mathrm{~Hz}, 22 \mathrm{VA} .50 \mathrm{~Hz}$ models available at no extra cost, (Option 10).
Dimensions: $61 / 2^{\prime \prime}$ high, $85 / 8^{\prime \prime}$ deep, $73 / 4^{\prime \prime}$ wide (165 x $219 \times 197 \mathrm{~mm}$). Rack mounting requires $7^{\prime \prime}$ (178 $\mathrm{mm})$ of vertical space.
Weight: net, $11 \mathrm{lb}(5 \mathrm{~kg})$; shipping, $17 \mathrm{lb}(7,6 \mathrm{~kg})$.
Accessory klt supplied: spare pen, syringe, remote pen lift mating connector, pen cleaning wire, slidewire cleaner and lubricant, 8 ink cartridges (4 red and 4 blue), and one roll of chart paper.
Price: Model 680 (English) or 680M (Metric)
$\$ 900$

Options:

01 With installed $5 \mathrm{k} \Omega, 0.1 \%$ linearity retransmitting potentiometer
add \$ 50
02 With ink event marker installed add \$ 25
03 With installed high-low limit switches add $\$ 90$
08 With $16 / 1$ instead of $60 / 1$
speed reducer
add $\$ 25$
09 With remote chart drive swirch
10 For 50 Hz operation
add \$ 25

$$
\mathrm{N} / \mathrm{C}
$$

13 For operation with 7560A, 7561A
add $\$ 25$
14 Glass door with lock add \$ 45
15 Electric writing (special paper required) add \$ 75
16 Electric writing event marker add \$35
18 Disposable pen tips
H01 1 mV span added (HO1-680) add $\$ 50$ 1.2 mV span added (H01.680M) add $\$ 50$

H02 $100 \mathrm{k} \Omega$ input resistance, all spans add $\$ 75$
Note: ink and electric systems are not combatible. Event markers must be the same type as the main writing system. Options H01 and H02 not compatible.

Digital-to-Analog Converters make possible automatic, high-precision analog records from electronic counters, digital voltmeters and other devices providing the proper 4-line BCD output code. These converters operate directly with HP Quartz Thermometers, HP Nuclear Scalers and most HP solid-state counters; output kits are available for HP vacuum tube counters. Since the digital-to-analog converters tolerate a wide range of input voltages, they are suitable for use with other tube and solid-state devices.

Output signals for strip-chart or $\mathrm{x}-\mathrm{y}$ recorders of both the potentiometer and galvanometer types are available, and controls for recorder calibration and zero adjustment are provided. A 50 -pin connector accepts 4 -line data from a maximum of nine decade counting units. This information is transferred to storage binary units upon receipt of a command pulse from the counting source. The stored data are then translated and weighted to provide the proper analog output voltage or current.

Any three successive digits (or the right-hand two) of the input may be chosen for analog output. By selecting the two or three least significant digits, analog records of high resolution and accuracy may be obtained with conventional strip chart and X-Y recorders. For example, recording the three right-hand digits of eight- or nine-column data can provide an analog record with resolution of 1 part in 10^{5}.

Since the data in three successive columns can range only from 000 to 999, automatic zero-stifting is inherent in the output, keeping the record "on scale" at all times. As an example, consider successive readings of: $000,120,257,496$, $732,998,1024$. Except for the last reading, the analog record would proceed up-scale to 998 (99.8% of full scale). Recording of the 1024 value would be made at 024 (2.4% of full scale). The quick transition of the pen from 998 to 024 would serve to indicate that the range has been shifted up by 1000. Down-scale shitts of zero are similarly indicated.

Specifications, 580A, 581A

Accuracy: 0.5% of full scale or better.
Potentiometer output: 100 mV full scale; minimum load resis. rance 20 K ; calibrate control; dual banana plugs front and rear; typical 5 mV residual output at " 000 ".
Galvanometer output: i mA full scale into 1500 ohms; zero and calibrate controls; phone jack front and rear.
Drlving source: parallel entry 4 -line BCD (9 digits maximum) : " 1 " state +4 to +75 volts with reference to " 0 " state.
Reference voltages: reference voltages required for both the " 0 " and " 1 " state, reference voltages not to exceed $\pm 150 \mathrm{~V}$ to chassis.
Command pulse: positive or negative pulse, 20μ s or greater in width. 6 to 20 volts amplitude.
Transfer time: 1 millisecond.
Power 115 or 230 volts $\pm 10 \%$. 50 to 1000 Hz . 11 W .
Options: piease specify one of the following input code options (Option 001, 002, or 003):
001: 1-2-2-4 BCD code " 1 " state positive; " 1 " state +4 to +75 V with reference to " 0 " state. No additional cost.
002: 1.2.4-8 BCD code " 1 " state positive (voltages same as above). No additional cost.
003: 1-2-4.8 BCD code " 1 " state negative; " 0 " state +4 to
+75 V with reference to " 1 " state. No additional cost.
004: Special inpur cable 10513A for HP integrated circuit counters (e.g., 5221B, 5216A. 5331A/B, $5332 \mathrm{~A} / \mathrm{B}$, 5325 A) in lieu of 562A-16C input cable normally sup plied. Add \$15.00.
Dimensions:
580A (rack mounl): $163 / 4{ }^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep ($425 \times 88 \times 286 \mathrm{~mm}$).
S81A: 7-25/32" wide, $6.3 / 32^{\prime \prime}$ bigh, $8^{\prime \prime}$ deep ($198 \times 155 \times$ 203 mm)
Weight:
s80A: net: $13 \mathrm{lbs}(6 \mathrm{~kg})$ shipping: $16 \mathrm{lbs}(7,2 \mathrm{~kg})$
s81A:
net: $8 \mathrm{lbs}(3.5 \mathrm{~kg})$ shipping: 13 lbs (6 kg).
Accessory furnished: $362 \mathrm{~A}-16 \mathrm{C}$ Cable, 6° (1830 mm) long with an Amphenol 57-30500 connector ar each end. See also Option 004.

Price:

Model 580A, $\$ 650$.
Model S81A, $\$ 675$.

580A

10 in . AND 5 in . RECORDERS
 Linear motor drive-dedicated applications
 Models 7123A/B and 7143A/B

The 7123A/B and 7143A/B Strip Chart Recorders were developed specifically for dedicated recording applications. High reliability and exceptional performance plus a multitude of op. tions allorv custom tailoring to each application. These $31 / 2$ inch high recorders conserve rack space but still incorporate an ef. fective chart drive and chart viewing system.

The $7123 \mathrm{~A} / \mathrm{B}$ uses chart paper with a 10 inch wide grid, the $7143 \mathrm{~A} / \mathrm{B}$ accommodates paper with a 5 inch grid. The suffix A denotes a recorder for use at 60 Hz line frequency; B denotes 50 Hz .

Reliability

Reliability is the keynote. Maximum reliability w'as achieved through the development of a unique linear servo motor. The motor enabled the design of a servo drive system with only one moving part-the motor slider/pen assembly. This single moving part replaces the many cables, pulleys, and gears found in a conventional servo system.
The entire radial field of the motor is produced by a permanent magnet, resulting in low power consumption and vittually no internal remperature rise. In addition, the motor can be driven continuously off scale with no audible noise and no possibility of damage to the recorder.

The traditional weak link of servo recorders has been eliminated. A conductive film potentiometer is used in place of the conventional wirewound slidewire. This conductive film potentiometer results in an order of magnitude increase in feed-back element life.

Electric writing

Electric writing (Option 036) is available to further enhance reliability and convenience. Using electrosensitive paper, the low voltage electric writing system provides a crisp, clear trace, eliminating the need for ink refilling and pen priming. The recorded trace is permanent, chemically stable, and insensitive to pressure and moisture. Totally unattended operation is acheiv. able.

Precise response

The linear motor also provides extremely quick response, producing full scale response in less than $1 / 4$ second ($1 / 3$ second for $7123 \mathrm{~A} / \mathrm{B}$). In addition, non-mechanical rachometer feedback is incorporated. The tachometer and the high gain solid stare servo amplifier allow the units to faithfully reproduce the input signal and respond to step inputs with less than 1% overshoot.

Versatile chart drive

A unique chart drive and viewing system is incorporated. The system allows the paper to be rolled up, or to be fed out and conveniently torn off for inspection or filing. In addition, a slanted viewing/writing area is incorporated to facilitate both viewing and note making. Chart paper may be manually advanced at any time without gear changing or performance interruption.

Minimum panel height

The unique linear motor and chart drive/viewing system combine to make a recorder that requires only $31 / 2$ inches of rack height. This low silhouerte provides the user with additional rack space without sacrificing tecorder capability.

Low cost

The basic price is low. Additional savings are available when qualified for the OEM Purchase Agreement.

Flexibility with op̄tions

With almost so options available, the $7123 \mathrm{~A} / \mathrm{B}$ and $7143 \mathrm{~A} / 8$ can be "designed" to fit your exack requirements. Most options ace modular and options such as span and chant speed can be changed in the field if the need arises.

Performance specifications

Input ranges: single span, 1 mV thru 100 V (specified by option). Type of input: single ended, floating.
input resistance: $1 \mathrm{M} \Omega$ constant on all spans.
Maximurn allowable source resistance (R_{L}): $10 \mathrm{k} \Omega$ (unrestricted for spans below 1 V).
Normal mode rejection (at line frequency): $>40 \mathrm{~dB}$.
Common mode rejection: 100 dB at de and 80 dB at line frequency with $1 \mathrm{k} \Omega$ between low and high side and common mode signal between low and ground.
Response time ($\mathrm{R}_{1} \leq 10 \mathrm{k} \Omega$): $7143 \mathrm{~A} \sqrt{\mathrm{~B}}:<1 / 4 \mathrm{~s}(<1 / 2 \mathrm{~s}$ for spans below 1 V$) .7123 \mathrm{~A} / \mathrm{B}:<1 / 3$ s $(<1 / 2$ s for spans below 1 V$)$.
Overshoot: $<1 \%$.
Accuracy: $\pm 0.2 \%$ full scale.
Zero dritt: $< \pm 0.005 \% /{ }^{\circ} \mathrm{C}$.
Lingarity (terminal based): $\pm 0.1 \%$ full scale.
Reference stabllity: $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$.
Chart speeds: speed determined by option choice.
Chart speed accuracy: synchronous with line frequency.
Zero set: left hand, adjustable ± 1 full scale (right hand optional).

Environmental (operating): $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, $<95 \%$ RH (25° to $40^{\circ} \mathrm{C}$).

General specificatlons

Writing mechanismi servo actuated ink pen (electric writing optional).
Grid width: $7123 \mathrm{~A} / \mathrm{B} 10^{\prime \prime}$ or $25 \mathrm{~cm} .7143 \mathrm{~A} / \mathrm{B} 5^{\prime \prime}$ or 12 cm .
Chart length: 100 ft or 30 meters (electric option 55 ft or 17 meters).
Pen lift: manual (electric optional).
Power: 7123A/7143A: 115/230 V $\pm 10 \%, 60 \mathrm{~Hz}, 30 \mathrm{VA} .7123 \mathrm{~B} /$ $7143 \mathrm{~B}: 115 / 230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}, 30 \mathrm{VA}$.
Dlmensions: 7123A/B: $31 / 2^{\prime \prime}$ high, $17^{\prime \prime}$ wide, $191 / 4^{\prime \prime}$ deep (89 x $432 \times 489 \mathrm{~mm}$). $7143 \mathrm{~A} / \mathrm{B}: 31 / 2^{\prime \prime}$ high, $81 / 2^{\prime \prime}$ wide, $191 / 4^{\prime \prime}$ deep $(89 \times 216 \times 489 \mathrm{~mm})$.
Weight: $7123 \mathrm{~A} / \mathrm{B}:$ net, $42 \mathrm{lb}(19 \mathrm{~kg})$; shipping, $51 \mathrm{lb}(23 \mathrm{~kg})$. $7143 \mathrm{~A} / \mathrm{B}$: net, $25 \mathrm{lb}(11,3 \mathrm{~kg}$); shipping, 33 lb (15 kg).
Price: $7123 \mathrm{~A} / \mathrm{B}: \$ 750.7143 \mathrm{~A} / \mathrm{B}: \$ 695$.

Note: OEM discounts available.

Options

Span (specify one, front scale determined by choice of English or metric chart speed)

Span	Option	Price	Span	Option	Price
1 mV (1.2)*	001	\$150.	1 V (1.2)*	008	N/C
5 mV (6)*	002	\$150.	5 V (6)*	009	N/C
10 mV (12)*	003	\$100.	10 V (12)*	010	N/C
50 mV (60)*	004	\$100.	$50 \mathrm{~V}(60) *$	011	N/C
100 mV (120)*	005	\$100.	100 V (120)*	012	N/C

Note: additional spans are available on special order.

2:1 speed reducer	044	\$20.
Remote speed change*	031**	\$25.
Remote chart ON-OFF*	032**	\$25.
Remote pen lift******	033**	\$20.
Filter (adds 60 dB normal mode rejection)		
For spans 1 mV thru 5 mV ,	007	\$45.
For spans 10 mV thru 100 V ,	013	\$30.
Electronic chart integrator	035	\$750.
Electric writing	036**	\$3s.
Event marker (RH)*		
Ink	034**	\$40.
Electric	037**	\$35.
Right hand zero		
Hard (scale, 10 to 0)	014	N/C
Soft (scale, 10 to +0.5)	015	N/C
Retransmitting pot		
$5 \mathrm{k} \Omega \pm .3 \%$ linearity (10 V de max)	039	\$50.
Limit switch		
SPDT contacts (2A@30 Vdc resistive). Front panel adjustable.	040**	\$120.
Rack slides		
(7123A/B only)	043	565.
Option power supply (required for option $033,034,036,037,040,045,048)$	042,	\$40.

- Actuated by contact closure to ground. Closed circult current 1.5 mA (max), open clrcult voltage +1.5 V (max).
- 4 Requires Option Power Supply (Option 041).

OSCILLOGRAPHIC RECORDERS

PORTABLE RECORDERS
 2.Channel

Models 320, 321, 322

Models 320, 321 and 322 A are complete recording systems widely used in the field when two similar variables must be simultaneously analyzed and permanently recorded. They operate in any position, record signals on two 5 cm (50 div) channels, have electrical limiting to protect recorder styli and current feedback circuits to reduce drift. Model 320 has guarded and foating inputs designed for broad $d c$ and ac
signals even with excess ground loop noise. Model 322A has two genetal purpose direct-coupled amplifier channels for single-ended or balanced inputs. Calibrated zero suppression is available as Option 02. Model 321, with builtin 2400 Hz carrier excitation source, is designed to measure signals from resistance bridges, vasiable reluctance devices, differential transformers and other ac transducers.

Specifications

Attenuation range

320: $0.5,1,2,5,10,20 \mathrm{mV} /$ div and $\mathrm{V} / 10$ div.
321: X1, 2, 5, 10, 20, 50, 100, 200 atren. factors.
322A: $10,20.50,100,200,500 \mathrm{mV} /$ div: $1,2,5,10 \mathrm{~V} /$ div.
Attenuator accuracy: $\pm 2 \%$ max.
Input circuit
320: floating and guarded signal pair; $0.5 \mathrm{M} \Omega$ on $\mathrm{mV} / \mathrm{div}$, $1 \mathrm{M} \Omega$ on V/10 div.
321: $6 \mathrm{k} \Omega \mathrm{min}$ resistance, $13 \mathrm{k} \Omega \mathrm{min}$ reactance, with full zero suppression and $R \& C$ balanced: $7 \mathrm{k} \Omega$ resistance with zero suppression out; transducer impedance 1000 min.
322A: balanced to ground: $5 \mathrm{M} \Omega$ each side.
Common mode rejection
320: 140 dB dc; 120 dB at 60 Hz with no input unbalance, 100 dB with 5 k Ω unbalance ($\pm 500 \mathrm{~V}$ max).
321: quadrature rejection ratio greater chan 100:1 (quadrature signal less than 50 div)
322A: 50:1 at $10 \mathrm{mV} / \mathrm{div}$ 25:1 all other ranges. (Common mode signal 250 div or 500 V max).
Zero suppression: 5 -step switch, center out, two positions each for positive and negative signals (standard on 321 only, optional on 322A).
Channel width: 5 cm (50 div).
Frequency response: $d c$ to $125 \mathrm{~Hz}(-3 \mathrm{~dB}$ max at 10 div p.p) ; dc to 50 Hz (-3 dB max at full scale).

Response time: s ms (10 to 90% over center 10 div).
Electrical limiting: approx 115% of full scale.
Monitor output: approx $40 \mathrm{mV} /$ div across $100 \mathrm{k} \Omega$ load.
Paper speeds: $1,5,20$ and $100 \mathrm{~mm} / \mathrm{s}$ (others optional)
Timer-marker: 1 s timer internal; optional event marker is operated by external contact closure.

General

Power requirements: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 100 \mathrm{VA}$.
Dimensions: portable cases: $133 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ wide, $912^{\prime \prime}$ deep ($349 \times 361 \times 241 \mathrm{~mm}$) ; rack mounts: $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $16^{\prime \prime}$ deep ($396 \times 483 \times 406 \mathrm{~mm}$) ; paper take.up: $43 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep ($121 \times 370 \times 241 \mathrm{~mm}$) ; paper take-up rack mounted adds $51 / 4^{\prime \prime}$ (133 mm) to recorder height.
Weight: net. $55 \mathrm{lbs}(24 \mathrm{~kg})$; shipping, $66 \mathrm{lbs}(29,7 \mathrm{~kg})$.
Optlonal accessory equipment: paper take-up 320-300 for portable cases, $\$ 150 ; 320 \mathrm{R}-300$ for rack mounted, $\$ 175$.

Prices

Model 320	$\$ 2080$
Model 321	$\$ 212 \mathrm{~S}$
Model 322A	$\$ 1890$

Options
022 Zero suppression (322A only) \$100
003 Rack mount \$ 35
00850 Hz operation, includes $115 / 230 \mathrm{~V}$ switch $\$ 50$
$012(60 \mathrm{~Hz}) 2.5,5,25,50 \mathrm{~mm} / \mathrm{s}$ \$ 25
013* (50 Hz) 2.5, 5. 25. $50 \mathrm{~mm} / \mathrm{s}$ \$ 25
015 Extra event marker $\$ 76$
$018(60 \mathrm{~Hz}) 0.5,2.5,10,50 \mathrm{~mm} / \mathrm{s} \quad \$ 175$
019^{*} (50 Hz) 0.5, 2.5, $10,50 \mathrm{~mm} / \mathrm{s} \quad \$ 175$
$020(60 \mathrm{~Hz}) 0.1,0.5,2,10 \mathrm{~mm} / \mathrm{s}$ \& 195
02 2* $^{*}(50 \mathrm{~Hz}) 0.1,0.5,2,10 \mathrm{~mm} / \mathrm{s} \$ 195$
022 (60 Hz) 1, 5, 20, $100 \mathrm{~mm} / \mathrm{min} \quad \$ 175$
023* (50 Hz) $1,5,20,100 \mathrm{~mm} / \mathrm{min} \quad \$ 175$

[^29]
DUAL-CHANNEL RECORDER
 Mount in cart, cabinet or portable case

Model 7702B

Model 7702B is a 2 -channel thermal recorder using any pair of the eight versatile 8800 Preamplifiers as signal conditioners. The reliable heated stylus recording rechnique provides sharp. high resolution images that will nor fade or smudge on plasticcoated Permapaper.(A)

The 7702B is designed to include many operator convenience features. Four pushbutton chart speeds are standard and four
addirional speeds may be obtained by option For accurate time correlation on the recording chart, a one-second marker is propided on standard units and a oneminute marker is added with the option. Remote marking is standard with a second marker optional and may be used for information coding. The recorded paper is collected on a front panel paper take up and is easily changed from the front of the instrument. Each recording channel is 5 cm wide (50 divisions).

Specifications

(Full performance specifications determined by choice of 8800 Series Preamplifier, sce following pages.)
Chart speeds: four speeds standard ($1,5,20$ and $100 \mathrm{~mm} / \mathrm{s}$) mechanically shifted and selected by front panel pushbuttons; orher speed combinations available as options; provision is made for optional remote control of chast drive from suitable 115 V ac source.
Timer-off-marker: separate stylus marks edge of chare with is pulses in TIME position or with line frequency pulses in MARK position; remote marking provision at rear connecror by simple contact closure (IIS V ac).
Front panel controls: individual srylus heat controls: pushbuttons for power, timer, marker and speed selection; individual galvanometer damping adjustments (screw.driver adjust).
Paper: standard 200 ft rolls of 5 cm wide, 2 -channel Perma. paper ${ }^{\text {in }}$ (651.52), easily loaded from the recorder frone padel; 1-channel Permapapers (651.51), may be used if only one channel is operated; orange, translucent Permapapcre (651-182), is available for making multiple copies of recording on contact copier (ozalid).
Paper take-up: automatic paper take-up standard equipment.
Power: $115 / 230 \mathrm{~V}=10 \%, 60 \mathrm{~Hz}$, approx $200 \mathrm{VA} ; 115 / 230 \mathrm{~V}$ $\pm 10 \%$. 50 Hz , available in Option 08.
Dimensions: rack mounted: $83 / 4^{\prime \prime}$ high. $19^{\prime \prime}$ wide, $17^{\prime \prime}$ deep ($222 \times 483 \times 432 \mathrm{~mm}$); portable case (Option 02): $10.7 / 16^{\prime \prime}$ high. $207 / 8^{\prime \prime}$ wide. $21-13 / 16^{\prime \prime}$ deep ($265 \times 530 \times 576 \mathrm{~mm}$);
mobile cart (Option 05): $391 / 4^{\prime \prime}$ high, $263 / 4^{\prime \prime}$ wide, $201 / 2^{\prime \prime}$ deep ($997 \times 680 \times 521 \mathrm{~mm}$)).
Welght (approx): gypical with 2 preamplifers, rack mounted: $60 \mathrm{lb}(27,2 \mathrm{~kg}$) net: 89 lb ($40,4 \mathrm{~kg}$) gross; portable case (Option 02) : $89 \mathrm{lb}(40,4 \mathrm{~kg}$) net; $135 \mathrm{lb}(60,8 \mathrm{~kg})$ gross: mobile cart (Option 05): 130 lb (59 kg) net; $172 \mathrm{lb}(77,4$ kg) gross.
Price: two channel thermal recorder, $115 / 230 \mathrm{~V}$ switch, 60 Hz , for rack mounting, uses 8800 Series Preampli. fiers, specify Portable Case or Mobile Cart by Option S2050

Options

02 Portable case
add S 193
03 One channel decrease deduct $\$$
Os Mobile cart (1062A) adds 195
0850 Hz operation add S 50
09 Speeds. 2.5, 5. 25 and $50 \mathrm{~mm} / \mathrm{sec}(50 \mathrm{~Hz})$ add s 75
10 Speeds, 2.5. S, 25 and $50 \mathrm{~mm} / \mathrm{sec}(60 \mathrm{~Hz}) \quad \mathrm{N} / \mathrm{C}$
11 60:1 Specd Reduction (60 Hz) add $\$ 185$
(includes one-ninute marker)
12 60:1 Speed Reduction (50 Hz) add $\$ 189$
15 Extra Marker between channcls add $\$ 76$
$1860 \mathrm{~Hz}, 2: 1$ reducrion, speeds of $0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$
add $\$ 17 \mathrm{~s}$
$1950 \mathrm{~Hz}, 2: 1$ reduction, speeds of $0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$
add $\$ 175$
Note 1: add price of preamplifiers to the above basic assem. bly prices for complete system cost: sce following pages for specincations and prices.

OSCILIOGRAPHIC RECORDERS

4-CHANNEL THERMAL TIP
 Bench-top operation, plug-in preamps Model 7414A

Contained in a single benchtop package, the 7414A represents a unique combination of convenience, high performance and flexibility. Incorporated are thermal writing and positive position feedback plus the capability to accept the entire complement of the 8800 series plug-in sigral conditioners. In addition to the benchtop package, the 19 -inch unit may be rack mounted or mounted in an optional mobile cant.
The thermal writing tip features high contrast writing, long stylus life, and reccilinear presentation. A closed loop, contactless pen position feedback system resules in 0.5% linearity. The system provides flat response ($\pm 0.5 \mathrm{~dB}$) to 50 Hz at full scale amplitude.
The 500 foot Z -fold pack loads in 30 secoads from the front with no threading. Z-fold allows for convenient data review and storage. Nine pushbutton chart speeds afe provided rang. ing from 0.25 to $100 \mathrm{~mm} / \mathrm{s}$.

Specifications

Writing system: thermal with rectilinear presentation.
Chart speeds: $0.25,0.5,1,2.5,5,10.25 .50,100 \mathrm{~mm} / \mathrm{s}$; electrically selected by front panel pushbutions.
Chart accuracy: speed, synchronous with line $\pm 1 \%$; weave, 0.5 mm .

Chart descriptlon: four channels. each 10 mm wide divided into 50 divisions, with time lines every $1 \mathrm{~mm}, \mathbf{Z}$.fold, heatsensitive Permapaper8, packs of 500 sheets, each sheet $11.9^{\prime \prime}$ (30.1 cm) long and numbered on the right side for footage indication and indexing.
Limiting: factory set 1.5 mm outside grid. Settable, by internal serewdriver adjustment, from 2 mm outside to 8 mm inside grid.
Markers: one event marker and one combination event/timer marker in second and fourth margins. Third civent marker is optional.
Remote operation: rear connector provides for remote operation of chart drive and event marker.

General

Power: $115 / 230 \mathrm{~V} \doteq 10 \% .60 \mathrm{~Hz}, 350 \mathrm{VA}$ (including signal conditioners). 50 Hz operation optional.
Welght: net, $112 \mathrm{lbs}(50,5 \mathrm{~kg})$: shipping, $132 \mathrm{lbs}(59,5 \mathrm{~kg})$.
Dimenslons: cabinet: $117 / 8^{\prime \prime}$ high, $201 / 8^{\prime \prime}$ wide, $2 f^{\prime \prime}$ deep (302 x $311 \times 604 \mathrm{~mm}$) : rack mount: $101 / 2^{\prime \prime} \times 19^{\prime \prime} \times 24^{\prime \prime}$.
Price: Model 7414A (less preamplifiers)

Options

001 rack mount: includes slides and all mounting hardware. Deletes case N/C
00850 Hz operation 35

012 1 channel decrease; extreme right hand channel deleted, blank panel installed for plug.in. Not compatible with Option 015
deduct \$ 200
015 extra cuent marker, installed between channels
2 and 3. Not conspatible with Option 012
\$ 3s
054 installed in mobile cart, Includes paper take.up drawer
\$ 450

OSCILLOGRAPHIC BECORDERS

Multichannel thermal recording systems are available with either bank preamplifiers (all preamps of same type) or with individual 8800 -series preamps for long-term system versatility.

Galvanometer power amplifiers incorporate damping circuits to ensure recorder accuracy, cucrent feedback to reduce drifr and adjustable electrical limiting to prevent overloading and to protect the styli.

Four and six channel paper may be used for economy when recording less than the maximum number of channels. Perma. paper ${ }^{(1)}$ in opaque or icanslucent forms is available.

Systems may be obtained in RETMA standard mobile cab. inets, less cabinet for mounting in RETMA srandard equipment racks, or in portable cases.

Specifications

(Overall system performance specifications are determined by choice of plug-in or bank amplifier, See page 193.)
Chart speeds: $0.25,0.5,1,2.5,5,10,25.50,100 \mathrm{~mm} / \mathrm{s}$, elec. trically shifted and selected by front panel pushbuttons; provision is made fot remote operation of chart speeds and chart drive.
Event marker: right margin; built-in timer provides 1 s timing marks; manua! or remote operation from contact closure. Optional event marker can be installed between channels.
Front panel controls: individual stylus heat controls; pushbutton speed selectors; motor starting switch; timer-off. marker switch.
Chart footage Indleator: front panel indicator shows number of feet remaining on the supply roll.
Chart type: green or translucent Permapaperib, 200 ft long.

General

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$; approx $330 \mathrm{VA} ; 7731 \mathrm{~A}$ requires approx 550 VA.
Dimensions: mobile cabinet mount: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $361 / 2^{\prime \prime}$ deep incl base ($1842 \times 610 \times 927 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $241 / 8^{\prime \prime}$ deep, see height on page 193.
Prices

Model 77068	$\$ 5550$
Model 7708B	$\$ 5945$
Model 7727A	$\$ 4600$
Model 7729A	$\$ 5000$
Model 7731A	$\$ 10000$

Optlons
001 less cabinet, for rack mounting 7706B, 77088
$7727 \mathrm{~A}, 7729 \mathrm{~A}, 7731 \mathrm{~A}$
deduct \$ 395
deduct \$ 425
002 less cabinet, mounted in portable cases 7706B, 7708B
add \$ 150
$7727 \mathrm{~A}, 7729 \mathrm{~A}$ deduct \$ 75
00850 Hz operation $\$ 50$
009230 V operation $\$ 100$
$011(60 \mathrm{~Hz}) 9$ additional speeds (mm/min) $\$ 250$
012* one channel decrease deduct $\$ 0$
013* two channel decrease deduct \$ 100
$016(60 \mathrm{~Hz}) 2: 1$ increase of standard speeds $\$ 75$
017 (50 Hz) 2:1 increase of standard speeds $\$ 75$
020 with 8820A amplifier 6 channel (7727A) \$1250 8 channel (7729A, 7731A) \$ 1250
021 with 8821 A amplifier 6 channel (7727A) \$ 2300 8 channel (7729A, 7731A) \$ 2500
$024^{\text {4 }}$ less 440 Hz card (do not order if using 8803 A)
deduct $\$ 50$
025* less 2400 Hz card (do not order if using $8805 \mathrm{~A} / \mathrm{B}$) deduct $\$ 50$
$027(60 \mathrm{~Hz}) 21 / 2: 1$ reduction of standard speeds $\$ 140$
$028(50 \mathrm{~Hz}) 21 / 2: 1$ reducrion of standard speeds \$ 140
$029(50 \mathrm{~Hz}) 9$ additional spetds ($\mathrm{mm} / \mathrm{min}$)
$\$ 250$
031-037 ${ }^{\text {Hy }}$ extra marker between channels (31 between 1 and 2, 32 between 2 and 3, etc.) \$ 70
$0.0^{* *}$ do marker amp (for use with
Options 031.037)
\& 110
041** with hidden paper rake-up
\$4゙5
\therefore Applicable to $7706 \mathrm{~B}, 7708$ only.

* Not beplicadie to 7izia.

OSCILLOGAAPHIC RECORDER

Systems record on Z-fold paper or rolls

 Models 7858B, 7878A

The models 78588 and 7878A are eight-channel, modulated pressure ink recording systems. The systems feature contactless position feedback from the pen tip, the convenience of Z -fold paper take-up, and the economy of ink-writing paper. All operating controls are front-panel accessible.

Fourteen chart speeds (0.025 to $200 \mathrm{~mm} / \mathrm{s}$) are standard, and conveniently selectable by front-panel pushbuttons. A lefthand edge marker pen provides 1 s or 1 min indications (also switch selected from front panel) for accurate time correlation. A right-hand marker peo permits event or time code monitor. ing. A front-panel warning lighr indicates when the ink supply is low and a new cartridge is required. An additional indicator can also be lighted at a remote location.

A remote connector on the recorder rear panel enables an operator to select the desired chart speed and to activate the

1 s or 1 min markers from a remote location. The functions are activated by simple contact closures.
Z-fold chart paper permits immediate access to any data without interrupting the recorder; it comes in 500 -sheet packs, perforated so that individual sheets can be removed from the pack. Both roll and Z-fold paper are printed with eight 40 mm wide channels, 50 divisions/channel, with timing lines every millimeter. Rolls are 500 ft long, and Z -fold packs are 500 sheets $\times 30 \mathrm{~cm}$ ($11.8^{\prime \prime}$) per sheet.

The low pressure ink system is modulated to match the recording pen velocity and chart speed, assuring sharp, constant width traces under all signal input conditions. The recording fluid is a permanent blue ink that dries rapidly on contact with the recording paper. The disposable ink cartridge can be replaced anytime-even while the system is operating- parmitting uninterrupted tracings. One cartridge supplies over 1000 miles of recorder line.
Systems may be obrained in RETMA standard mobile cab. iners, less cabinet for mounting in RETMA standard equipment racks, or in portable cases.

Specifications

(Overall system performance specifications are determined by choice of plug-in or bank amplifier. See page 193.)
Ink system: disposabie, plug in cartridge can be replaced while operating system; $1 / 2$ hour reserve.
Chart speeds: $0.025,0.05,0.1,0.25,0.5,1,2,2.5,5,10,25,50$, $100,200 \mathrm{~mm} / \mathrm{s}$, pushbutton selected.
Paper takeup: internal roll accessible by pivoting writing table; Z fold takeup is below recorder; no modification required to change between roll and Z -fold paper.
Llmiting: electrical, from ± 12 div (referenced from channel centerline) to beyond channel edge.
Remote operatlon: connector provided for remote operation of chart drive, chact speed selector and timer/marker. Provides a positive voltage to indicate remore readiness.

General

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx 600 VA . 50 Hz available as Option 008: 230 V operation as Oprion 009.
Weight: in cabinet with preamplifiers, approx $550 \mathrm{lbs}(249 \mathrm{~kg}$).
Dimensions: mobile cabinet mount: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $361 / 2^{\prime \prime}$ deep incl base ($1842 \times 610 \times 927 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $23^{\prime \prime}$ deep, see height on page 193.

Price5

Model 7858B (cabinet, less preamplifers) $\$ 10350$
Model 7978A (cabinet, less preamplifers) \$9500
Optlons
001 less cabinet, for rack mounting deduct $\$ 425$
002 less cabinet, mounted in portable cases N/C
00850 Hz operation \$ 50
009230 V operation 100
012* one channel decrease deduct \$ 200
013 two channel decrease deduct 400
020 with 8820A amplifier (7878A only) \$ 1250
021 with 8821 A amplifier (7878 A only) $\$ 2900$
024^{4} less 440 Hz card (do not order if using 8803A)
deduct \$ so
025* less 2400 Hz card (do not order if using $8805 \mathrm{~A} / \mathrm{B}$)
deduct \$

[^30]
Plug-in preamplifier systems
 77028, 7414A, 7706B, 77088, 7858B

Maximum versatility from thermal or ink systems is achieved using the 8800 series plug-in preamplifiers. Signals as low as $1 \mu \mathrm{~V}$ can be reliably recorded using the high gain do preamplifier and frequencies to 100 kHz with either the $\mathrm{ac} / \mathrm{dc}$ converter or logarithmic preamplifier.

For recording the outputs from transducers requiring ac excitation there are two carrier preamplifiers each with 10 $\mu \mathrm{V} /$ div sensitivity, built-in excitation source and calibration in transducer load units. One unit, the 8805 B , features automatic quadrature signal balance.

The Phase Sensitive Demodulator, 8806B, has a plug.in-within-a-plug-in permitting a change of reference frequencies from 50 Hz to 40 kHz .

All units have front-panel gain and zero controls, as well as a signal output jack. All may be used independently of the recorder as lab preamplifiers, when used with the bench-top power supply available as an option with each unit.

Bank amplifier systems

7727A, 7729A, 7731A, 7878A
Two bank amplifers are available for general purpose applications where the versatility of plug-ins is not needed. Each model is available in 6 or 8 channel versions.

The 8820A Low Gain Amplifier provides 7 input ranges from $50 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in a $1,2,5$ sequence. Each input is single ended, with 1 M Ω input resistance. All channels have lockable, front-panel gain vernier and zero position controls.

The 8821 A has 12 input ranges from $1 \mathrm{mV} /$ div to $50 \mathrm{mV} /$ div and $0.1 \mathrm{~V} /$ div to $5 \mathrm{~V} / \mathrm{div}$. Input on the $\mathrm{mV} / \mathrm{div}$ ranges is floating and guarded with $9 \mathrm{M} \Omega$ input resistance and 100 dB CMR at 60 Hz . On the V/div ranges the input is balanced to ground, with 4.5 M to ground on each side. CMR on these ranges is 66 dB at 60 Hz . internal calibration of $\pm 20 \mathrm{mV}$. $\pm 1 \%$ on the $\mathrm{mV} /$ div ranges and $+2 \mathrm{~V}, \pm 2 \%$ on the $\mathrm{V} /$ div ranges is standard.

Ordered separately, prices are: Model 8820A 6-channel, \$1220: 8-channel, \$1250; Model 8821A, \$2300 and \$2500.

Oscillographic recorder system specifications

Sydem	Number of Chanrets Dhart whth	With amplifer model no.	Maximum sensifivily ($\mathrm{m} \mathrm{V} / \mathrm{d} \mathrm{l} \mathrm{V}$)	Frequenoy response (-3 dB @ 10 div)	Rise Imme 10\% to 90\% (10 dtv)	Vertlasl raak spato requirement
7702B	$2 \times 50 \mathrm{~mm}$	$\begin{aligned} & 8801 \mathrm{~A} \\ & 8802 \mathrm{~A} \\ & 8803 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & .001 \end{aligned}$	$\begin{array}{r} 125 \mathrm{~Hz} \\ 125 \mathrm{~Hz} \\ 90 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 5 \mathrm{~ms} \\ & 5 \mathrm{~ms} \\ & 7 \mathrm{~ms} \end{aligned}$	$83 / 1$
7414A	$4 \times 50 \mathrm{~mm}$	8801A 8802A 8803A	$\begin{aligned} & 5 \\ & 1 \\ & .001 \end{aligned}$	100 Hz 100 Hz 80 Hz	$\begin{aligned} & 5 \mathrm{~ms} \\ & 5 \mathrm{~ms} \\ & 7 \mathrm{~ms} \end{aligned}$	101/2"
77068	$6 \times 50 \mathrm{~mm}$	$\begin{aligned} & 8801 \mathrm{~A} \\ & 8802 \mathrm{~A} \\ & 8803 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 5 \\ & 1_{.001} \end{aligned}$	$\begin{gathered} 125 \mathrm{~Hz} \\ 125 \mathrm{~Hz} \\ 90 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 5 \mathrm{~ms} \\ & 5 \mathrm{~ms} \\ & 7 \mathrm{~ms} \end{aligned}$	261/4"
7727A	$6 \times 50 \mathrm{~mm}$	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{gathered} 50 \\ 1 \end{gathered}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 125 \mathrm{~Hz} \end{aligned}$	$5 \mathrm{~ms}$	$24 / 2^{\prime \prime}$
7708B	$8 \times 40 \mathrm{~mm}$	$\begin{aligned} & 8801 A \\ & 8802 A \\ & 8803 A \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & .001 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~ms} \\ & 4 \mathrm{~ms} \\ & 6.4 \mathrm{~ms} \end{aligned}$	26\%"
7858B	$8 \times 40 \mathrm{~mm}$	8801 A 8802A 8803A	$\begin{aligned} & 5 \\ & 1_{.001} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \end{aligned}$	3 ms 3 ms 5.5 ms	$311 / 2^{*}$
7729A	$8 \times 40 \mathrm{~mm}$	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~ms} \\ & 4 \mathrm{~ms} \end{aligned}$	241/2"
7878A	$8 \times 40 \mathrm{~mm}$	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~ms} \\ & 3 \mathrm{~ms} \end{aligned}$	293/4"
7731A	$16 \times 20 \mathrm{~mm}$	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 100 \\ 2 \end{array}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 125 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~ms} \\ & 4 \mathrm{~ms} \end{aligned}$	293\% ${ }^{\text {* }}$

PREAMPLIFIERS
 Plug－in signal conditioners for recording Models 8801A，8802A，8803A

8801A $5 \mathrm{mV} / \mathrm{div}$

8802A
$1 \mathrm{mV} / \mathrm{div}$

DC Coupled Preamplifiers

The three dc－coupled preamplifiers on this page are the primary general－purpose devices used to couple external sig． nals to the recorder．Each unit features a front－panel range switch and lockable gain vernier and zero position controls． Positive and negative zero offset is standard in all three units， with switchable ranges and a lockable， 10 －turn potentiometer with calibrated dial face．A switch－selected，internal $\pm 1 \%$ calibrator allows a quick check of system accuracy，and front－ panel screwdriverset calibration controls are available in all three units．Front－Panel de balance controls are provided on the 8801 A and 8802 A ，but are not needed on the 8803 A be－ cause of the foating and guarded input circuit．Each unit features an output phone jack for the monitoring of the input signal by other devices withour additional signal loading，or when the preamplifies is used separately from the recorder as a bench－top unit（Option 001 is the case and power supply for separate use，and includes the 440 Hz photochopper supply when ordered with the 8803A）．All units may be operated di－ rectly from the output of Hewlett－Packard linear velocity and linear displacement transducers，or with other transducers utilizing dc excitation．

Specifications，Model 8801A

Input ranges： $5,10,20,50,100,200 \mathrm{mV} / \mathrm{div} ; 0.5,1,2,5$ $V /$ div．Accuracy $\pm 1 \%$ ．
Type of input：balanced to ground： $500 \mathrm{k} \Omega \pm 1 \%$ in parallel with approx 100 pF each side．
Common mode rejection： 48 dB min ，de to $140 \mathrm{~Hz} ; \pm 50 \mathrm{~V}$ max on $5.10,20 \mathrm{mV} / \mathrm{div}$ ranges；$\pm 500 \mathrm{~V}$ max all other ranges．
Frequency response and rise time：see chart on page 193.
Zero suppression： 0 to ± 10 and $\pm 100 \mathrm{~V}$ for single－ended or differential signals（ $\pm 50 \mathrm{~V}$ max on $5,10,20 \mathrm{mV} / \mathrm{div}$ ranges）；calibrated 10 －turn potentiometer with $\pm 0.1 \%$ reso． lution；accuracy $\pm 0.5 \%$ of suppression range，$亠 1 \%$ of reading．
Calibration：internal，$+100 \mathrm{mV} \pm 1 \%$ ．
Price：Model 8801A
$\$ 300$
Option： 001 bench top unit with power supply and portable case add \＄41s

Specifications，Model 8802A

Input ranges： $1,2,5,10,20,50,100,200,500,1000 \mathrm{mV} / \mathrm{div}$ ； accuracy $=1 \%$ ．
Type of input：balanced to ground； $180 \mathrm{k} \Omega \pm 1 \%$ in parallel with approx 100 pP each side．
Common mode rejection： 48 dB min， dc to 60 Hz on 1000 $\mathrm{mV} /$ div range， dc to 150 Hz all other ranges；$\pm 12.5 \mathrm{~V}$ \max on $\mathrm{I}, 2,5 \mathrm{mV} /$ div ranges；$\pm 125 \mathrm{~V}$ max on $10,20,50$ $\mathrm{mV} /$ div ranges；$\pm 500 \mathrm{~V}$ max all other ranges．
Frequency response and rise time：see chart on page 193.
Zero suppression： 0 to ± 2 and $\pm 20 \mathrm{~V}$ for single－ended or differential signals（土12．5 V max on $1,2,5 \mathrm{mV} / \mathrm{div}$ ranges）；caliorated 10 －turn potentiometer with $\pm 0.1 \%$ reso－ lution；accuracy $\pm 0.5 \%$ of suppression range，$\pm 1 \%$ of reading．
Calibration：internal，$+20 \mathrm{mV} \pm 1 \%$ ．
Price：Model 8802A
Option：001 bench－top unit with power supply and portable case
add $\$ 415$

Specifications，Model 8803A

Input ranges： 1 to $5000 \mu \mathrm{~V} / \mathrm{div}$ and 10 to $5000 \mathrm{mV} / \mathrm{div}, 21$ ranges in a $1,2,5$ sequence．Accuracy $\pm 2 \%$ ．
Type of input：foating and guarded signal pair； $1 \mathrm{M} \Omega$ on mV ranges．
Common mode rejection（dc）： 160 dB min on $\mu \mathrm{V}$ ranges， 100 dB min on mV ranges： $1 \mathrm{k} \Omega$ max source unbalance；± 300 V max．
Common mode rejection（ac）： 120 dB min on $\mu \mathrm{V}$ ranges， 60 dB on mV ranges at 60 Hz ； $500 \mathrm{k} \Omega$ max source unbalance； $\pm 10 \mathrm{~V}$ max， $1 \mu \mathrm{~V} / \mathrm{div} ; \pm 20 \mathrm{~V} \max , 2 \mu \mathrm{~V} / \mathrm{div} ; \pm 50 \mathrm{~V}$ max，$s ~ \mu \mathrm{~V} /$ div， 100 V max， $10 \mu \mathrm{~V} / \mathrm{div}$ and $10 \mathrm{mV} / \mathrm{div}$ ； $\pm 220 \mathrm{~V} \max$ all other ranges．
Frequency response and rise time：see chart on page 193.
Zero suppresslon：$\mu \mathrm{V}$ ranges： 0 to $\pm 1,10,100 \mathrm{mV} ; \mathrm{mV}$ ranges： 0 to $工 1,10,100 \mathrm{~V}$ ；calibrated 10 －turn potentiom－ eter with $\pm 0.1 \%$ resolution，accuracy $\pm 1 \%$ of suppression range，
Calibratlon：internal，$+200 \mu \mathrm{~V} \pm 1 \%$ on $\mu \mathrm{V}$ range．+200 $\mathrm{mV} \pm 1 \%$ on mV range．
Price：Model 8803A
Option： 001 bench－top unit with power supply and portable case
add $\$ 415$
 excitation voltage for the external transducer, eliminating the need for external excitation circuitry. A cal facror control allows attenuation and zero suppression to be calibrated in transducer load units. An internal switch is provided for full or half bridge use. The 8805 B adds automatic quadrature signal balance, signal averaging capability, and selectable internal calibration for 2% to 100% of full scale.

Specifications, Models 8805A, 8805 B

Sensitivity: $10 \mu \mathrm{~V} / \mathrm{div}$.

Input attenuator: X1, 2, 5, 10, 20, 50. 100, 200: accuracy $\pm 2 \%$.
input impedance
8805A: approx $10 \mathrm{k} \Omega$.
8805B: $1 \mathrm{M} \Omega \pm 10 \%$, single ended.
Transducer impedance: transducer load impedance connected to excitation terminals 100 ohms min; transducer impedance connected to signal input terminals $5 \mathrm{k} \Omega \mathrm{a}$ max.
Excitation: floating source 5 V nominal, $2400 \mathrm{~Hz} \pm 2 \%$; internal full bridge/half bridge switch grounds C.T. of excita. tion for use with half-bridge transducers.
Quadrature rejection: greater than 40 dB ; quadrature signal less than 50 div: C bal control permics bucking of transducer quad unbalance up to $\pm 5 \mathrm{mV} / \mathrm{V}$.
Zero suppression: 0 to 100% of transducer full load rating, for transducer cal factor up to $10 \mathrm{mV} / \mathrm{V}$ at full load; calibrated 10 -tum potentiometer with 0.1% resolution; accuracy $\pm 0.5 \%$ of suppression range; R bal control permits bucking of inphase unbalance to $\pm 3 \mathrm{mV} / \mathrm{V}$ regardless of cal factor.
Frequency response: dc to $110 \mathrm{~Hz}(-3 \mathrm{~dB} @ 10 \mathrm{div})$.
Rise time: approx 5 ms .
Caltbration
8805A: $2 \% \pm 0.02 \%$ of transducer full scale output. 8805B: switchable, $2 \%, 10 \%, 50 \%, 100 \% \pm 1 \%$ of full scale.

Prices

Model 8805A

\$425
Model 8805B
$\$ 675$
Optlon: 001 (either model) bench-top unit with power supply and portable case
add $\$ 485$

8806B Phase Sensitive Demodulator

The 8806 B provides a dc output proportional to the rms value of the input signal that is in phase or 180° out of phase with respecs to a reference voltage. Plug-in modules provide various combinations of reference frequency ranges and phase shift capability.

Specifications, Model 8806B

Input ranges: $0.5,1,2,5,10,20,50,100,200,500 \mathrm{mV} \mathrm{mms} /$ div; reference voltage $3-133 \mathrm{~V}$ rms in rwo overlapping ranges, internal range switch.
Type of input: signal inpur: transformer isolared, floating and guarded, approx $1 \mathrm{M} \Omega$; reference input: differential, transformer coupled, approx $500 \mathrm{k} \Omega$ each side to ground.
Common mode rejection: 40 dB min to $10 \mathrm{~Hz}, 500 \mathrm{~V}$ ms max; quadrature tolerance 50 div max.
Reference frequency range: 50 Hz to 40 kHz in six bands with variable frequency plug-in; fixed frequency calibrated plug.ins $60 \mathrm{~Hz}, 500 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Frequency response and rise time
Ref frequency: $60 \mathrm{~Hz}: 12 \mathrm{~Hz}, 50 \mathrm{~ms} ; 400 \mathrm{~Hz}: 65 \mathrm{~Hz}, 9 \mathrm{~ms}$; 5 kHz : same as 8801A (see chart on page 193).
Phase shifter (plug-ln)
Fixed frequency: $0^{\circ} .90^{\circ}$ dial; 2° graduations in four quad. rants; accuracy $\pm 3 \%$.
Variable frequency: continuous 0.360°.
Calibration: internal, I V cms at carrier ref frequency.
Price: Model 8806B
Optlons
001 bench-top unit with power supply and portable case
002 variable frequency phase shifter plug.in, 50 Hz to 40 kHz
003 calibrated phase shifter plug-in, $60 \mathrm{~Hz} \quad \$ 150$
004 calibrated phase shifter plug.in, $400 \mathrm{~Hz} \quad \$ 150$
005 calibrated phase shifter plug-in, $5 \mathrm{kHz} \$ 150$

8807A AC-DC Converter

The 8807 A provides a dc voltage output proportional to the average value of a full whave rectified ac inpur signal. Range sensitivity is calibrated in terms of ams for sinusoidal wave. forms. The inpur circuit is transformer coupled, foating and guarded for bigh common mode rejection. Calibrared fullrange zero suppression and variable scale expansion permit analysis of small excursions in large input signals. Opcion 001 extends the low frequency limit from 330 Hz to 50 Hz at the sacrifice of envelope rise time.

Specifications, Model 8807A

Input ranges: $0.02,0.05,0.1,0.2,0.5,1,2,5,10, \mathrm{~V} \mathrm{rms} / \mathrm{div}$: accuracy $\pm 2 \%$; scale expansion: X1, $2,5,10,20 \pm 2 \%$.
Type of Input: foating and guarded signal pair; approx 1 Ma shunted by 20 pF and stray cable capacirance.
Input frequency range: standard mode!, 330 Hz to 100 kHz ; Option 001, s0 Hz to 100 kHz .
Common mode rejection: 60 dB min at $60 \mathrm{~Hz}, 40 \mathrm{~dB}$ min at 400 Hz , with up to $10 \mathrm{k} \Omega$ source unbalance; $\Psi 500 \mathrm{~V}$ max.
Zero suppresslon: 0 to 100% of full scale. any range; calibrated 10 -turn potentiometer.
Frequency response and rise time Standard model: $54 \mathrm{~Hz}, 11 \mathrm{~ms}$. Option 001: $9 \mathrm{~Hz}, 70 \mathrm{~ms}$.
Callbration: internal, $L V \pm 1 \%$; approx 500 Hz .
Prlce: Model 8807A

Options

00150 Hz to 100 kHz signal filter $\quad \mathrm{N} / \mathrm{C}$

002 de plug.in
003 bench-top unit with power supply and portable case

8808A Logarithmic Preamplifier

The 8808A is an average derecting logarithmic converrer. It is calibrated in decibles, where zero $d B$ is taken as 1 V rms
at the input. The unit can operate over a 90 dB or 100 dB span allowing signals from $100 \mu \mathrm{~V}$ to 1 V rms to be secorded withour changing ranges.

Specifications, Model 8808A

Sensitivity ranges
50 dB span: bottom scale -80 to 0 dB below 1 V in 10 dB steps.
100 dB span: -80 to - 50 dB below 1 V in 10 db steps.
Type of input: single ended, $1 \mathrm{M} \Omega$ min.
Input frequency range: 5 Hz to 100 kHz slow response range; 500 Hz to 100 kHz fast range.
Rise time 10% to 90% (10 div): fast response, 20.5 ms (875 $d B / s)$; slow response $2 \mathrm{~s}(9 \mathrm{~dB} / \mathrm{s})$.
Calibration: internal at approx $500 \mathrm{~Hz}:-80,-30,+20 \mathrm{~dB}$ referred to 1 V : accuracy of -30 dB position $\pm 0.25 \mathrm{~dB}$.
Price: Model 8808A 862S
Optlon: 001 bench-top unit with power supply and portable case
add \$á15

8809A Signal Coupler

The 8809 A inexpensively connects an external signal for recording. Available are front-panel output, lockable zero and gain controls. and switchable galvanometer ($1.5 \mathrm{k} \Omega$) or Hi Z ($>100 \mathrm{k}$) input impedance.

Specifications, Model 8809A

input range: adjustable from 20 to $50 \mathrm{mV} /$ div.
Type of input: spitch selecred, $1.5 \mathrm{k} \Omega \pm 2 \%$ or $100 \mathrm{k} \Omega \mathrm{min}$, single ended.
Frequency response and rise time: same as 8801A. (see chart on page 193).
Calibration: internal, $600 \mathrm{mV} \pm 2 \%$.
Price: Model 8809A $\$ 125$
Option: 001 bench-top unit with power supply and porrable case
add $\$ 415$

The HP 3955 and 3950 Series Magnetlc Tape Recorders provide highly flexible, yet easy-to-operate systems to record and/or seproduce electrical signals. Both 7- and 14 -channel capacity is available; plug-in electronics (Direct and FM) can be intermixed as desired. Maximum bandwidth of the 3955 at 60 ips is 300 kHz for Direct recording. Maximum bandwidth of the 3950 at 120 ips is 1.5 MHz for standard unit and 2.0 MHz for 3950 Option 011.

Each 3955/3950 System ineludes a high performance Tape transport and a number of interchangeable Record and Reproduce Amplifiers, offering an extremely wide latitude in determining the exact system configuration. Seven of fourteen track capability in either of two basic tape transports is available.
The smaller transport, which can handle tape reels up to $101 / 2^{\prime \prime}$ in diameter, provides economy as well as performance. This transport is for applications requiring average recording times.

The larger transport accepts tape reels up to $15^{\prime \prime}$ in diameter to provide ovec 19 hours of recording time at a tape speed of $17 / 8 \mathrm{ips}$.

Tape reels snap on and off specially designed hubs, and the open tape path allows quick, convenient tape threading.

All operating controls for the system are located on the transport chassis. Pushbuttons are utilized throughout to obtain the desired mode of operation. Rear connections are provided for remote control operation, accessories, and interconnecting cabling.

Specifications**

ANALOQ INSTRUMENTATION RECORDER SYSTEM CAPABILITIES							
Modal	Tape width	Number of tracks	$\underset{\text { Max, reel }}{\substack{\text { lze }}}$	Number of speeds	Std. 5pead range (3ps)	Dlrest passband	Typleal system price
$\begin{aligned} & 3950 \mathrm{~A} \text {-Opl } 011 \\ & 39508-0 \mathrm{pl} 011 \end{aligned}$	$\begin{aligned} & 1^{\prime \prime \prime} \\ & 1 / 2^{\prime \prime} \end{aligned}$	$\begin{array}{r} 14 \\ 7 \end{array}$	$\begin{aligned} & 15^{\prime \prime} \\ & 15^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 33 / 4 \cdot 120 \\ & 33 / \cdot 120 \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{MHz} \\ & 2.0 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \$ 22,510 \\ & \$ 15,605 \end{aligned}$
$\begin{aligned} & 3950 \mathrm{~A} \\ & 3950 \mathrm{~B} \end{aligned}$	$\begin{aligned} & b^{\prime \prime \prime} \\ & y_{2}^{\prime \prime} \end{aligned}$	$\begin{array}{r} 14 \\ 7 \end{array}$	$\begin{aligned} & 15^{\prime \prime \prime} \\ & 15^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 33 / 4-120 \\ & 33 / 4-120 \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{MHz} \\ & 1.5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \$ 19,740 \\ & \$ 13,650 \end{aligned}$
$\begin{aligned} & \text { 3955A } \\ & \text { 3955B } \\ & 3955 \mathrm{C} \\ & \text { 3955D } \end{aligned}$	$\begin{gathered} 1^{\prime \prime \prime} \\ 1 / 2^{\prime \prime} \\ 1^{\prime \prime \prime} \\ 1 / 2^{\prime \prime} \end{gathered}$	$\begin{array}{r} 14 \\ 7 \\ 14 \\ 7 \end{array}$	$\begin{aligned} & 15^{\prime \prime} \\ & 15^{\prime \prime} \\ & 1012^{\prime \prime} \\ & 1012^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 / 8 \cdot 60 \\ & 1 / 8-60 \\ & 1 / 8-60 \\ & 1 / 8 \cdot 60 \end{aligned}$	300 kHz 300 kHz 300 kHz 300 kHz	$\begin{aligned} & \$ 14,390 \\ & \$ 10,050 \\ & \$ 13,890 \\ & \$ 9,600 \end{aligned}$

FM Electronics- 3950 Series

Signal-to-noise ratio: low band at $120 \mathrm{ips}: 50 \mathrm{~dB}$ S/N over $\mathrm{dc}-20 \mathrm{kHz}$ passband. Intermediate Band at $120 \mathrm{ips}: 48 \mathrm{~dB}$ S/N over dc- 40 kHz passband. Wideband Group I at 120 ips: $47 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ over dc -80 kHz passband. Wideband Group Il at $120 \mathrm{ips}: 36 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ovec $\mathrm{dc} \cdot 400 \mathrm{kHz}$ passband.

FM Electronics-3955 Series

Signal-to-noise ratio: Low band at 60 ips: 50 dB S/N over $\mathrm{dc} \cdot 10 \mathrm{kHz}$ passband. Intermediate Band at $60 \mathrm{ips}: 48 \mathrm{~dB}$ S / N over dc-20 kHz passband. Wideband Group I at 60 ips: $47 \mathrm{~dB} 5 / \mathrm{N}$ over de. 40 kHz passband.

General specifications

Voltage and frequency: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$. ($230 \mathrm{~V}, 50 \mathrm{~Hz}$ Opt).
Power consumption: from 350 to 700 watts.
Weight: depends on size of system; the following are typical: 675 lbs (306 kg) net, for in:cabinet 14 -channel system. 575 lbs (261 kg) net, for in-cabinet 7 -channel system.
Size: height: $7814^{\prime \prime}$ (1990 mm) for cabinet with $70^{\prime \prime}$ (1780 mm) of vertical panel space, including casters. Width: $21^{\prime \prime}$ (533 mm). Depth: $373 / 4^{\prime \prime}(960 \mathrm{~mm}$) overall.
Accessories: Refer to page 199.
*Oetalled specifications (by model no.) are available on request.

ANALOG TAPE RECORDERS

PORTABLE TAPE RECORDER
Laboratory performance and accuracy 3960 Series

Laboratory performance and accuracy in a portable, $1 / 4$-inch tape, instrumentation recorder are provided by the HewlettPackard Model 3960 Instrumentation Tape Recorder. The 3960 records and reproduces, at three electrically swirched speeds, up to four channels simultaneously. Any of the four channels can be operated in either an FM or a Direct record/ reproduce mode. And five standard (7 available) tape speeds and five FM/Direct channe! combinations are available to meet the varying requirements of varied applications.

Standard Speeds (las)	Chammel Confliguration				
	4 FM	$\begin{aligned} & 2 \mathrm{FM} \\ & 2 \mathrm{Dir} \end{aligned}$	$\begin{aligned} & \hline 3 \text { FM } \\ & 1 \text { Ot } \end{aligned}$	$\begin{aligned} & 1 \mathrm{FH} \\ & 3 \mathrm{Dir} \end{aligned}$	4 Blr
15,33/4, 15/16	3960A	39608	3960E	3980 F	3960G
15, 3, 1.5	3980D	3960C	3960 H	3960J	3960 K

The advantages of portability and ruggedness allow you to take the 3960 to otherwise inaccessible or unrepeatable signal sources. Subsequently, tapes can be played back in the laboratory; if necessary, can be digitized by analog.to-digital converters; or can be repeatediy and variously analyzed by a diversity of sophisticated laboratory equipment.

Specifications*

FM Record/Reproduce
FM system conforms with IRIG Standard Intermediate Band.

Tape Speed (lps)	Garrier Center Frequency ${ }^{\text {² }}$ (kHz)	$\begin{gathered} \text { Passtand }\left({ }^{2}\right) \\ (\mathrm{Hz}) \end{gathered}$	$\begin{aligned} & \text { S/N Ralle(f) } \\ & \begin{array}{c} \text { (rmis/rms) } \\ \text { (dB) } \end{array} \end{aligned}$	Distarlion (\%)
15	27	0105000	48	1.5
7-1/2	13.5	0102500	48	1.5
3-3/4	6.75	0101250	48	1.5
3	5.40	0101000	48	1.5
1-7/8	3.38	010825	48	1.5
1.5	2.70	0 to 500	47	2.0
15/16	1.69	010312	46	2.0

(${ }^{1}$) Signal measured with carrier deviation $=40 \%$ at 10% of upper bandedge modulation frequency.
(2) Frequency response over passband is $\pm 1.0 \mathrm{~dB}$ referenced to 10% of upper band-edge frequency.
${ }^{(3)}$ Without Flutter Compensation. Output filters of ceproduce amplifiers selected for constant amplitude response. May also be selected for linear phase (transient) response.

Direct Record/Reproduce

Tape speed (ips)	Passband $(\pm 3 \mathrm{~dB})$	$\begin{gathered} \text { Slonal/ Nolise } \\ \text { Rallo }(\mathrm{dB}) \end{gathered}$
15	70 Hz -60 kHz	38
7-1/2	50 Hz .30 kHz	38
$3 \cdot 3 / 4$	$50 \mathrm{~Hz} \cdot 15 \mathrm{kHz}$	38
3	$50 \mathrm{~Hz} \cdot 12 \mathrm{kHz}$	38
1.7/8	50 Hz .7 .5 kHz	38
1.5	$50 \mathrm{~Hz}-6 \mathrm{kHz}$	38
15/16	50 Hz .3 .75 kHz	38

*Referenced 10 a 500 Hz sine wave with a maximum of 1% third harmonic distortion on lape. (Measured with 3M Type 951 instrumentation tape.) Using an $18 \mathrm{~dB} /$ octave bandpass filter, a 3 d8 improvement can be obtained.

Flutter: measured in accordance with IRIG standards.

Tape Speed (lps)	Passband (Hz)	Fluther $(\% \mathrm{p}-\mathrm{p})$
15	$0.2-2500$	0.35
$71 / 2$	$0.2-1250$	0.35
$33 / 4$	$0.2 \cdot 625$	0.40
3	0.2 .500	0.45
$1.1 / 8$	$0.2-312$	0.50
1.5	0.2 .250	0.55
$15 / 16$	$0.2 \cdot 156$	0.70

General specifications

Configuration: supplied as a porrable. Rack mounting kits available for sundard 19 -inch equipment racks.**
Power requirements: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz . Consumption 80 watts. Also operates on 12 or 28 volt battery, using accessory $D C$ to $A C$ Inverters.
Size: $163 / /^{\prime \prime} \mathrm{W}, 15^{\prime \prime} \mathrm{H}, 73 / 8^{\prime \prime} \mathrm{D}(425 \times 381 \times 187 \mathrm{~mm})$.
Weight: 50 pounds $(22,7 \mathrm{~kg})$.
Environment: temperature range is 0° io $+55^{\circ} \mathrm{C}$, operating; $-40^{=} 10+79^{\circ} \mathrm{C}$, nonoperating.
Altitude: $15,000 \mathrm{ft}$, operating; $25,000 \mathrm{ft}$, nonoperating.
Humidity: 10% to $95 \%\left(+25^{\circ}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$, noncondensing.
Shock: 30 g maximum (11 ms), nonoperating.
Price: the following prices are for typical systems:

$$
\text { 3960A: } 4 \text { FM channels: } 15,33 / 4,15 / 16 \text { ips } \$ 4585
$$

3960G: \& Dir channels; 15, 33/4, 15/16 ips $\$ 4270$

[^31]
3960 Series

All accessories for the 3960 Series Recorders can be field or factory installed. All options must be instalied at the factory during manufacturing.

Accessory Kit, HP Model 13070A

$\$ 31.50$
(Included at no charge with each 3960 Series Recorder.)
Includes: One $0.75 \cdot \mathrm{amp}$ fuse for 230 -volt operation, two jumper cables for FM alignment, four locking knobs for IN. PUT LEVEL controls, one extender board, one package of cotton swabs (to clean heads), one 24-contact system connector, one tuning wand, and one BNC-to-BNC cable.

Remote Start/Stop Swltch, HP Model 13060A
$\$ 40.00$
Includes 8 -foot cable and mating connector.

Inverter (12 VDC to 115 VAC), HP Model 13061A $\$ 190.00$ Inverter (28 VDC to 115 VAC), HP Model 13061 B $\$ 190.00$

Plug-in unit for battery operation. Includes power input cable, fuses, and mating connector.

Tape Loop Adapter, HP Model 13062A

$\$ 370.00$
Holds a tape loop of from 5 to 30 feer.

Voice Channel, HP Model 13063A
$\$ 190.00$
Voice record and reproduce amplifier card for all tape speeds. Includes microphone.

Rack Mount Kit, HP Model 13065A

$\$ 21.00$
For stationary flush-mounting a 3960 in 19 -inch racks.

Fiberglass Translt Case, HP Model 13066A

$\$ 375.00$
Moisture and dust proof. Protects against excessive trans. portation shock and vibration.

Rack Slide Mounting Kit, HP Model 13068A/B

$\$ 165.00$
For flush-mounting the 3960 in cabinets and racks, Allows 3960 to be pulled away from rack and rotated 90° for easy access to adjustments and replaceabie parts. Model 13068A is for standard 19 -inch racks; Model 13068B is for HP Series 2940 and 1073 cabinets.

Remote Contral Option

$\$ 380.00$
Allows electronic switching of all modes except tape speed and power on-off. Control lines select all other recorder functions with a momentary-contact closure. Status lines indicate the appropriate recorder condition.

Tape Speed Servo Option

$\$ 350.00$
Provides the capability of contcolling tape speed from a reference signal recorded on any of the four tracks. Minimum time base error is ± 4 usec at 15 ips and ± 25 usec at $15 / 16$ ips. The control panel includes a switch for changing from tachometer mode to tape servo mode, and two indicator lights to indicate the mode in use.

3950/3955 Series

Automatic Tape Degausser, HP Model 3603A $\$ 1,090$
Degausses magnetic tape to 90 dB below saturated recorded level. Automatic operation: complere erasure every time. Designed for continuous operation. Accepts $3^{\prime \prime}$ to $15^{\prime \prime}$ diameter reels; $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$-wide tape. Use in rack or on table top. Digitai Reel Hub Adapter Model 11572
$\$ 17.00$

Voice Channel, HP Model 3604A
$\$ 570$
Records voice commentaries along with data, Pravides for edge-track or multiplex recording. Multiplex operation combines voice with data for recording on any direct-record channel. Includes loudspeaker and retractable microphone.

AC Power Supply, HP Model 3680A

$\$ 1,150$
Used to obtain crystal-controlled drive speed accuracy when system is operated from variable-frequency (47.63 Hz) power source. Eliminates minor tape speed changes resulting from abnormal frequency variations in the ac power line. Amplifier is driven from either an internal crystal or an external frequency source. Ideal for laboratory or field use, supplying up to 100 watts, 115 volts, at any frequency from 30 Hz to 1.5 kHz .

Tape Servo, HP Model 3681A

$\$ 1,450$
Genecates IRIG-specified speed-control signal for recording on tape with data. When the tape is replayed, the reproduced speed-control signal drives the 3680A AC Power Supply (above) ; it, in turn, controls the tape speed such that dara signals are reproduced at exactly the same frequency as recorded.

Option 01 Amplitude Modulation $17 \mathrm{kHz} \quad \$ 1,280$
Option 02 Constant Wavelength and $A M_{1} 17 \mathrm{kHz} \quad \$ 1,650$

Remote Control Unit

Includes all funcrions for tape recorder operations from another location. With 25^{\prime} cable. Rack mounting optional.

HP Model 3907-11A (for $101 / 2^{\prime \prime}$ reel systems) $\$ 400$
HP Model 3907-11A, Option 02 (for $15^{\prime \prime}$ reel systems) $\$ 450$

Reproduce Track Selector, HP Model 11539A $\$ 360$
Permits system economy by using less than a full complement of Reproduce Amplifiers. Each front-panel switch connects any of the 14 recorded data-tracks to the inpur of a single Re. produce Amplifier. With seven switches available, only one Reproduce Mainerame, and from 1 to 7 Reproduce Amplifiers may be used with a 14 channel system.

Pack Sensor HP Model 11553A

$\$ 370$
Senses the remaining tape-pack on both supply and take-up reels. Permits system to be stopped before tape runs off end of reel: used for recycling tape, or turning on a second tape re. cording system before the first one ruas out of tape. For 15" reel systems, only

DIGITAL RECORDER
 20 lines/s; quiet; versatile Model 5050B

Advantages

Inexpensive mixed codes column by column
Versatility of quick-change code dises
few moving parts
Quiet operation
Data storage and digital clock optional
This recorder is compatible with Hewlett-Packard solid state and integrated circuit instrumenrs and a wide variety of other equipment. Ir prints up to 18 columns of 4 line BCD data from one or tro sources up to 20 lines $/ \mathrm{s}$.

The user can easily change code to $8421+8421-$, or $4221+$ by an inexpensive substitutable code disc, and can change print wheels to have a different code and/or character set in each column. Character suppression allorrs suppressing a character in each column (typically to suppress leading zeros).

A reduction in moving parts leads to reliable operation. Parriculas attention has been paid to ensuring quiet operation. Data storage options reduce dara loading time from 50 ms to 0.1 ms and decrease input voltage requirements.

Specifications

Accuracy: identical to input derice used.
Printing rate: 20 lines per second, maximum (asynchronous)
Column capacity: to 18 columns.
Print wheels: 16 positions, numerals 0 through $9,-, \pm, \mathrm{Z}, \mathrm{V}$, Ω, \because; other symbols a vailable.

Input requirements-without data storage

Data input: patallel entry, $\mathrm{BCD}(8421,4221)$, " 2 " slace must differ from "0" srate by $>4.5 \mathrm{~V}$ but $<75 \mathrm{~V}$.
Input requirements-with data storage options
Data input: parallel entry, BCD, " 1 " state musr differ from " 0 " srate by $>1.3 \mathrm{~V}$ but $<$ ss V . Input drise $\geq 100 \mu \mathrm{~A}$. Data must be on lines when prine command occurs and remain uncil release of hold-off ($85 \mu \mathrm{~s}$ after print command).
Transfer time: 50 ms without storage, 0.1 ms rith .
LIne spacing: adjustable, 3.5 to 4.5 lines/inch.
Inking: ink roller or pressure sensitive paper (use latser where 5050 B is idling more than printing, or for temperature exremes). Conversion: typically takes fixe minutes.
Operating temperature: $-20^{\circ} \mathrm{C}$ 10 $+35^{\circ} \mathrm{C}$ with pressure sensitive paper, $+10^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$ with ink roller.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approx 100 W idle, 190 W at 20 lines $/ \mathrm{sec} .50 \mathrm{~Hz}$ model with 20 princs/sec a a ailable.
Dimensions: cabinet: $163 / \mathrm{s}^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ decp ($426 \times$ $226 \times 467 \mathrm{~mm})$. Rack mount hardware supplied.
Weight: ner, $40 \mathrm{lbs}(18 \mathrm{~kg}$) ; shipping. $33 \mathrm{lbs}(24 \mathrm{~kg}$).
Price: HP $9050 \mathrm{~B}, \$ 1900$. Column boards (one required for each (wo columns to be operated), $\$ 125$ each.
Options: $001-8421$ " 1 " stare positive code disc.
002 . 8421 " 1 " state negatire code disc.
$003-4221$ " 1 " state positive code disc.
All three code discs are supplied with each SO5OB at no charge. However, one of the above options must be specified so 5050 B can be delivered with desired dise installed. $010-50 \mathrm{~Hz}$ operation, add \$15.
015. Moror control, add \$75.

050 . Storage for 20 columns, add 5400 .
051 - Storage for 10 columns, add $\$ 200$.
061 - Package for 5360 A . add $\$ 1490$.

Option 055 for 5050B recorder
Option 055 Clock, for use with the HP 5050B Digital Recorder, provides a convenient method for recording time while also serving as a programmer for the measuring recording system. Integrated circuits and transistors perform all timing and logic functions. Column boards required for 5050B operation are built into the clock.
Easy-to-read display tubes indicare time to 23 hours, 39 minutes, 59 seconds. In the printour there is a seventh digit available for indicacing tenths of a second. The BCD output code of the clock is selectable to be either $+8.4 \cdot 2 \cdot 1$ or $-8.4 \cdot 2 \cdot 1$, but information is easily adaptable to any orher code used on the recorder.
As a programmer, the clock is extreme!y versacile. Psint intervals of a second, 10 seconds, 1 minute, 10 minutes, or 1 hour are chosen by a front panel switch. Rates as high as 20 prints per second, determined by an external signal, are acceptable.
The clock is available in kit form for model 50508 or may be instalied at the factory in new 5050 B Recorders.

Specifications, Option 055

Time base: selectable to be $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or external. External requires 10 pps negative puise.
Print interval:
Internal: selectable to be $1 \mathrm{~s}, 10 \mathrm{~s}, 1 \mathrm{~min}$., 10 min , or 1 hour between prints.
External: cates up to 20 prints per second.
Time-of-measurement accuracy: time recorded may be $0 . i s$ less than correct time \pm line accuracy.
VIsual indication: 6 in-line digital display tubes indicate to 23 hours, 59 minutes, 59 seconds.
Printed output: seven digits indicate to 23 hours, $59 \mathrm{~min}, 59.9 \mathrm{~s}$,
BCD output code: $+8 \cdot 4 \cdot 2 \cdot 1$ or $-8 \cdot 4 \cdot 2 \cdot 1$ selectable. Output adaptable to other recorder codes.
Print format: time printable in any recorder columns.
Clack set: 4 switches electronically set clock to desired initial time:
Power: 11 V or $230 \mathrm{~V} \pm 10 \%$. 50 Hz or 60 Hz .
Weight: ner, 3 lbs ($1,4 \mathrm{~kg}$).
Price: HP Oprion OSS (facrory installed), S950.00. Price of kit for field installation a vailable on request.

DIGITAL RECORDER 10 lines/s with economy and quality Model 5055A

 DIGITAL RECORDERS

Hewlett-Packard Model 5055A Digital Recorder provides a high-performance economical method of making permanent records of digital data. The unit is supplied with complete electronics for 10 columns of input data and will print at rates up to 10 lines per second. It accepts TTL integrated circuit logic levels in either a +8421 or -8421 code, the code being switch selectable on the rear panel.

Quiet, reliable operation is inherent in the design, resulting from the use of very few moving parts. The printer mechanism, manufactured by Hewlett-Packard, is a modified version of a mechanism whose reliability and serviceability has beeo demonstrated in other Hewlett-Packard recorders for years.

The 505sA prints in ink on regular paper or on pressure sensitive papec. For ink printing, the mechanism includes a continuously rotating ink roller-inherently a more reliable spstem than a stact-stop xibbon mechanism. Paper loading is easy from the front, and when the paper supply rons out, an alarm lamp lights and recording stops auromatically. An output signal is provided for inhibiting the data source.

Each column has an individual print wheel which can be changed independently if a different character set is desired in any column. Special wheels can be factory installed at nominal cost or may be field installed at a later date,

The recorder's cabinet is half-rack widrt and only six inches high. It can be used either on a bench or side by side with another instrument in a rack.

Specifications

Accuracy: identical to inpur device used.
Print cycle time: 100 ms .
Printing rate: 10 lines $/ \mathrm{sec}$ maximum, asynchronous.
Print wheels: 16 positions, numerals 0 through $9,+,-, V, A, \Omega$,
*; special wheels available at minimal cost.
Column capacity: supplied complete for 10 -colucan operation.
Electrical
Data Input: parallel entry, $\mathrm{BCD}=8421$ (selected by rear panel switch).
Blanking: Hewlett-Packard counters with blanking will give insignificant zero suppression since blanked digit's output is (1111), May be defeated with rear panel switch.

Logic levels: high state $\geq+2.4 \mathrm{~V},+5 \mathrm{~V}$ maximum (open inpu: line results in high state): low state $\leq+0.4 \vee(1.6 \mathrm{~mA}$ max., low'), o V minimum.
Print command: line 1 -low to high transition causes print (nominal $1 \mathrm{k} \Omega$ input impedance) ; line 2 -high to low transition causes print (nominal 400Ω input impedance). Vollage levels are serae as logic levels above, and a minimum pulse width of 0.5 μ s is required.
Inhlbit voltage: $(+)$ inhibir $=$ (ransition from $(\geq 0, \leq 0.4 \mathrm{~V})$ to ($\geq 2.4 \mathrm{~V}, \leq 5.0 \mathrm{~V}$) upon receipt of print command. Remains at high state unfil paper advance occurs, approximately 85 ms ($<5 \mathrm{~mA}$ in low state).
$(-)$ inhibit $=$ inverse of $(+)$ inhibit.
LIne spacing: fixed, 4 to 5 lines per inch.
Inking: ink roller or pressure sensitive paper. Pressure sensitive paper is recommended for operation under extreme temperatures.
Accessories furnished: one pad regular paper, one pad pressure sensitive paper, one ink roller, one paper deflector, one power cable.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with pressure sensitive paper, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Ingut connector: amphenol 57-40500-375, HP Part. No. 1251.0087, so-pin female. Mating input cable connector: amphenol gpe 57.30500 .375 , HP Pare No. 1251.0086 , 50 -pin maie.

Front panel controls: power switch, power on indicator light, manual print pushbuton, manual paper advance pushbution, ou:-of-paper light, standby/operate swich. (Paper loaded from front.)
Paper requirement: Hewlet-Packard foided tape. Approximately 15,000 lines per pad of regulas paper, 18,000 lines per pad of pressure sensitive paper (pad fills sossa twice and must be divided).
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 60$ or 50 Hz (twospeed motor pulley incorporated), approximately 25 W idle, 55 W at 10 lines $/ \mathrm{sec}$.
Dimenslons: cabiner: $8^{\prime \prime}$ wide, $6-3 / 32^{\prime \prime}$ high, $16^{\prime \prime}$ deep ($203 \times$ $154 \times 406 \mathrm{~mm}$)
Wesight: net, 18.5 lbs (10 kg) (approximately); shipping, 22 lbs (8.9 kg) (approximately).
Price: $\$ 1150$.
Accessories avallable: rack adapter frame 5060.0797, $\$ 25$.
Option 001: delivered set up for 50 Hz operation. No charge.
Option 002: input cable, $562 \mathrm{~A}-16 \mathrm{C}$. For use with $3450 \mathrm{~A}^{*}$. $3480 \mathrm{~A} / \mathrm{B}, 5326 \mathrm{~A} / \mathrm{B}, 5500 \mathrm{~A}^{*}, 8443 \mathrm{~A}, \$ 50$.
Option 003: input cable, 10513 A . For use with $5216 \mathrm{~A}^{*}$, $5221 \mathrm{~B}^{*}$, $5321 \mathrm{~B}^{*}, 5325 \mathrm{~A} / \mathrm{B}, 5330 \mathrm{~A} / \mathrm{B}, 5331 \mathrm{~A} / \mathrm{B}^{*}, 5332 \mathrm{~A} / \mathrm{B}^{*}, \$ 65$.
Option 004: input cable, 10524 A . For use with 5323 A , $\$ 65$.

* Silght modification may be necessary.

Description	Part Number
Inx Roller (Black)	9260-0071
Standard Paper (Single Pad")	9281-0386***
Standard Paper (Carton of 15 Pads*)	05050.8002***
Pressure Sensitive Paper (Single Pad**)	$9281-0387^{* * *}$
Pressure Sensitive Paper (Carton of 15 Pads ${ }^{+\times}$)	05050.8003***
- One pad of standardy paper is 250 feet long. \cdots One pad of pressure sensitive paper is 305 feet long. ... Each pad fills 5055A twice and must to divided.	

HP Model 562A Digital Recorder is a solid-state elecrco. mechanical device providing a printed record of digital data from any of a number of sources. Parallel data entry and low. inertia moving parts allow printing rates as high as 5 lines per second, each line containing up to 11 digits. Twelve-digit capacity is available on special order.

Data enter the unit through rear-mounted 50 -pin connectors. Internal plug.in connectors route the information to any desired sequence of print wheels. A separate storage binary unit is associated with each individual print wheel for 4 -line BCD input codes.

Model 562A may be equipped to translate 4.2.2.1 BCD, other \mathfrak{f}-line codes or 10 -line code by substizuting plug-in column boards and input connector and cable assemblies.

Specifications

Accuracy: identical to input device used.
Printing rate: 5 lines per second, maximum.
Column capacity: to 11 columns (12 available on special order).
Print wheals; 12 positions, numerais 0 through 9, a minus sign and a blank; other symbols available.

Input requirements

Data input: parallel entry, $\mathrm{BCD}(4-2 \cdot 2-1,8-4 \cdot 2-1,2-4-2-1)$ or 10-line, see Options; " 1 " state must differ from " 0 " state by at least 4 Volts but by no more than 75 Volts.

Reference voltages: BCD codes require both " 0 " and " 1 " state references; 10-line codes require reference voltage for " 0 " stake; reference voltages may not exceed $=150 \mathrm{~V}$ to chassis; input impedance is approximately 270 k ohms.

Hold off signals: both polarities are available simultaneously for BCD codes and are diode-coupled; 10 mA maximum load +15 V open circuit from 1 k source, -5 V open circuit from 2.2 k source (160 msec hold-off is provided for 10 -line codes).

Print command: + or \sim pulse, 4.5 to 20 voits amplitude, $1 \mathrm{~V} / \mu \mathrm{s}$ minimum rise time, $20 \mu \mathrm{~s}$ or greater in width, ac coupled.

Analog output (opkional): (from 4.2-2.1 or $8 \cdot 4 \cdot 2 \cdot 1$ boards) accuracy is $\pm 0.5 \%$ of full scale or better; 100 mV for potentiometer recordet; 50 k ohm minimum load resistance: 1 mA into 1.5 k ohm naxinum for galvanometer recorder.
Transfer time: 2 ms fur BCD codes.
Paper required: HP folded paper tape (15,000 prints per packes with single spacing) HP Stock No. 560 A -131A or standard 3 .inch roll tape. 25 parker cartime. $\$ 21.00$.
Line spacing: siogle or double.
Power: 115 or $230 \mathrm{~V} \equiv 10 \%$, 50 to 60 Hz , approx. 130 W . (4 prints/s at 50 Hz ; 50 Hz model with 5 prints $/ \mathrm{s}$ available.)

Dlmensions: cabinet: $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep (527 x $318 \times 470 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $161 / 2^{\prime \prime}$ deep ($483 \times 266 \times 419 \mathrm{~mm}$).
Welght: net 35 lbs (16 kg), shipping $80 \mathrm{lbs}(36 \mathrm{~kg}$) (cabinet) : net 30 lbs (13 kg), shipping $63 \mathrm{lbs}(31 \mathrm{~kg}$) (zack mount).
Price: HP 562A, $\$ 1185$ (cabinet): HP 562A, Option 002. 51160 (rack mount): basic unit with 11 -column capaciey: column

boards, input connector assemblies and rables required for opesation are not included, see Options.
Options, Group 1
(Completely equips 562A for operation with Hewletr-Packard instruments.)
Option 011. For 6-column operation from 4-2-2.1 "1" srate positive code, add $\$ 555.00$.
Option 012. For 9 -column operation from 4-2.2.1 "1" staze positive code, add $\$ 780$.
Option 013. For 11 .column operation from 4-2-2-1 " 1 " state positive code, add $\$ 1023$.
Option 014. For nperation with 5245L; 10 column uperation: prints measurement unit and indicates decimal position-e.s., 16942.496 kHz would be printed as 3 KHz 16942496 : the first digit shows how far to move the decimal to the left; add $\$ 880$.
Options, Group 2, colymn boards
Option 021. 4-2-2-1 " 1 " state positive, $\$ 75$ each.
Option 022. 8.4.2.1" " " state positive, $\$ 75$ each.
Option 023.8.4-2.1 " 1 " state negative. 575 each.
Oprion 024. 4.2-2-1 " 1 " state regative, $\$ 75$ each.
Option 029. 10-) ine " 1 " stare positive (no storage), $\$ 50$ each.
Option 026. 10-line " 1 " state negative (no storage). $\$ 50$ each.
Option 027. 2-4-2-1 " 1 " state negative, $\$ 75$ each.
NOTE: Input connector sssemblies and input cables \{Group 3 options) are required for use with Group 2 columa boards.
Optlons, Group 3, connector assemblles
Optinn 030. BCD input connector assembly for up to 9 columns, $\$ 55$.
Option 031. BCD inpur connector assembly for up to 6 columns, $\$ 43$.
Option 032. Input cable, for up to 10 BCD columns or three 10 . line columns, $\$ 50$.
Option 033. 10-line input connector assembly for up to 3 columns. $\$ 35$.
Option 034. BCD inpar connector assembly for up to 10 columns. \$60.
Option 035. Inpur cable 10513 A for IC counters, 565.
NOTE: More than one input connector assembly and input cable are required for: 1. more than ten BCD columns; 2. operation from two sources: 3 . more than three 10 -linc columns.

Options, Group 4

Oprion 041. Analog ourput (from 4-2.2-1 boards), s175.
Option 042. Analog outpur (from 8-4.2.1 boards), \$175.

COUPLER/CONTROLLER Programmable, bidirectional device interface Models 2570A, 2575A

The HP 2570A and HP 2575A Coupler/Controllers form the heart of inexpensive, programmable, and expandable sysrems, providing a bidirectional link that interfaces many Hewlett-Packard instruments (as well as non-Hewlett-Packard instruments) and peripherais to communicate with each other. Because of the many and varied system configurations possible, complete ordering information for coupler/controller systems is contained in a separate form, HP 2019A Systerns Ordering Information, available from Hewlett-Packard field sales offices. Coupler/Controllers and their options should be ordered under their 2019A- (list option number here) classification, as shown in parentheses throughour the text. The discussion that follows is essentially a description of the coupler/controllers themselves, their associated plug-in eards, and brief specifications. More in-depth literature covering coupler/controllers, as mentioned throughour the following text, is available from Hewlett-Packard.

NOTE: The only electrical difference between the 2570A and 2575 A is that the 2570A has eight input/output slots (channels to interface devices) and the 2575A has four input/ output slots. Except as specifically noted in the following rext. all mention of the 2570 A applies equally to the 2575 A .

Operating principles

Operation of the 2570A is based on the concept of providing a common communication code-ASCII (American Standard Code for Information Interchange). The simple system illustrated shows how a device such as a DVM, inputs its data to the coupler/controller which, in turn routes the data to an output device such as a paper tape printer. The sequence of operation is as shown, Note that the input data signal is converted from BCD ro ASCII on the BCD input card; all data must be in ASCII when it reaches the 2570A backplane. Thus, a single 8 -line ASCII bus on the backplane handles all data transfer between devices.

2570A Single. Souree, Single Output System
The highly diversified operating capabilities of the coupler/ controllers are all implemented under program control. All I/O operations can be programmed by either a self-contained pinboard programmer (up to 15 instructions) on the control card or by an external ASCII source, such as a teleprinter keyboard or tape reader.

Interface cards

Interface cards for many applications are available as kits specifically for the 2570A. The interface cards generate the necessary interface control signals, provide storage if required,

HP Coupler/Controllers with Front Panel Open. 2575A (top) Accepts up to Four 1/O Devices. 2570A (bottom) Accepts up to Elight $1 / 0$ Devices.
and provide the necessary control logic for I/O operations, e.g., proper timing conditions. The following is a brief description of interface cards available.

The HP 12797A (2019A Opt 100) BCD Input Card equips the 2570 A to receive the digital output from a variety of instruments, including digital voltmeters, counters and quartz thermometers. The card translates up to 10 characters of 8421 BCD information from a digital source into ASCII and makes it available in serial form on the 2570A ASCII bus. Patcly panel programming on the card permits format control of the input/ output slot, and insertion of certain special characters. The HP 12797A BCD Input card interfaces the following HewlettPackard instruments to the 2570A: Counters: $5221 \mathrm{~A} / \mathrm{B}, 5245 \mathrm{~L} /$ $\mathrm{M}, 5321 \mathrm{~A} / \mathrm{B}, 5323 \mathrm{~A}, 5325 \mathrm{~A} / \mathrm{B}, 5326 \mathrm{~A} / \mathrm{B}$, and $5330 \mathrm{~A} / \mathrm{B}$: DVMs: 2401C, 2402A, 3i50A, and 3480A/B; 2801A Quartz Thermometer; 4270 A Capacitance Bridge.

The HP 12798B (2019A Opt 119) BCD Output Card pro. vides a 10 -digit parallel data output register as a means to interface the 2570A with parallel entry digital devices. The card can also be used as a general-purpose 40 -bit output reg. ister. The HP 12798 B BCD Output Card is compatible with the following Hewlett-Packard instruments: Digital Recorders: 562AR, 5050A/B, 5055A; 2759B Frequency Synthesizer Programmer; DVMs: 3450A, 3482A/3484A: Digital Voltage Sources: 6130B•J80, 6131B•J80. Counters: 5325B, 5326A/B; 6936A Multiprogrammer

The HP 127998 (2019A Opt 140) 16-Bit Relay Register provides 16 programmable contact closures for conrrol of external devices such as porver supplies, solenoids, electrically activated control valves, or instruments requiring control voltage outside
of the normal logic ranges. The contact closures may be subdivided in any combination for controlling one or several dcvices. The voltages switched through the relay contacts can differ from each other and from the 2570 A ground by as mach as 100 voles peak. Contacts can be connected in series, paraliel, or series-parallel, with or withour diode isolation. Floating contact closure permirs switching of diverse voltages and avoids ground loops.

The HP 12800A (2019A Opt 160) 8-Bit Duplex Register provides the 2570A with the capability to "ralk" directly with 2100 series computers, the 2753A High Speed Tape Punch, and the 2748A/58A High Speed Punched Tape Reader. Commonly, the distance between the coupler/controller and other devices can be handled by the 12 foot cabies available for this purpose. For separations up to 10,000 feet, order the HP 12770A (2019A Opt 380) Interface Kit (described belonr) to interface a coupler/controller to an Hewlett-Packard compurer. Through this interface the computer can provide on-line computational power. Softruare drivers are not supplied. Interconnect cables are available to allow the punch and reader to be operated independently or simultaneously (see l2800A (2019A Opt 160) specifications).

The HP 12801A (2019A Opt 180) Teleprinter Interface allows any Hewlert-Packard teleprinter to interface with the HP 2570A. Compatible Hewlett-Packard teleprinuters, used mainly with computers and data acquisition systems, are the 2752A (modified ASR-33) and the 2754B (modified ASR-35); the 2740A (modified ASR-33) is used in Hewlett-Packard time-sharing systems. A system incorporating a 2570 A can be manualiy controlled by entering instructions from the teleprinter keyboard. Alcernatively, the system may be controlled by paper tape programs read from the releprinter tape ceader.

The HP 12802A (2019A Opt 200) Calculator Interface enables the 2570A and the HP 9100 Calculators to communicate directly with each other. Data can be input chrough the 2570 A to the calculator x-register and conversely, processed data can be ourput from the x-eegister through the 2570A, to such devices as a teleprinter or tape punch. Additionally, the program storage capability of rhe 9100 can be used to exercise system contral. Through the use of a twookey sequence of "FMT" and a number or letter, the calculator can rake readings from DVMs, counters, etc., control scanners, program poaer sup. plies, and in essence, do any of the things that can be done through the normal pinboard program. Furthermore, the 9100 brings computational power and decision making capablity to the system for minimal cose.

The HP 12803A (2019A Opt 220) Ten-Channel Reed Relay Scanner switches multiple analog input signals, in either numerical or random sequence, to a single measuring device such as a DVM or frequency counter. Reed relays snitcin up to 10 channeis per plug.in card. With multiple scanners, up to sixty analog input channels can be switched to the DVM or counter with a single 2570 A or up to 20 channels with a 2575 A -based, stand alone digital data acquisition system. A two digit channel identification is available for recording along with the data, or it may be suppressed, if desired.

The HP 12807A (2019A Opt 300) Pinboard Program Card provides 45 additional program steps for the 2570 A . The steps are divided into five separate nine-step program segments, each of which can the treated as a separate subprogram that can be addressed directly and executed. A null step no diodes in.
serted) determines the end of that subprogram. Program chaining is possible for programs longer chan nine steps. More than one program card can be used at a rime, grearly expanding programming capability.

The HP 12809日 (2019A Opt 320) Time-Sharing Interface enables the 2570A to establish two.w'ay communication with a time-shared computer. Any device interfaced to the 2570A also becomes interfaced to the computer, thereby enabling instruments and peripheral devices to communicate with each other and the computer. Thus, a computer program can con. trol devices in a measurement system. The time-sharing interface (and an acoustical coupler, as described in the specifications) allows data to be transferred on-line to a time-shared computer for analysis without the need for manual data logging and the subsequent re-keying of information into a compurer terminal. Logging is performed unattended and can be recorded, automatically. All the mass data storage and pourerful processing porer of the most sophisticated computers are readily available without the capital outlay for an in-house system. Other benefits include access to pre-written statistical routines, capability of accumulating large hisrorical files, and storing sophisticated programs at a low cost; these files are available on instant recall, making it possible to get maximum usage from the compurer.
The HP 12811A (2019A Opt 340) Clock/Timer/Pacer Card adds very fexible measurement timing capabilitics to the 2570 A (available on special order for the 2575A). The exact time of day can be recorded along with instrument data. Individual dara points or complete measurement scans can be programmed (Daced) through switches wo begin at specified time intervals, at 0.1 sec increments from 0.1 sec to 99.9 sec (or 0.1 ms to 99.9 ms). Also, by means of the clock, intervals can he once every $0.1 \mathrm{sec}, 1 \mathrm{scc}, 10 \mathrm{sec}, 1 \mathrm{~min} .10 \mathrm{~min}$. 1 hr , or only once cvery day. Clock intervals can be multiplied (jumper place. ment) by 2 or 3 . Additionally, tine delays may be inserted in the program in 0.1 sec increments from 0.1 sec to 99.9 sec (or 0.1 ms to 99.9 ms). The clock operates on $50,60 \mathrm{~Hz}$ or an oprional 100 kHz crystal oscillator chat mouncs on the card. An emergency power option keeps the clock running in event of power failure.
The HP 12770A (2019A Opt 380) Serial Data Communica. tions Interface allows an HP 2100 Series Computer to communicate with a 2570 A Coupler/Controller at distances up to 10.000 leer, via two pairs of twisted shielded wire in a single cable. The 2570 A can be operated either: (1) as a computer-controlied semote terminal accepting step-by-step instructions from a remote host computer to input and output data 10 instruments and operator interfaces, or (2) as a preprogramned controller, using irs own pinboard memory, to perform a specific function upon call from the remote host computer. Software drivers-Basic Control System (BCS) Real Time Executive (RTE)-are provided.
The HP 12817A (2019A Opt 052) Parity Generator Interface generates even or odd parity for data that has no parity, as a means to enable a computer interfaced to a 2570 A to detect transmission errors. Since some computer systems can only accepr data with parity, the parity generator then enables an instrumentation system interfaced to the 2570 A to enter data into such computer systems. The parity generator is especially useful for introducing parity into punched tape during data acquisition, since such tapes cannor be edited later.

Specifications

(Most interface cards are supplied with a 48 -pin PC connector kit, less cable, to allow the user to make his own device interconnecting cable; the kit is not supplied if one of the optional cables is ordered. The 10 -channel scanner card is supplied with a 24 -pin connector.)

Mainframe: 2570A (2019A Opt. 001)
 2575A (2019A Opt. 002)

Input/output code: ASCII (8-bit parallel).
Programming: $15 \mathrm{~J} / \mathrm{O}$ instructions or ASCIJ characters may be programmed using diode pins (64 furnished).
Power requirements: 2570A: 115 V ac (2.5 A) or 230 V ac (1.25 A), $\pm 10 \%, 48.440 \mathrm{~Hz}, 275 \mathrm{~W} .2575 \mathrm{~A}: 115 \mathrm{Vac}(2.0 \mathrm{~A})$ or $230 \mathrm{Vac}(1.0 \mathrm{~A}), \pm 10 \%, 48.66 \mathrm{~Hz}, 175 \mathrm{~W}$
Operating ambient: 0° to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$. Relative humidity; to 95% at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
Dimensions: 2570A: 101/2" (267 mm) in 19" rack, 22" (559 mrn) depth behind panel. 2575A: $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ in $19^{\prime \prime}$ rack, $20^{\prime \prime}$ (508 mm) depth behind panel.
Waight; 2570 A : net, $42 \mathrm{lbs}(19 \mathrm{~kg})$; shipping, $60 \mathrm{lbs}(27,2 \mathrm{~kg})$. 2575 A : net, $26 \mathrm{lbs}(11,8 \mathrm{~kg})$; shipping, $32 \mathrm{lbs}(14,5 \mathrm{~kg})$.
Prica: (includes power cable and control card). 2570A: $\$ 1875$. 2575A: \$1275.

Mainframe options and accessories:

Option 001 (2019A Opt 051) Remote Start/Reset for 2570A
Prlce: $\$ 300$ (with initial order).
Option 001 (2019A Opt 050) Remote Start/Reset for 2575A
Price: $\$ 200$ (with initial order).
Fleld Installed Remote Start/Reset for 2575A: order HP 12818A (2019A Opt 053).
Price: $\$ 415$ (does not include installation).
Field Installed Remote Start/Reset for 2570A: Serial No. 1135A-00486 and above order HP 12819A (2019A Opt 055) ; Serial No. 1047 A- 00485 and lower order HP 12820 A (2019A Ope 056).
Price: (does not include installation) HP 12819A (2019A Opt 055) : \$415. HP 12820A (2019A Opt OS6) : $\$ 415$.

Program-Board Diode Plis: HP Part No. 5080-1620.
Price: $\$ 2$ each.
Diagnostic Control Panel: order HP 12804B (2019A Opt 240). Programming and service aid.
Price: \$400.
Option 001 (2019A Opt 241) Diagnostic Control Panel with Remote Start/Reset.
Price: \$600.
1/O Card Extender for 2570A/75A: order HP 12805A (2019A Opt 260).
Price: $\$ 75$.
Control Card Extender for 2570A: order HP 12806A (2019A Opt 280).
Price: \$75.
Control Card Extender for 2575A: order HP 12814A (2019A Opt 290).
Price: $\$ 90$.
12797A (2019A Opt 100) BCD Input Interface Card
Input capacity: 10 digits (+8421 BCD).
Serial Data Output to 2570A/75A Backplane Bus: up to is ASCII characters.
Price: 12797A (2019A Opt 200) BCD Ioput Interface Card, $\$ 600$ Optlon 001 (2019A Opt 101) BCD Input Cable: HP part No. 02547-6040. With Amphenol 57-30500 connector.
Price: $\$ 50$.
Option 002 (2019A Opt 102) BCD Input Cable: HP Part No. 02547.6063. With PC connector.

Prlce: \$50.

Option 003 (2019A Opt 103) BCD Input Cable: HP Part No. 12797.60002. For HP 5323A Counter.

Price: $\$ 50$.
127988 (2019A Opt 120) BCD Output Interface Card
Output capacity: 10 digits (+5 V positive truc).
Price: 12798B (2019A Opt 120) BCD Output Interface Card, $\$ 550$.
Option 001 (2019A Opt 121) BCD Output Cable: HP Part No. 02547-6040. For HP S050A/B and 562AR Digital Recorders.
Price: $\$ 50$.
Option 002 (2019A Opt 122) BCD Output for HP 2759B Frequency Synthesizer Programmer

Price: No charge.

Option 003 (2019A Opt 123) BCD Oertput Cable: HP Part No. 12798.60002. For HP 3450A/B Multi-Function Merer.

Price: $\$ 50$.
Option 004 (2019A Opt 124) BCD Output Cable: HP Part No. 12798.60003. For HP 3482A, $3484 A$, plug-ins for $3480 A / B$ Digital Voltmeter.
Price: $\$ 50$.
Option 005 (2019A Opt 125) BCD Output Cable: KP Part No. 12798-60009. For HP 6130B-J80 and 6131B-J80 Digita! Voltage Sources.
Price: $\$ 50$.
Option 007 (2019A Opt 127) BCD Output Cable: HP Part No. 12798-60005. For HP 5325B Universal Counter.
Price: $\$ 50$.
Option 008 (2019A Opt 128) BCD Output Cable: HP Part No. 12798-60006. For HP 5326A/B Counter/Timer/DVM.
Prlce: $\$ 50$.
Option O10 (2019A Opt 130) ECD Output Cable: HP Part No. 02547-6040. For HP 50ssA Digital Recorder.
Price: $\$ 50$.
Option O11 (2019A Opt 131) BCD Output Cable: HP Part No. 12798-60013. For HP 6936A Multiprogrammer.

Price: $\$ 50$.

Option 020 (2019A Opt 139) BCD Output Interlace +5 Volts Ground True: HP Part No. 12798-60011.

Price: $\$ 550$.

Option 021 (2019A Opt 119) BCD Output Interface +12 Volts Positive True: HP Part No. 12798.60012.
Price: $\$ 550$.
12799日 (2019A Opt 140) 16-Bit Relay Register Interface Card
Maximum power: 10 W peak or continuous, per contact.
Maximum voltage: 100 V peak of continuous across open contacts, between output connector pins, and with respect to controller ground on the register card.
Maximum current: 500 mA per contact, peak or continuous.
Data output: 16 foating relay contacts, with ratings as specified above.
Price: 12799B (2019A Opt 140) 16-Bit Relay Register Interface Card, $\$ 500$.
Option 001 (2019A Opt 141) Relay Register Cable: HP Part
No. 12799.60003. For HP 2402 DVM.
Price: $\$ 50$.
Option 002 (2019A Opt 142) Relay Register Cable: HP Part
No. 12799-60002. For HP 2401C DVM.
Price: $\$ 50$.
Option 004 (2019A Opt 143) Relay Register Cable: HP Part No. 12799.60005. For HP 3460B/3462A DVM.
Price: $\$ 100$.
Option 005 (2019A Opt 144) Relay Register Cable: HP Part No. 12789-60004. For HP 3440A DVM.
Price: $\$ 100$.
Optlon 007 (2019A Opt 145) Relay Reglster Cable: HP Part No. 12799-60010. For HP 2801A Qustz Thermometer.
Price: $\$ 100$.

12800A (2019A Opt 160) 8-BIt Duplex Register Interface Card

 Data:Output: high: $12 \mathrm{~V} \pm 10 \%$, 10 K source (jumper selectable) or $\mathrm{sV} \pm 5 \%, 10 \mathrm{~K}$ source. Low: 0 to 0.5 V ; sink 15 mA to ground.
mput: high: 3.0 V to 50 V . Low: 0 to 1 V : sink 5 mA to ground.
Price: 12800A (2019A Opt 160) 8-Bir Duplex Register Interface Card, $\$ 550$.
Option 001 (2019A Opt 161) Duplex Register Cable: HP Part No. 12597-6004. For HP 2748A Punched Tape Reader or HP 2758A Tape Reader Reroller.
Price: $\$ 50$.
Option 002 (2019A Opt 162) Duplex Reglster Cable: HP Part No. 12597-6005. For HP 2753A High-Speed Tape Punch (only). Price: $\$ 50$.
Option 003 (2019A Opt 163) Duplex Register Cable: HP Pars No. 12800-60002. Interconnects Duplex Register to HP 2748A (or 2758A) and HP 2753A by means of a Y-shaped cable.
Price: $\$ 75$.
Option 004 (2019A Opt 164) Duplex Register Cable: HP Part No. 12800-60003. For HP 2100 Series Compurers. (No sofrware drivers supplied.)
Price: $\$ 50$.
Optlon 005 (2019A Opt 165) Duplex Register Cable: (Europe only). For HP 8100A-004 Facit Punch.
Price: $\$ 50$.
Option DO6 (2019A Opt 156) Duplex Register Cable: (Europe only). Interconnects Duplex Register 10 HP 2748 A and HP 8100A.004.
Price: $\$ 75$.

12801A (2019A Opt 180) Teleprinter Interface Kit

Code: eight level, 11 unir ASCII code; 10 characters/second.
Compatibillty: interfaces any of the following teleprinters with the 2570A/75A: HP 2752A, HP 2754B, HP 2749A.
Price: 12801A (2019A Opt 180) Teleprinter Interiace Card, $\$ 450$.

12802A (2019A Opt 200) Calculator Interface

System speed: input: 20 readings $/ \mathrm{sec}$. Output: $20 \mathrm{reandings} / \mathrm{sec}$ System programming: in addition to the is program steps in the $2570 \mathrm{~A} / 75 \mathrm{~A}$, the calculator interface includes is routines hardwired on the interface card, plus 4 user-programmable routines.
Compatlblity: interfaces with HP 9100 Series Calculators.
Price: HP 12802A (2019A Opt 200) Calculator Interiace Card plus interconnecting cable, $\$ 1775$.

12803A (2019A Opt 220) Ten-Channel Reed Relay Scanner
Conflguration: 10 ea, reed relays, 2 pole. form A. Common ourput bus, 2 line.
Input connector: 24 -pins (2 wires per channel).
Absolute maximum ratings: open circuit switch voliage, absolute maximum (Jine to line or line to HP 2570A/79A ground): 120 V at 1 W ($\pm 60 \mathrm{~V}$ mixed polarity). Short circuit switch current, absoluce maximum: 75 mA at 2.5 W .
Signal path specifications
Differential thermal offset: $<30 \mu \mathrm{~V}$
Single-line thermal offset: $<100 \mu \mathrm{~V}$.
Scanning speed (maximum permissible): (ateer receipt of scan advance command, scanner interrupts 2570A/75A program control for 2.8 ± 0.5 ms. including relay switching time): 300 channels $/ \mathrm{sec}$.
Price: 12803A (2019A Opt 220) Ten-Channel Reed Relay Scanner, $\$ 600$.
Option OOI (2019A Opt 221) Cable: HP Part No. 12803.60003. Interconnects multiple scanner cards. Order one less than the total of scanner cards used.
Price: $\$ 10$.

12807A (2019A Opt 300) Pinboard Program Card

Systern programming: in addition to the 15 program steps in the 2570A/75A, the pinboard program card includes 45 program steps (5 subprograms with 9 steps each).
Program source: subprograms may be called from any ASCII source or program card in 2570A/75A.
Price: 12807A (2019A Opt 300) Pinboard Program Card includ. ing 200 diode pins, $\$ 750$. (Order additional diode pins under HP Part No. $5080 \cdot 1620, \$ 2$ each.)

12809B (2019A Opt 320) Time-Sharing Intertace

Coder eight level, 11 unit ASCII code; 10 characters/second.
Compatibilly: incerfaces to the HP 2749A Teleprinter or any EIA compatible teleprinter.
Recommended acoustic coupler: the Anderson-Jacobson ADC 262 Asoustic Coupler, or equivalent, is recommended (EIA port necessary).
Price: HP 12809B (2019A Opt 320) ElA Teleprinter/Acoustic Coupler Interface Card plus interconnecring cables, $\$ 1500$.

12811A (2019A Opt 340) Clock/Timer/Pacer Card
Output: time in hr, min, sec in BCD for external display. Day's optional.
Interval accuracy: $+0.1,-0$ sec in second mode ($30 / 60 \mathrm{~Hz}$) $+0.1,-0$ msec in millisecond mode (100 kHz crystal).
Timing override: coupler/controller reset or remote start will override programmed delays.
Price: HP 12811A (2019A Opt 340) Clock/Timcr/Pacer Card, $\$ 1250$.
Optlon 001 (2019A Opt 341) Card with 100 kHz Crystal Oscil. lator time base.
Price: $\$ 1560$.
Option 002 (2019A Opt 342) 100 kHz Crystal Oscillator tlme base (fleld conversion of basic card).
Price: $\$ 350$.

12770 (2019A Opt 380) Serlal Data Intertace

Transmisslon mode: bit serial, asynchronous.
Error control: by parity checking. Correction is by retransmission.
Transfer rate: from 1,100 words/sec to 24,400 words/sec depending on line length.
12770A (2019A Opt 380) Interface Kit: includes bath a 12813 . 60001 Coupler/Controller plug-in card and a $12665-60001$ computer plug-in card, plus 12 -foor interconnecting cables, and software drivers and diagnostics.
Option 003 (2019A Opt 381) 250-Foot Communications Cable with loose connectors.
Option 004 (2019A Opt 382) 250-Foot Communications Cable with assembled connectors.
Option 005 (2019A Opt 383) 500-Foot Communicakions Cable with loose connectors.
Option 006 (2019A Opt 384) 500.Foot Communications Cable with assembled connectors.
Option 007 (2019A Opt 385) 1000-Foot Communications Cable with loose connectors.
Option 008 (2019A Opt 386) 1000-Foot Communications Cable with assembled connectors.

12817A (2019A Opt 052) Parity Generator Interface Card
inputs (from backplane); ASCII bits 1 through 7 . Logic $1=0$ (± 0.4) volt. Logic $0=+3.4(\pm 1.6)$ volts.
Output (to backplane): ASCII bir 8 (parity bir). Logic $1=0$ (± 0.4) volt. Logic $0=+3.4$ (± 1.6) volts.
Price: HP 12817A (2019A Opt 052) Parity Generator Interface Card, \$150.

FREQUENCY AND TIME MEASURING INSTRUMENTATION

Electronic counters have proven to be the most accurate, fiexible, and convenient instruments available for making both frequency and time interval mea. surements. Since the introduction of the first high-speed counter (the 10 MHz HP Model s24A) more than 19 years ago, Hewlett-Packard has developed a broad range of counters to permit selecting the proper instrument for virtually any ap. plication.

Conventional counters

Data on these pages cover the basic concepts of the conventional frequency counter including operation, accuracy, input considerations and extended fre. quency response. The basics of measuring time interval are then considered and finally a new concept in frequency measurement, as provided by the Computing Counter System, is discussed. This general introduction is concluded with a counter selection chart introducing the broad range of electronic counters available from Hewletr-Packard.

Frequency measurements and the basic counter elements
The frequency of a continuous wave signal is the number of events or cycles that occur per unit time (one second) Most counters measure frequency by totalizing the number of cycles or events of the input signal for a precisely known period of time.

The basic elements of conventional counters (which excludes counters that use compuration as part of their measuring process-e.g. HP 5360A Computing Countet are: (1) the decade counting assemblies (DCA's) with numerical readouts to display the counr; (2) the main gate, which controls the time over which the input signal is totalized; (3)
the time base, which supplies a reference of time for the main gare; (4) decade divider assemblies (DDA's) which divide the time base output to the desited increment of time for which the main gate will be open and (5) an input am-plifier-Schmitt trigger to shape the input signal for the DCA's. The counter also contains logic control which interconnects the proper circuits for the desired measurement, selects the appropriate measurement units for display and initiates the measurement cycle.

Figure (1) shows the conventional counter for frequency measurement. The number of pulses derived from the input that are tokalized during the "gate open" interval is a measure of the average input frequency for that interval. The count obtained is displayed and retained until a new sample is ready to be shown. The Sample Rate control determines the time between samples, resets the counter and initiates the next measurement cycle.

The time base selector switch selects the gating interval, positions the decimal point and selects the appropriate measurement units (e.g. $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$).

Period measurements

Period is the inverse of frequency ($\mathrm{P}=$ 1/f). Therefore, period measurements are made with the input and time base connections reversed. The unknown inpur signal controls the main gate time, and the time base frequency is counted in the DCA's. The input shaping circuit selects the eero axis crossing of successive cycles of the unknown as rrigger points for opening and closing the gate.

Low frequencies may be determined more accurately by measuring period rather than frequency directly. This is rrue because the longer period of a low frequency allows more counts to accumu-

Figure 1. Function switch set to FREQUENCY and gate time selected by time base switch.
late in a period measurement; therefore resolution and accuracy are both im. proved. For example, a frequency measurement of 100 Hz on the 8 -digit 5248 L Counter with a lo-second gate time will display as 0000.1000 kHz . A period measurement of 100 Hz on an HP 5248 L with 100 MHz as the counted frequency. would display as $010000.00 \mu \mathrm{~s}$. Thus, resolution is increased by a factor of 10^{3} and measurement time decreased by 100 .

Multiple period averaging

Multiple period averaging reduces error and improves resolution in period measurements.

The number of periods of the unknown to be averaged is selectable. The HP 5326 B can average up to 10^{5} periods and several other HP counters can average up to 10^{6} periods. In the example above, the counter rould display $10000.000 \mu \mathrm{~s}$ for a 10 period average. (The selecror switch automatically shifts the decimal poinr in the display to show the correct reading for a single period.)

Totalizing

In the totalizing mode the main gate flip-flop is controlled remotely or by a manual start-stop switch. With the switch in Start (gare open), the decimal counter assemblies totalize input pulses until the main gate is closed. The counter display then represents the input pulses received during the interval between Srart and Stop.

Ratio measurements

The ratio of two frequencies is de. termined by using the one signal for the gate control while the other signal is counted. With proper transducers, ratio measurements may be applied to any phenomenon which may be represented by pulses or sine nraves. Gear ratios and clutch slippage as well as frequency divider or multiplier operation, are some of the measurements which can be made using this technique.

Accuracy is improved by the multiple period averaging rechnique by counting for 10^{-}cycles of the gate control signal.

Rate measurements

With a preset counter, frequency measurements can be normalized automatically to rate measurements by appropriate selection of the gate time. The counter will then display a readout in the desired unit of measurement. For example: a gate time of 600 milliseconds causes the input from a 100 -pulse-per.revolution
tachometer to be displayed directly in revolutions per minute.

Scaling

Several Hewlett-Packard counters can scale (divide) an input by powers of 10 up to 10°. The scaled output is available from the rear of the counter.

Measurement accuracy

There are three main sources of error in conventional counters:
± 1 count ambiguity. This is inherent in all conventional counters because input signal and time base are not synchronized, thus causing a one count ambiguity in the events totalized.

For low frequencies, where relatively fen events can be totalized over practical gate times, this ambiguity contributes sig. nificant error. This is normally overcome by measuring period instead of frequency. The error is still there bus can be made insignificant by selecting a high counted frequency and utilizing the period aver. age mode.

Time base stablity. Since frequency measurements are accomplished by comparing the unknown to the counter's internal oscillator or time base, any time base error translates directly into a measurement error. Error sources are:

Long term stablity: The slow, but predictable, variation in average oscilla. ror frequency with time due to the quartz crystal "aging". Aging is cumulative, so it is necessary to periodically calibrate the oscillator. See Application Nore 52, available upon request.

A typical long term stability specifica. tion might read as $<5 \times 10^{-10} / \mathrm{dzy}$. With no calibration for 20 days, error could be 1×10^{-8}. Thus, with a 1 -second gate, the error in 100 MHz measured on an 8 -digit counter could be one count ($1 \times 10^{-8} \times$ $1 \times 10^{8}=1 \mathrm{~Hz}$).

Short term stablity. More properly called "fractional frequency deviation", is a measure of the amount of noise or instability that the oscillator exhibits. (For measuring short term stability, see Application Notes 52 and 116, available upon request.)

Oscillator noise has components at many frequencies, so short term stability varies with measurement time, generally getting smaller the longer the gate time. Thus, a specification without a statement of averaging or measurement time is meaningless. Moreover, a veraging times of 10 minutes or one hour are useless since such extreme measurement times are rare.

In general, Hewlett-Packard counters are specified for 1 saveraging times. In addition, however, the oscillators are selected so that their short term stabilities do not affect accuracy no matrer what gate time is used.

Llne voltage and temperature. Are self-explanatory specifications. The total inaccuracy due to the time base is the sum of long term, short term, line voltage and temperature etrors.

Trigger error. Trigger esror arises from noise on the gate-control signal that causes the gate to open and close at incorrect times. Since significant trigger error can occur only when an external signal controls the gate, this error occurs in period measurements.

For a $40 \mathrm{~dB} 5 / \mathrm{N}$ sigoal, the trigger error in a period measurement is:

$$
\frac{3 \times 10^{-3}}{n} \times \frac{e_{s}}{\hat{e}_{i \Omega}}
$$

where $n=$ number of periods averaged

$$
e_{s}=\text { counter sensitivity }
$$

$$
e_{\text {In }}^{s}=\text { inpur signal magnitude }
$$

This indicares that trigger error is only
a factor for noisy, low frequency signals where n is small.

For frequency measurements the general accuracy statement is:
± 1 count \pm time base stability (1) while for period measurements it is:
± 1 count ${ }^{(z)} \pm$ time base stability $=$ trigger error.

Figure 2. Ta be counted input signal must cross both hysteresis levels of the input Schmitt Trigger.

Input considerations

A counter's input circuir may be characterized by means of sensitivity, trigger level, ac/de coupling, and input imped. ance.

Sensitivity means the minimum countable signal level. The amplifer-Schmitt trigger input circuit determines the sensitivity, since the signal applied to the Schmitt trigger must cross both its upper and lower hysteresis limits to produce an output. See Fig. (2).

The two hysteresis levels are usually located symmetrically about ground to conform to the usual situation of mea. suring a CW signal with no de content. DC content is removed in the counter's ac coupling mode. If the input is a pulse train, however, the trigger level control must be used to shift the hysteresis levels out of the preset position to a position either above or below ground. see Fig. (3).

The input impedance of most Hewlett. Packard counters is either sos or $1 \mathrm{M} \Omega$. A $1 \mathrm{M} \Omega$ input is provided for most direct

1. See under time base speciflcations for short term, long term. temperature and line voltage stablity.
2. Relers to the frequency of the counted clock (i.e. the displayed count).

Figure 3. To enable a count on these waveforms the triges leval control must be out of PRESET to shift the hysteresis positive (upper waveform) or negatlve (lower woveform).
reading counters, since for frequencies up to 250 MHz this is the more versatile, avoiding loading the source connected to the counter. Above 250 MHz , however. the inherent shunt capacity of a $1 \mathrm{M} \Omega$ input is severely limiting; then, a marched 50Ω input impedance is offered. Since most high frequency and microwave devices operate in a 50Ω environ. ment, the prescaler and micronrave plugins and counters (see below) provide a 50Ω input impedance.

lncreasing the frequency range

The direct counting range of the conventional Hewlett-Packard counters described so far range from 10 MHz (5300 A) to 150 MHz ($5248 \mathrm{~L}, \mathrm{M}$). Sev. eral techniques can increase this range:

Prescaling is accomplished by placing a divider between the Schmitr rigger of Figure (1) and the main gate. If the division factor is N, the gate time is extended by the same factor to ensure a correct readout. Hewlett-Packard manufactures a number of prescalers: the 50 MHz 5302 A and 500 MHz 5303A plug. ons to the 5300 A , the 350 MHz 5252 A and 200 MHz 5258 A prescaler plug-ins to the 5245 Series counters, and the 5327 line of counters where a 550 MHz prescaler is built into the mainframe.

Operating a prescaling counter is idenrical to a direct reading counter. The user is rarely arvare thar the signal is being prescaled; it just takes somewhat longer to obtain the same resolution as a direct counter.

Heterodyne conversion is the most accurate method of measuring high frequency or microwave signals. In a given measurement time it provides the same resolution of the conventional direct counting frequency counter.

Heterodyne converters simply down convert the unknown frequency f_{x} by mixing with an accurately known frequency f_{a}, such that the difference f_{d}, is within the counter's range. See Fig. (4). The frequency f_{s} is selected by first multiplying the time base to a convenient frequency f_{1}, (usually the maximum direst frequency of the counter), and then passing this signal through a harmonic generator, The appropriate harmonic $\mathrm{N} f_{1}=\epsilon_{a}$ (N is an integer) is selected

Figura 4. Basic operation of a heterodyne converter.
by the tuning cavity and passed to the mixer. The cavity is operated from a front panel control calibrated to read the frequency f_{a} directly. The difference frequency $\left(f_{x}-f_{a}\right)=f_{d}$ is amplified and measured by the counter. To the counter reading the operator adds the front panel control setting f_{a} to obrain the final answer f_{x}. The tuning meter of Figure (4) indicates when the inknown frequency has been located.

While the heterodyne converter is broad band, it is not as broad band as the transfer oscillator (see below). The band limiting culprit is the mechanical tuning cavity. The range from 150 MHz to 18 GHz is covered by Hewlett-Packard with three such heterodyae converters, the $150 \mathrm{MHz}-3 \mathrm{GHz} 5254 \mathrm{C}$, the 3 GHz 12.4 GHz 5255 A and the $8 \mathrm{GHz}-18 \mathrm{GHz}$ 5256A. In addition, the 50.500 MHz 5253B gives 500 MHz operation with the 5245L. All these converters are plug-ins to the high performance 5245 Series of counters.

Extremely broad band microwave frequency measurements can be made with the TRANSPER OSCILLATOR. Accu. racy, however, cannot equal the hererodyne converter's.

The transfer oscillator principle is based on the property of harmonic mixing, that is: if f_{x} is the unknown input to a mixer and $f_{\text {LO }}^{x}$ is the local oscillator, the mixer will produce an outpur $f_{0}=$ $f_{x}-N f_{\text {Lo }}$ where N is an integer. The mixer frequency response determines transfer oscillator frequency range and the extremely fast sampler in the HP 5257A Transfer Oscillator gives broad band measurements from 50 MHz to 18 GHz . The relative measurement accuracy is the same as that of the local oscillator which cannot match the hererodyne converter's crystal derived reference frequency.

The 5257A block diagram is in Figure (5). To operate, the user simply tunes the local oscillator for phase lock at zero beat (i.e. $\mathrm{f}_{\mathrm{x}}=\mathrm{Nf}_{\mathrm{LO}}$) as indicated by a frons panel meter. The local oscillator frequency is then measured by the

Figure 5. Basic operation of a transter oscillator.
counter. To obtain a direct reading of the microwave frequency f_{x}, the 5257 A is provided with thumbwheel switches, which extend the gate time of the counter by N . If f_{x} is completely unknown, so too is N ; however, a simple technique is described in the S257A Op. erating Manual for determining N .

By opening the phase lock loop (via front panel switch), the 5257A Transfer Oscillator can also measure fin deviation and the frequency of a pulsed RF signal as described fully in the s257A Operating Manual.

The 5257 A is a plug-in to the 5245 Series of plug-in counters and contributes considerably to the measurement power and versatility of this line of mainframes.

5340A Microwave Frequency Counter is an extension of the manual transfer oscillator described. Just introduced, the 5340 A is a state of the art product in every way. It is basically an automatic transfer oscillator that allows completely automatic frequency measurements from de to 18 GHz viz a single input. In addition, it has high sensitivity and a very short acquisition time. Full derails on operation will be published in a 1972 issue of the Hewlett-Packard Journal.

Time interval

In addition to the measurement de. scribed earlies, the conventional counter lends itself to measuring time intervals. Applications are many and growing and include laser and radar ranging, integrated circuit rise, fall and delay time
and nuclear time of fight measurements, to name but a few.

Hewlett-Packard manufactures a number of counters offering a wide range of time interval capability. Single shot (a single pulse) time interval resolution as good as 1μ s to 100 ps can be obtained.

The basics of time interval measurements

Figure (6) illustrates the key elements of a time interval meter. The main gate is controlled by two independent inputs, the START input or channel and the STOP channel. When an external signal is applied to the start input, the main gate is opened and the DCA's accumulate clock pulses derived from the internal reference oscillator. When a stop signal occurs, the main gate closes and the accumulated count in the DCA's represents the time between the occurrence of start and stop signals.

Figure 7. Moasuring the rise time t_{8} by ad. justing the trigger levels to the 10% and 90% polnts of the input amplituda.

The frequency of the counted clock determines measurement resolution, (e.g. a 10 MHz clock provides 100 nsec resolution). Obviously, the input amplifier/ trigger and the main gate must operate at speeds consistent with the clock frequency, for otherwise the instrument's resolution would be meaningless. Present state of the art limits resolution to about 10 nsec; however, several Hewlett-Packard counters utilizing special rechniques described below offer substantialiy better resolution than this.

figure 6. The basic elements of a time interval meter.

Time internal-A two dimensional problem

The dimensionability of time interval may be described by the simple example in Fig. (7): measuring signal rise time. The time interval meter must generate a start signal at the 10% amplitude point of the input signal and generate a stop signal at the 90% point. Inherent in all time interval measurements therefore are two dimensions, one of amplitude, the other of time.

To take care of the amplitude problem most time intervai meters include adjustable trigger level controls for both channels. Wịth the trigger level set at a certain voltage V_{1}, the channel produces an output pulse, which is applied to the main gate. when the input level reaches that voltage, V_{2}. In addition each channel includes slope controls so that triggering can be obrained on either the positive or negative slope of the input signal.

Thus, the input circuits of a time in. terval meter must of necessity be more sophisticated than that of a frequency input to take care of the extra dimension added to the problem. The differences may be summarized as:
(i) two independent inpur channels, one for start, the other for stop: that may be commoned right at the input so that measurments such as the rise time of a single input signal can be measured.
(ii) trigger levels on each channel that can be adjusted over a wide amplitude range (dynamic ranges of $30: 1$ are typical).
(iii) slope controls for each channel so that triggering can be effected at any point on the input signal within the dynamic fange of the input.

Measuring trigger level

In days gone by when resolutions of less than $1 \mu \mathrm{sec}$ were all that was required, trigger level determination was satisfactorily accomplished by the oscilloscope intensification scheme. Signals derived from the start and stop channels were routed through the time interval meter to the Z axis modulation of an oscilloscope. With the input signal displayed on the oscilloscope, the poincs at which triggering occurred were cridenced by intensified dots. With today's resolutions of 10 nsec or berter, the inherent delays of this method cause it to be useless.

The best way of determining trigger level is to actually measure the voliage at which the trigger is set. The HP $5360 \mathrm{~A} / 5379 \mathrm{~A}$, which can measure single shot events to 100 picoseconds, provide two jacks on the front panel of the 5379 A from which the voltage settings of the tho trigger levels can be monitored. The HP $53268 / 5327 B$ Universal Counters go even farther, providing an
internal DVM. The DVM also makes general purpose voltage measurements.

Measurement accuracy

The accuracy statement for time interval usually reads as: ± 1 count \pm trigger error \pm time base stability.

The same comments apply for time base stability in time interval and frequency measurements. Trigger error is rarely a factor since time interval measurements are usually made on relatively fast pulses. The \pm ? count (which refers to the clock frequency) is again the dominant factor.

Not included in the usual accuracy statement, but nevertheless extremely im. portant, is trigger level settability. The importance of this is that errors in poorly set trigger levels can swamp any and all of the factors described above.

Increasing the resolution

Hewlett-Packard pioneered two ways of increasing the resolution of time in. terval measurement over and above that derived from the basic clock:

1. TIme Interval averaging: This technique is based on the fact that if the ± 1 count error is rruly zandom it can be reduced by averaging a number of measurements. The words "truly random" are significant. For time interval averag. ing to work the time interval must (i) be reperitive and (ii) have a repetition frequency which is asynchronous to the instrument's clock.

Under these conditions the resolution of the meassurement is:

$$
\frac{ \pm 1 \text { count }}{\sqrt{\mathrm{N}}}
$$

where $N=$ no. of time intervals aver. aged.

With averaging, resolution of a time interval measurement is limited only by the noise inherent in the instruments. The HP 5326/27 provide a resolution of better than 90 picoseconds utilizing this technique.

This is not the whole story, however, since the averaging described to date suffers one severe limitation: namely, the minimum measurable time interval remains at the period of the clock. This limitation is removed in the HP 5326/27

Figure 8. Synchronizer operation with time interval averaging.

Series of counters, by unique circuits known as synchronizers.

The Synchronizers (available only in HP 5326/27 counters at this time) op. erate as in Figure (8). The top waveshape shows a reperitive time interval which is asynchronous to the square wave clock. When these signals are applied to the main gate, an output similar to the third waveform results. Note that much of this output results in transitions of shorter duration than the clock pulses. DCA's designed to count at the clock frequency dislike accepting pulses of shorter duration than the clock. The counts accumulated in the DCA's will therefore be those shown in the fourth trace. Since the rime interval to be measured is slightly greater than the clock period, the fourth waveshape shows that the averaged answer will be in error, having been biased low because the DCA's require a full clock pulse to be counted.

This problem is alleviated by the syochronizers which are designed to detect leading edges of the clock pulses that occur while the gate is open. The wave. shape applied to the DCA's, when synchronizers are used, is shown by the fifth waveform. The leading edges are detected and reconstructed, such that the pulses applied to the DCA's are of the same duration as the clock.

Synchronizers are a necessary part of time interval averaging; without them the averaged answer is biased to a value less than the true average. In addition, it may easily be seen that with synchronizers involved, time intervals of much less than the period of the clock can be

Figure 9. Time intervals measured by 5360A Computing Counter.
measured. The HP 3326/27 Counters utilize this technique to measure time intervals as small as 150 picoseconds When averaged, even though the clock period is 100 nsec .
2. Interpolation: In interpolation the inherent ± 1 count ambiguity is measured
and thereby removed. See Figure (9). The time interval T can be written as $T=T_{0}+T_{1}-T_{2}$ where T_{0} is the time indicated by count. ing the basic clock frequency and T_{2}, T_{2} are the inherent time ambiguities between the clock and the start and stop pulses respectively.

The start interpolator charges a capacitor for the time T_{1} and then discharges ir for a duration 1000 times longer. During the discharge time the clock is again counted resulting in N_{1} counts. The stop interpolator performs in exactly the same manner, resulting in N_{2} counts. Coincidentally, the time T_{0} is measured in the conventional manner resulting in N_{o} counts. It is easily seen that the time T is represented by the simple formula

$$
T=1000 N_{0}+N_{1}-N_{2}
$$

The resolution of the measurement has been increased 1000 times by interpolation. The system behaves exactly as if the counted clock were 1000 times faster. There is no limitation on the input, and events which occur only once can readily be measured. Interpolation does require arithmetic capability in the instrument; however, this can be put to good use in many ways. One is that it allows zero time interval (coincidence) to be measured and even negative time interval. Thus, not only magnitude but sign or which event occurred first can be determined.
The HP 5360A Computing Counter System utilizes exactly this scheme. The counred clock is 10 MHz but the instrument behaves exactly as if it were 10 GHz , providing 100 pico second resolu. tion.

Period counting

The measurement of the period of a signal rather than its frequency offers several distinct advantages. Until recently, however, the power of period counting could nor be utilized because of one overriding disadvantage; the displayed answer is in terms of the period of the signal sather than its frequency. With the advent of the modern integrated circuir this disadvantage is removed, since it is now practical to compute and display the frequency from the period information contained after the measurement. The HP 3360 A Computing Counter is a period measuring instrument, and with its full arithmetic capability all the advantages of period count. ing become a reality. These advantages are descrihed below.

Accuracy

The frequency content of a sinusoidal signal is contained in just one cycle. In the frequency counting mode, one cycle results in one count. Conversely, with period counting, the number of counts depends solely on how high the fre.
quency of the counted clock is in relation to the input frequency. Therefore, in any given measurement time, period counting has greater resolving power than frequency counting provided the frequency measured is less than the counted clock. The preceding section showed that the HP 5360 A has the resolving porer equiv. alent to a 10 GHz clock. Interpolation provides an accuracy five times less than the resolution (2 GHz effective clock) yet this is easily sufficient to make the 3360A the most accurate frequency measuring device available. Moreover, as Figure (10) shows, this accuracy is inde-

Figure 10. Comparing the meosuremant accuracy of the HP 5360A Computing Counter to all conventional counters.
pendent of frequeacy, in contrast to the conventional counter. A one second measurment of a 1 MHz signal, for example, provides an accuracy of 1 Hz with any conventional frequeacy counter, whereas the HP 5360 A accuracy is 0.0005 Hz ! The HP 5323A is a low frequency period counting instrument and its accuracy is also summarized on Figure (10).

Figure 11. Direct measurement of pulsed AF by external triggering.

Triggered measurements

With period counting, the gate and input signal are synchronous, enabling triggered measurements on pulsed RF signals. See Figure (11). By triggering the HP 5360A on then a burst is present, a direct measurement of the pulsed sig. nal can be made to counter accuracy.
This ability to trigger the beginning of a measurement at any point in real time implies a whole class of signals can now be measured. Using the 5245 Series heterodyne converters, the HP 5360A can measure pulsed RF signals from de to 18 GHz . The ability to measure at any point in the burst enables the frequency profile of pulse compression, frequency agile and Doppler radar systems to be measured. In addition to these radar oriented signals, frequency shift keyed,
frequency modulated and transient sig. Qals can also be measured.
Most conventional counters do nor provide this capability; the gate closure is a function of the time base. By preserting the DDA's to 9 (e.g. HP 5326/ 27), however, the gate can be closed via external control to enable burst measure. ments to be made. However, the resolving capability of such instruments limit their application in the areas mentioned above.

The computing counter systern

The measurement capability of the HP 5360A described above requires of the instrument the arithmetic capability to add, subtract, multiply and divide. This aritbmetic capability has been made available to the user via several programming accessories. This allows the user to program the system to solve equations, where measurements are the variables, in real time.

The arithmetic capability of the HP 5360 A System makes it a computerized instrumentation system, where the instru. ment performs the measurements and the resulcant raw data is reduced to a final form by the computer. Precision measurement plus computation is the key feature of the HP S360A System, precise, total solutions to complex problems the resultant benefit. General application areas for the total system include data reduetion, statistical analysis and process control. For additional details refer to the counter selection guide.

The table below shows arithmetic opera. tions accessible by external programs and is an indication of the computing power of this unique instrument. Even greater computing power is expected to be acailable in accessories now under development.

[^32]Counter Selection Guide

Classification	Description	Frequency	Functions*	Time Base	Price	Page
5300 Series Economic Portable	Plug-on versatility-select appropriate plug-on to meet your needs. Battery operation option for use where standard power outlets not available.	to 500 MHz	$\begin{aligned} & \text { F, P, MPA, T.I., } \\ & \text { T. R. } \end{aligned}$	$3 \times 10^{-7} / \mathrm{mo}$	$\begin{aligned} & \text { from } \\ & \$ 520 \end{aligned}$	218
5326/27 Series Universal Counters	A family of six counters providing universal measurement versatility, includes sub nanosecond time interval measurements vía averaging, a built-in integrating DVM and cw or burst frequency measurements.	to 550 MHz	F, P, MPA, T.I., T.l. average, T , R, V	optional up to $5 \times 10^{-10} / \text { day }$	$\begin{aligned} & \text { from } \\ & \$ 950 \end{aligned}$	222
5245 Series High Performance Plug-ín	A family of 5 mainframes and 12 plug-ins provide unmatched versatility. Plug-ins provide $18 \mathrm{GHz}, 10$ nsec time interval, voltage and preset capability.	to 150 MHz mainframe, 18 GHz with plug-ins	$\begin{aligned} & \text { F, P, MPA, T.I., } \\ & T, R, V \end{aligned}$	optional up to $5 \times 10^{-10} / \text { day }$	from $\$ 2000$	213
5340 Microwave Counter	Ultra broadband, high sensitivity microwave frequency counter. 1 Hz to 18 GHz via single input.	18 GHz	F	optianal up to 5×10^{-10} day	\$5300	228
5360 Computing Systems	Precision measurement plus computation. Most accurate frequency measuring device available. Time interval to 100 psec. Provides solutions that formerly required the use of a computerized instrumentation system.	320 MHz ; to 18 GHz with 5245 plug-ins	F, P, MPA, r.I, and other functions derived from real time arithmetic capability	$5 \times 10^{-10} /$ day	$\begin{aligned} & \text { from } \\ & \$ 6500 \end{aligned}$	230
Miscellaneous and Industrial	5210A, B 10 MHz Analog Frequency Meter and FM Discriminator 5323A Automatic High Resolution 20 MHz Frequency Counter 5332 B 2 MHz Present Controller/Counter 5330A/B Programmable Preset Time-Base and Preset Limit Counter				$\begin{aligned} & \$ 825 \\ & \$ 1595 \\ & \$ 1300 \\ & \$ 1250 \end{aligned}$	$\begin{aligned} & 234 \\ & 234 \\ & 233 \\ & 233 \end{aligned}$

- highest performance in general purpose counters
- wide selection of plug-ins provide unmatched versatility
- extremely high reliability proven from over forty million hours of field operation

Hewlett-Packard 5245L plug-in counter the industry standard for high performance counters

The Hewlett-Packard 5245L is representative of the highest performance altainable in a general purpose counter. This instrument, which is the heart of the 5245 series, has become the industry standard . . . For instruments of its type, there are more 5245 L counters in operation today than all the rest put together.

The 5245 series consists of a family of mainframes (described on P. 215) and a series of plag-ins (see Pages 216, 217). The plug:ins provide frequency measurement to 18 GHz , high sensitivity, time interval and preset capability. The wide choice of mainframes and plug-ins means that virtually any measurement task performable by counters can be accomplished by appropriate selection within this family.

The following is a description of the 5245 L mainframe including salient specifications. The other mainframes in the family are similar to the 5245 L and the differences are delineated on Page 215. Brief descriptions of the available plug-ins are given on Pages 216, 217. The reader is referred to the Frequency and Time Measuring Instrumenta. tion tutorial on Page 208 for additional information on plug-in operation, and the 5245 series data sheet for complete details and specifications on all mainframes and plugins.

5245L Mainframe

The 5245L mainframe has the capability to measure frequency, period, multiple period average, ratio and multiple ratio. It can also be used to scale or divide a frequency in powers of 10 and to totalize random or periodic events. The basic counter offers a counting rate of 50 MHz with a 8 digit resolution.

Time Base: The internal time base of the 5245 L is of sufficient accuracy and stability to serve as a secondary stan.
dard. Even so, a higher quality time base is offered (M type version). Specifications for all 5245 series time bases are giver on Page 215.

Basic Operation: For frequency measurements gate times from $1 \mu \mathrm{sec}$ to 10 seconds may be selected via the front panel TIME BASE switch. The FUNCTION switch enables period and period average to 10^{5} to be performed. This capability makes possible accurate frequency determination at low and intermediate frequencies.

Basic sensitivity is 100 mV rms but for higher level signals the attenuator (SENSITIVITY) can be used. A variable trigger level (LEVEL) is also provided to enable counting of positive or negative going pulses. In counting a sinusoidal signal, the LEVEL switch is put in the PRESET position. The input signal may be ac or dc coupied, the former being used to remove the dc content of a signal, the latter for counting pulses. The SAMPLE RATE control varies the rate at which measurements are taken from 5 per second to infinite in the HOLD position.

A four line binary-coded-decimal (BCD) digital output is provided from the rear of the counter. This can be used to obtain permanent printed records of measurements via digital recorders such as the HP 562A, 5050B, and 5055A. For providing strip chart plots of continuously varying phe. nomena, the HP 580A, 581A digital-analog converters can be used.

For use in systems, an Option (H65) is provided that allows complete remote control of all front panel controls.

The versatility of the mainframes and plug-ins notwithstanding, a number of options are offered on the mainframes. The reader is referred to the 5245 series data sheet for full descriptions.

Specifications 5245L

Frequency measurements

Range: de coupled, 0 to 50 MHz ; ac coupled, 25 Hz to 50 MHz.
Gate time: $1 \mu \mathrm{~s}$ to 10 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Readout: kHz or MHz with positioned decomal point; units annunciator in line with digital display.
Shelf-check: counts 10 MHz for the gate time chosen.

Period average measurements

Range: Single Period \qquad 0 to 1 MHz
Multiple Period \qquad 0 to 300 kHz .
Periods averaged: I period to 10^{5} periods in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.
Readout: s , ms , or $\mu \mathrm{s}$, with positioned decimal point; units annunicator in line with digital display.
Self-check: checks operation from 1 period to 10^{5} periods.

Ratio measurements

Displays: $\left(\mathrm{f}_{1} / \mathrm{f}_{2}\right)$ times period multiplier; multiplier: 1-10".
Range: $F_{1}: 0$ to $50 \mathrm{MHz} . \mathrm{f}_{2}: 0$ to 1 MHz in single ratio, 0 to 300 kHz in multiple ratio; ratios averaged 1 to 10° in decade steps.
Sensitivity: 0.1 V rms, each input (max).
Accuracy: ± 1 count of $f_{1} \pm$ trigger error of $f_{2} . K_{2}$ is ap. plied to the decimal counters (enters "Ext." jack on front panel); \boldsymbol{f}_{2} is applied to decade dividers (enters Signal Input jack).
Readout: dimensionless; decimal point positioned for number of periods averaged.
Salf-check: Period Average Shelf-check applies.

Scaling

Frequency range: 0 to 50 MHz .
Factor: by decades up to $10^{\prime \prime}$, switch slected on rear panel. Input: front panel, Signal Input jack.
Output: in place of time base output frequencies.

General

Display: 8 digits in-line; $99,999,999$ maximum display.
Display storage: holds reading betrieen samples; rear panel swirch overrides storage.
Sample rate: time following a gate closing during which the gate may not be reopened is variable from $<0.2 \mathrm{~s}$ to 5 s in Frequency mode, independent of gate time; display can be held indefinitely.

Signal Input

Sensitivity: 100 mV mms .
Coupling: $a c$ or $d c$, separate $B N C$ connectors.
Impedance: $1 \mathrm{M} \cap$ in parallel with approx. 25 pF , all ranges.
Artenuation: step attenuator (SENSITIVITY switch) provides nominal sensitivities of $0.1,1$, and 10 V rms .
Tilgger level adjustment: front panel control has $\pm 0.3 \mathrm{~V}$ trigger level range on 0.1 V position, $\pm 3 \mathrm{~V}$ range on 1 V position, $\pm 30 \mathrm{~V}$ range on 10 V position. A PRESET position automatically centers crigger level at 0 V .
Overload protection: diodes protect input circuit for up to $120 \mathrm{~V} \mathrm{mms}(<500 \mathrm{~Hz})$ on 0.1 V range, 240 V rms on 1 V range, 500 V rms on 10 V range. Input resistance for overioad conditions (input amplitude $>$ ten times SENSITIVITY) is $100 \mathrm{k} \Omega$ on 0.1 V range, and is approximately $1 \mathrm{M} \Omega$ on other ranges.
Puise measurements; front panel TRIGGER LEVEL adjustment allows counting positive or negative pulses.

External input (selected by front panel Time Base switch):
Maximum sensitivity: 100 mV ms .
Impedance: 1 Mn , approx. 20 pF , dc coupled.
Overload: diodes protect input circuit up to 120 V rms ($<500 \mathrm{~Hz}$).
Digital output: 4-line BCD 4-2-2-1, " 1 " state positive; includes decima! point and measurement unit. " 0 " STATE LEVEL: $-8 \mathrm{~V} . " 1 "$ STATE LEVEL: +18 V .
Impedance: $100 \mathrm{k} \Omega$, each line.
BCD reference levels: approximately $+9.5 \mathrm{~V}, 350 \Omega$ source; approximately $-1 \mathrm{~V}, 100 \Omega$ source.
Print command: +13 V to 0 V step; dc coupled.
Hold-ott requirement: +15 V min., +25 V max. from chassis group ($1000 n$ source).
Cable connector: Amphenol 50-pin 57-30500-375, HP Part No. 1251.0086, 1 required
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power supply: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{Mz} ; 95$ watts.
Weight: net, $32 \mathrm{lbs}(14,4 \mathrm{~kg}$) with blank plug-in panel; shipping, $40 \mathrm{lbs}(18,2 \mathrm{~kg})$.
Connectors: BNC (except remote progran) and BCD out).
Accessories furnished: 10503 A Cable, $4 \mathrm{ft}(120 \mathrm{~cm})$ long, male BNC connectors. Detachable power cord $71 / 2 \mathrm{ft}$ (200 cm) long, NEMA plug. Circuit Board Extender, rack mount conversion parts.
Dimensions: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ side, $163 / 8^{\prime \prime}$ deep (133×425 $\times 416 \mathrm{~mm}$).

Frequency ranga: de to 50 MHz .
Mainframe measurement functions: frequency, period, period average, ratio, scaling.
Compatible plug-ins: all, see pages 216.217.
L and M versions: differ only in time base specification. See below. General specifications are on page 214.

Fraquency range: dc to 50 MHz .
Mainframe measurement functions: frequency only
Compatible plug-Ins: all except 5264A, see pages 216.217 .
Display: 6 digits, optionally expandable to 8.
Price: $\$ 2000$.
Frequency range: dc to 150 MHz .
Malnframe measurement functions: frequency, period, period average, ratio, scaling.
Compatible plug-Ins: all, see pages 216-217.
Price: 5248L, $\$ 3050$; $5248 \mathrm{M}, \$ 3775$.
I \& M versions differ only in time base specification, see below. Other than frequency range, specifications are essentially same as Model 5245L/M.

Time Base Specifications, 5245 Series

5245L, 5248L

Crystal frequency: 1 MHz .
Stability
Aging rate: <3 parts in 10° per 24 hours after 72 hours.
Short term: <2 parts in $10^{10} \mathrm{rms}$ with measurement averaging time of one second under constant environmental and line voltage conditions.
Temperature: <2 parts in 10^{10} per ${ }^{\circ} \mathrm{C}$ from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Line voltage $< \pm 5$ parts in 10^{10} for 10% change in line voltage from 115 V or 230 V rms.
Adjustment: fine frequency adjustment (range approximately $4 x$ 10^{-8}) and medium frequency adjusiment (range approximately $1 \times\left(0^{-\theta}\right)$ are available from the front panel through the plugein hole. Coarse frequency adjustment (range approximately 1×10^{-3}) is available at the rear of the inscrument.
Output irequencies
At rear panel: 0.1 Hz to 10 MHz in decade steps, selected by rear panel switch. Output is: 5 volts p -p rectangular wave with 1000 n source impedance.
At front panel: 0.1 Hz to 1 MHz in decade steps; available at "Ext." jack, selected by Time Base switch; stabilig' same as internal time base; 1 V peak-to-peak.
External standard frequency: $1 \mathrm{MHz}, 1 \mathrm{~V}$ rms into 1000』. Can be substituted for internal time base via rear panel EXT. STD. FREQ. connector.

5246L

Frequency: 1 MHz .
Stability
Aging rate: $<2 \times 10^{-}: /$month.
Temperature: $<2 \times 10^{-\circ}\left(+10^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Line voltage: $<1 \times 10^{-i} 115 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%$.
Output frequency: $1 \mathrm{MHz}>3 \mathrm{~V} \cdot \mathrm{p}$ into $1 \mathrm{k} \Omega$.
External input: 1 V rms inco 500Ω.

$5245 \mathrm{M}, 5248 \mathrm{M}$

Crystal frequency: 5 MHz
Stabilíty
Aging rate: < 5 parts in 10^{10} per 24 hours after warm-up.
Short term (rms fractional frequency deviation): better than 5 parts in 10^{71} for 1 second averaging time.
Temperature: <5 parss in $10^{11} /^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}(<2.5$ parts in 10° within the entire span of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$).
Line voltage: $< \pm 1$ part in 10^{-0} for 10% change in line voluge from 115 V or 230 V rms.
Load stability: typically $< \pm 2$ parts in 10^{11} for any of the fol. lowing loads: open, shorr, 50Ω resistive, 50Ω inductive, 50Ω capacitive.
Warm-up: for "of"" periods up to approximately 24 hours: 1 hour tupical to reach 5 parts in 10^{2} of the frequency that existed when tumed off. The 5 N.LHz crystal oscillator operates whenever the porver cord is connected.
Adjustment: fine frequency adjustment, range approx. 5×10^{-8}, 16 -turn control accessible through plug.in accessory comparment in front panel. Coarse frequency adjustment, range approx. 1 x 10^{-0}. 20 -turn control at rear panel.

Output frequencies

At rear panel: 5 MHz sine wave. 1 V rms into 50Ω. Available at all times whenever power line cord is energized, whether front panel power switch is ON or OFF.
At rear panel: 0.1 Hz to 10 MHz in decade steps; switch selected on rear panel; $s \mathrm{~V}$ p.p rectangular wave with 1000Ω source impedance at 1 MHz and lower; 1 V rms sine wave with 1000Ω source impedance only at 10 MHz .
At front panel: 0.1 Hz to 1 MHz in decade steps: asalable at "Ext." jack selected by Time Base switch; stability same as internal time base; 1 V peak-to-peak.
External standard frequency: 5 or $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms, into 1000Ω. Can be subscituted for intemal time base via rear panel EXT. STD. FREQ, connector.

5253B HETERODYNE CONVERTER

Frequency range: 50 MHz to 512 MHz .
Sensltivity: -13 dBm to +13 dBm .
input impedance: 500.
Price: $\$ 650$.

5254C HETERODYNE CONVERTER
Frequency range: 150 MHz to 3 GHz .
Sansit)vity; -13 dBm to +13 dBm Input impedance: 50 .
Auxiliary autput: $1 \mathrm{MHz}-50 \mathrm{MHz}$.
Price: $\$ 900$.

5255A HETERODYNE CONVERTER

Frequency range: 3 GHz to 12.4 GHz .
Sensltivity: -7 dBm to +10 dBm .
Input Impedance: son.
Auxillary Input: $1 \mathrm{MHz}-200 \mathrm{MHz}$ at 5 mV sensitivity.
Auxillary output: $1 \mathrm{MHz}-200 \mathrm{MHz}$.
Price: $\$ 2150$.

5256A HETEROOYNE CONVERTER
Sensitivity: -7 dBm to +10 dBm .
Input impedance: sors.
Auxiliary input: $1 \mathrm{MHz}-200 \mathrm{MHz}$ at 5 mV sensitivity.
Auxlliary output: $1 \mathrm{MHz}-200 \mathrm{MHz}$.
Price: $\$ 2250$.

5257A TRANSFER OSCILLATOR
Frequency range: 50 MHz to 18 GHz .
Input signal: CW, pulsed RF or FM modulated.
Sensítivity: -7 dBm .50 MHz to $15 \mathrm{GHz} ;-4 \mathrm{dBm}, 15 \mathrm{GHz}$, to 18 GHz
Input impedance: 50 .
APC lock range: $\pm 0.2 \%$ approx. of input frequency.
VFO stability: typically 1×10^{-7} per minute after 2 hours.
Price: $\$ 2400$

5265A DIGITAL VOLTMETER

Voltage ranges: $10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V full scale.
Resolution: $100 \mu \mathrm{~V}$
Accuracy: $\pm 0.1 \%$ of reading, $\pm 0.01 \%$ of full scale for readings $<1 / 10$ of full scale.
Sample rate: 5 per second.
Input resistance: 10.2 M ? on all ranges.
Nolse rejection: 30 dB at 60 Hz , increasing at 12 dB per octave.
Price: $\$ 800$.

ELECTRONIC COUNTERS

5267A TIME INTERVAL UNIT

Range: 100 nsec to $10^{8} \mathrm{sec}$ with $5248 \mathrm{~L} / \mathrm{M} ; 1 \mu \mathrm{sec}$ to $10^{8} \mathrm{sec}$ with $5245 \mathrm{~L} / \mathrm{M}$; 1 asec to $10^{\circ} \mathrm{sec}$ with 5246 L .
Resolution: 10 nsec with $5248 \mathrm{~L} / \mathrm{M}$ only; $0.1 \mu \mathrm{sec}$ orherwise.
Input sensitivily: 100 mV mms.
Input repetlition rate: 5 MHz , max.
input Impedance: I $\mathrm{M} \cap / 35 \mathrm{pF}$.
Markers: start, stop pulses available at rear of counter.
Price: \$475.

5262A TIME INTERVAL UNIT
Range: : $\mu \mathrm{sec}$ to $10^{8} \mathrm{sec}$ (to $10^{6} \mathrm{sec}$ with 5246 L).
Resolution: $0.1 \mu \mathrm{sec}$.
Input sensitivity: 100 mV RMS.
Input repetition rate: better than 2 MHz .
Input Impedance: from $10 \mathrm{~K} / 10 \mathrm{pF}$ at $x 0.1$ multiplier setting to $10 \mathrm{M} \Omega / 20 \mathrm{pF}$ at $\times 100$ setting.

5267A

5262A
Markers: start, stop pulses available at rear of counter.
Price: $\$ 350$.

5261A VIDEO AMPLIFIER

Bandwidts: 10 Hz to 50 MHz .
Input sensitlvity: 1 mV .
Input impedance: $1 \mathrm{M} \Omega / 1 \mathrm{sFF}$.
Auxiliary output: 40 dB gain max into $50 \Omega, 300 \mathrm{mV}$ rms max outpur undisrorted into $50 n$. Source impedance 50Ω.
Price: $\$ 500$.

5258A SENSITIVE PRESCALER

Bandwidth: : MHz to 200 MHz .
Input sensitivity: $1 \mathrm{mV}, 10 \mathrm{mV}, 200 \mathrm{mV}$ rms.
Input impedance: son.
Scaling factor: 4.
Video amp output: 30 dB gain max at 1 mV sensitivity setting. Price: $\$ 1000$.

5252A PRESCALER
Bandwidth: dc to 350 MHz .
Input sensitivily: 100 mV rms.
input Impedance: son.
Scalling factor: 2,4 and 8 .
Price: $\$ 885$.

5264A PRESET UNIT

Performs following basic functions:
(i) $\mathrm{N} \times$ frequency

5252A
$\left.\begin{array}{l}N \times \text { period } \\ \mathrm{N} \times \text { ratio }\end{array}\right\}$ measurements are made by mainframe
(ii) Counts N events where input is applied to AUX INPUT of 5264 A
(iii) Divides a frequency input applied to AUX INPUT by N .
Divided output available at f / N OUTPUT
Frequency range aux Input: 20 Hz to 100 kHz .
N range: 1 to 99,999 in integral steps.
Price: $\$ 82 \mathrm{~s}$.

5258A

FREQUENCY COUNTERS

 5300A Plug.On Family

(with 5210A Battery Pack)

Snap-together Modular Counter for Versatility and Non Obsolescence

5300A Measuring System

With the 5300A Measuring System, low cost counters reach new performance and versatility levels.

Features

10 MHz , 50 MHz , or 500 MHz frequency range
100 ns time interval tesolution
Autoranging
Unique time interval holdoff
Expandable through interchangeable modules
High accuracy
Battery operation
Compact and rugged
High reliability MOS/LSI circuitry and LED display
Designed for quick easy servicing
BCD outpur
Large scale integration and solid state display technology have produced a uniquely versatile and capable counter at a surprisingly low cost. Quick and easy to use, this counter does what is important-solves your measurement problems while saving you money. Versatility comes from modular construc-tion-take the counter mainframe and select the snap-onmodule that you need now: expand the capability later with more modules if and when you need them. Hewletr-Packard is engaged in an ongoing program to develop new modules to expand the capability of the 5300 A into other functional areas. An optional battery pack provides portable cord-free operation, eliminating power problems and ground loops. This is versatility that truly avoids obsolescence and optimizes your instrument dollars.

Unique benefits

The 5300 A offers you a portable precision frequency counter which will measure frequencies to 500 MHz and time intervals with 100 ns resolution. The 5300A also has autoranging. Autoranging enhances ease of operation by automatically selecting the correct gate time to fill the display. Any frequency within range of the $5301 \mathrm{~A}, 5302 \mathrm{~A}$, or 5304 A may be applied and the counter will select the correct gate time up to 1 sec for maximum resolution without exceeding the display range. On the 5302 A and 5304 A , autoranging is also provided for the Period Average function to select the number of periods to be averaged.
A unique feature of the 5304A Timer/Counter module is the time interval holdoff. The time interval holdoff feature has been added so that a fixed delay may be added between the start of the measurement and the enabling of the stop channel. Thus electrical pulses which occur between the events that are to be measured can be ignored: e.g., a relay closure time may be measured using the time interval holdoff to prevent false triggering on the relay bounce. The delay itself can be digitally measured by the 5304A (see 5304A specifications).

The 5300 A has been designed for easy servicing and minimum down time. The small number of components in the 5300 A allows problems to be easily traced to a functional block. Troubleshooting is also simplified by the modular construction. The 5300 A may be controlled through the connector which ties it to the modules, and a diagnostic routine will isolate problems for easy servicing. A service support package is available for this purpose (see accessories).
Features like these make the net cost of owning a 5300 A Measurement System less than that of conventional counters.

Actual Size

5300A Measurement System Mainframe Specifications

Mainfmme unit provides system with power, reference frequency, display, counting logic and timing conrol.

Time base
Crystal frequency: 10 MHz .
Stability
Aging rate: <3 parts in $10^{\circ} / \mathrm{mo}$.
Temperature: $< \pm 5$ pars in $10^{\circ}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$
Tyoically: $< \pm 2$ parts in $10^{4} .15^{\circ}$ to $40^{\circ} \mathrm{C}$.
Line voltage: $< \pm 1$ part in 10° for 10% line variation.
osclliator output: 10 A Hz , approximately I V sms at rear panel BNC, 100Ω source impedancce.
External input: 1 MHz to $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms ince 2000.

General

Dlsplay: 6 -digit solid state LED display (gallium arsenide phosphide light-emituing diodes) including decimal point and annunciator units. OVERFLOW: LED light indicates when display range is exceeded.
Display storage: holds reading between samples.
Sample rate: sample rate control adjusts the delay from the end of one measurement to the start of a new measurement. Variable from 50 ms to 5 seconds. HOLD position: display can be held indefinitely. HOLD input on rear panel connector also provides sample rate control or hold by contact closure to ground or TM type low level.
Reset: front panes pushbution switch resets all registers and initiates new measurement. Reset input by contact closure ro ground or TTL cype low level also available on rear panel connector.
Operating temperature: 0° 10 $50^{\circ} \mathrm{C}$.
Power requirements: 115 or 230 volts $\pm 10 \%$, 50 is 400 Hz , 25 VA maximum (depends on snâpon module). Mainframe power nominally s watts.
Battery operation: with 5310A rechargeable battery pack (see 5310A specifications).
Digital output: digital serial, 4 -bit BCD parallel arailable at rear panel connector:
Code: 4. Tine 1-2.4.8 BCD, "1" state low, TTL type logic levels. Decimal point: decimal point code (Binary "1111") 2ut/s. matically inserted at correct digit position.
Print command: positive step, TTL output.

Holdoff: contact closure to ground or TTL low Ievel, inhibits start of new measurement cycle.
Connector: 20 -pin PC connector. Mating connector Viking 2VH10/1 JN or equivalent.
Parallel data output: available with printer interface, see 10533 A specifications.
Weight: net, $31 / 3 \mathrm{lbs}(1,5 \mathrm{~kg}$); shipping, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$.
Accessories availabla
Digital recorder interface: see 10533A specifications.
Service support package: contains an interface card and 4 diagnostic cards for easy troubleshooting of the 5300A, accessory 10548A. Price: $\$ 90$.
Rack mount kit: a rack mount is availabie, part number: 10573 A single, 10574 A double. Price: $\$ 35$.
Leather carrying case: holds 5300 A , snap-on module, and the 5310A battery pack. Accessory 18019A. Price: $\$ 25$.
Dimensions (with snap-on module): height, $31 / 2^{\prime \prime}(89 \mathrm{~mm}$). width, $61 / 4^{\prime \prime}(160 \mathrm{~nm})$, depth, $93 / 4^{\prime \prime}(248 \mathrm{~mm})$.
Price: \$395.

Specifications, 10533A Recorder Interface

The 10533A accessory provides an interface between the 5300A measurement system mainframe and a standard parallei-input recorder such as the HP 5055A. The interface module provides conversinn from the 5300 a serial data nutput to a standard parallet format,
Output format: 10 parallel digits: 6 dara, 1 decimal point, 1 overflow, 1 exponent and 1 exponent sign.
Code: 4 -line $1-2.4 .8 \mathrm{BCD}$, " 1 " state Iow, TTL levels.
Decimal point: floating decimal point automaticaliy inserted at correct digit position. Coded " 1111 " ("*" on standard HP SOSSA print wheels). Internal jumper wire removes decimal point from data format if desired.
Overflow: coded "1111" ("a") prinied in first printer column when 5300 A overflow light is on.
Exponent: $\pm 0, \pm 3, \pm 6$ corresponding with 5300 A measurement units.
Print command: negative step, TTLL levels.
Inhibit input: +2.0 V or higher prevents the 5300 A from recycling.
Power requirements: 100 mA at 5 volts, provided by 5300 A mainframe.
Price: $\$ 150$.

External gate: gate signal by contact closure to ground or TTL low.

General

Check: counts internal 10 MHz reference frequency.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300 A mainframe, nominally $\&$ watts.
Welght: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg}$); shipping, $31 / 4 \mathrm{ibs}(1,5 \mathrm{~kg})$.
Dimensions: see 5,3004 Mainframe.
Price: $\$ 125$.

5302A 50 MHz Universal Counter Module
 Input channets A and B

Range: channel $\mathrm{A}: 10 \mathrm{~Hz}$ to 50 MHz ; channel $\mathrm{B}: 10 \mathrm{~Hz}$ to 10 MHz .
Sensitivity (min): 25 mV rms sine wave 50 Hz to 1 MHz .50 mV rms sine wave 10 Hz to $10 \mathrm{MHz}, 100 \mathrm{mV}$ rms sine wave at 50 MHz .150 mV p.p pulse at minimum pulse width, 50 ns . Sensitivity variable to 2.5 V rms.
Impedance: 1 Na shunted by less than 30 pF .
Overload protection: 500 V (dc + peak ac). 250 V rms , de to $400 \mathrm{~Hz}, 10 \mathrm{~V}$ ims above 10 MHz .
Trigger level: selectable positive, negative, or zerovolis.
Slope: automatically switched to trigger on positive slope for positive pulse and negative slope for negative pulse. Positive slope for sinusoidal inputs.
Marker outputs: rear panel BNC, TTL low level while gate is open.

Frequancy

Range: channel A: 10 Hz to 50 MHz , presealed by 10 ; channel B : 10 Hz to 10 MHz .
Gate times: manually selected $0.1,1$, or 10 seconds. ALTO position selects gate time to 1 second for maximum resolution.
Accuracy: ± 1 count $亠$ time base accuracy.

Time Interval

Range: 500 nsec to 1000 seconds.
Input: channels A and B.
Resolution: 100 ns to 1 ms in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.*

Period

Range: 10 Hz co 1 MHz .
Input; channel B.

General

Check: counts internal 10 NHz reference frequency.
Oparating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300A mainframe, nominally 10 watts.
Weight: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Dimensions: see sj00A Mainframe.
Price: $\$ 250$.

5303A 500 MHz Frequency Counter Module

Range: ds to 500 MHz , prescaled by 100 ; de to 50 MHz , prescaled by 10 .
Sensitivity (min): 100 mV ims sine wave.
Impedance: 50Ω.
Overload protection: 5 V rms.
Input channel B
Range: 10 Hz to 50 MHz , préscaled by $10 ; 10 \mathrm{~Hz}$ to 10 MHz . direa.
Sensitivity (min): 50 mV mos sine wave 20 Hz to $10 \mathrm{MHz}, 100$ mV rms sine wave 10 Hz to 50 MHz .150 mV p-p pulse at minimum pulse widh, 20 ns (70 ns on 10 MHz range). Sensitivity variable to 2.5 V x atienuator seting.
Attenuator: X 1 or X 25 .
Impedance: 1 MN shunced by less than 40 pF .
Overloed protection: 250 V mms 10 Hz to 10 kHz .10 V rms above 10 M Hz .
Trigger level: selectable positice, negative, or zero volts.

Frequency measurement

Gate times: 0.1 . 1 , or 10 seconds.
Aceuracy: ± 1 digit \pm time base accuracy.

General

Check: counts internal 10 MHz reference frequency.
Operating tamperature: 0^{3} to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300A mainframe, nominally 10 watls.
Weight: net, $2 \mathrm{ibs}(0,9 \mathrm{~kg})$; shipping, $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Dimensions: see 5300 A Mainframe.
Price: $\$ 750$.

- For any waveshage. trigger error is less than $=\frac{0.005 \mu \mathrm{~s}}{\text { signal Slope (v/ } \mu \mathrm{s})}$
- Trigger errer is less than $=0.3 \%$ of one period \div perilods averazed tor signais with 40 ' 88 or better signal-to-nolse ratio.

Specifications, 5304A Timer/Counter Module Input Channels A and \mathbf{B}

Range: de coupled; 0 to 10 MHz . AC coupled; 100 Hz to 10 MHz . Sensitivity (min): 25 mV ms sine wave to 1 MHz .50 mV ms sine wave to $10 \mathrm{MHz}, 150 \mathrm{mV}$ p-p pulse at minimum pulse width. 40 nsec, Sensitivity can be decreased by 10 or 100 times using ATTENUATOR swich.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 30 pF .
Overload protection: 250 V ams on X 10 and X100 attenuator setrings. On X 1 attenuator setting 120 V rms up to 1 kHz , decreasing to 10 V rms at 10 MHz .
Trlgger level: PRESET position centers triggering about 0 volts, or continuously variable over the range of -1 V to +1 V rimes alleruator secting.
Slope: independent selection of triggering on positive or negative slope.
Channel inputs: common or separate lines.
Gate output: rear panel BNC. TTL. Iow level while gate is open.

Time interval

Range: 500 ns to $10^{\circ} \mathrm{sec}$.
Input: channels \mathbf{A} and B; can be common or separate.
Resolution: 100 ns to 10 ms in decade steps.
Accuracy: ± 1 count \pm time base accuracy \ddagger trigger error:*
Time Interval holdoff: froni panel concentric knob which inserts variable delay of approximately $100 \mu s$ to 100 ms between START (channel A) and enabling of STOP (channel B); may be disabled. Elecrical inputs during delay time are ignored. Delay may be digitally measured in CHECK and TIME INTERVAL positions. Delay output: rear panel BNC. TTL low level during delay time.

Period average

Range: 10 Hz to 1 MHz .
Input: channel A.
Period averaged: 1 to 10^{3} automatically selected.
Frequency counted: 10 MHz .
Accuracy: $\ddagger 1$ count \pm time base accuraç \pm rigger error, ${ }^{*} *$ Frequency
Range: 0 to 10 MHz .
Input: channel A.
Gate times: manually selected 0.1 , 1 , or 10 seconds. AUTO position selects gate time 201 second for maximum resolution.
Accuracy: ± 1 count \pm time base accurac\%.

Open/close (tatalizing)

Range: 10 MHz max.
Input: channel A. Opening and closing of gate initiated by front panel pushbutton switch.

General

Check: inserts internal 10 MHz reference frequency into chamnels A and B.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requlrements: including 5300 A mainframe, nominally 10 watts.
Dimensions: see $5300 \wedge$ mainframe.
Weight: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$: shipping. $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Price: $\$ 300$.

[^33]

5310A Battery Pack

Specifications, 5310A Battery Pack Module

(Provides battery powet from rechargeable nickel-adium cells.)
Battery capacity: 48 watt-hours, nominal. Typically more than 4 hours continuous operation at $25^{\circ} \mathrm{C}$ depending on snap-on module.
Recharging time: typically 18 hours.
Battery voltage: $12 \mathrm{~V} d c$.
Low voitage indicator: light begins to glow at approximately 90% discharge.
Line fallure protection: allows insttument to be operated in LINE position with automatic switch-over to battery power if linc voltage fails. Batteries receive trickle charge in LINE posicion.
Operating temperature: opcrating: 0° to $50^{\circ} \mathrm{C}$. Charging: 0° to $10^{\circ} \mathrm{C}$, mainframe not operating.
Power requirements: charging power via 5300 A mainframe. nominal 7.5 watts.
Welght: nec, 5 lbs ($2,3 \mathrm{~kg}$): shipping, $61 / 4 \mathrm{lbs}(2,9 \mathrm{~kg})$.
Accessories furnished: shoulder carrying strap.
Dimensions: battery pack plugs between 5300 A mainframe and snap-on module. Increases height of instrument by 1.5 in. $(38,4$ mm).
Price: $\$ 175$.

50 MHz Universal Timers/Counters/DVMs

Unique measurement benefits

The Hewlett-Packard $5326 / 5327$ Universal Counters are both general-purpose lab instruments and fast, efficient systems instruments. Frequency measurements to 550 MHz , high resolution time interval measurements, and voltage measurements make the 5326/5327 family the most useful Timer/Counter/ DVM's available. A single set of controls and one readout provide either frequency or voltage data which leads to easy manual operation. Sysrems interface is greatly simplified since a single programming connector and a single BCD connector setve both the counter and DVM sections

New features

Many new features are offered with the $5326 / 5327$ family which provide unique measurement benefits. The exclusive Hewlett-Packard feature of readout blanking suppresses unwanted zeros to the left of the most significant digit to improve clarity of the digital presentation. The new function of Time Interval Averaging (explained in Counters, Tuturial, see Index) provides the capability of high resolution (100 ps or better) a veraged time interval measurements on repectitive inpur signals. 550 MHz frequency capability with low cost and good reliability is provided by new Hewlett-Packard high frequency monolithic integrated circuits. And. for those who need higher sensitivity in the 550 MHz area a 25 mV option is available (see General Specifications). An internal integrating DVM in the 5326 B and 5327 B allows, in addition to standard de measurements, the ability to measure with digital precision the internal trigger levels of the A and B input channels. This feature adds a whole new dimension to Time Interval measurements. Full details on these new techniques are in April 1970 Hewletr-Packard Journal.

Hysteresis compensated slope selection has been added to the $5326 / 5327$ family to further enbance its usefulness and ease of operation when making time interval measurements. Now, when switching from + to - slopes, the trigger level need not be readjusted, since the trigger points remain at the same value. The $5326 / 5327$ also provides front panel trigger lamps which indicate when the atrenuator and level controls are properly set to trigger on the applied input signal.

High stability time bases

The time base in the $5326 / 5327$ family consists of a stable 10 MHz crystal oscillator. The standard room temperature crystal provides fast warm-up and high stability. Aging for the crystal is specified as less than 3 parts in 10^{\prime} per month.
Two higher stability time bases (see High Stability Time Base Chart) are available as options. Both are housed in specia! proportional ovens to give an excellent temperature specification of less than 1 part in 10^{8} over the range of -20° to $+69^{\circ} \mathrm{C}$. And, their fast warm-up allows the oscillators to reach s parts in 10° in 15 min .
The two options, H49 and H50, have the aging rates of 3 parts in 10^{09} per day and 5 parts in 10^{19} per day respectively. Their short term fluctuations ate 1 part in $10^{10} \mathrm{rms}$ for a one second average and 1 part in $10^{11} \mathrm{cms}$ for a one second average respectively. (For a discussion of time base specifications, see Counters. Tutorial in Index.

Measurements

The 5326 series measures frequencies from 0.50 MHz and the 5327 series extends this range to 530 MHz with either periodic or random signals. Each counter's gate time is selectable in decade steps from 0.1μ sthrough $10 s$ with the decimal point and units automatically displayed. The rear panel frequency input is front panel selectable for use with external scaling devices or for system applications.
The $5326 \mathrm{~A} / \mathrm{B}$ and $5327 \mathrm{~A} / \mathrm{B}$ will measure the period of a single inpur cycle with a selectable resolution of $0.1 \mu \mathrm{~s}$ to 10 s for frequencies from dc to 10 MHz . Periods are fully displayed with a 7 digit teadout (8 digits optional) ; e.g.. $999999.9 \mu \mathrm{~s}$. If the count exceeds the number of digits in the readout, an overfow lamp lights on the front panel.
Period average measurements ate provided with each mem. ber of the $5326 / 5327$ family to reduce effect of trigger error and \pm one count ambiguity. Periods averaged are selectable from 1 to 10° ($10 \cdot 10^{\circ}$ when prescaling) in decade steps for input fates from 0 to 10 MHz . Period average measurements result in higher accuracy at low frequencies and faster measurements at high frequencies for equivalent resolution.
Time intervals of $0.1 \mu \mathrm{~s}$ to $10^{\mathrm{s}} \mathrm{s}$ can be measured with the $5326 \mathrm{~A} / \mathrm{B}$ and $5327 \mathrm{~A} / \mathrm{B}$ using their standard time interval capability. However, the unique time interval
averaging capability offered in the $5326 \mathrm{~A} / \mathrm{B}$ and $5327 \mathrm{~A} / \mathrm{B}$ provides time interval measurements ranging from 0.15 ns to 10 s . Optimum resolution of these measurements made on repetitive signals is $100 \mathrm{~ns} / \sqrt{\text { intervals averaged. Since a mea- }}$ surement can be averaged over $10^{\text {s }}$ intervals, maximum resolution can be in the 10 ps region.

The 5326 B and 5327 B offer dc voltage measurements in addition to the above described capability. $D C$ ranges of 10 , 100 and 1000 volts provide autopolarity with measurement times front panel selectable from 1 ms (2 digits) to 1 sec (5 digits). The highly linear and stable V-F Converter affords excellent accuracy.

Quantitative time interval

The 5326 B and 5327 B have two functions which make them absolutely unique among the universal counter/timers. The READ A and READ B functions allow the DVM to ac. curately measure the 2 internal input amplifier trigger points to within 05%. and display that value. Consequently, 50% point. $10 \%-90 \%$ rise time points, and others can be accurately set for time interval measurements by using the internal DVM functions. Coupling the Time Interval Averaging capability to the foregoing yields an extremely porverful measurement toolquantitative time interval. This measurement accurately determines both relevant signal parameters-time between measure points and their respective levels.

Systems compatability

Each member of the 5326/5327 family can be effectively used as a fast, efficient systems instrument.

Option 003 provides 4-line 1.2-4.8 BCD output with " 1 " state positive. This outpur is suitable for systems use or for output devices such as the HP Model 5050B or 5055A Digital Recorders.

Option 002 and Option 004 ($9326 \mathrm{~A} / \mathrm{B}$ and 5327A/B only) provide remote programming capability via contact closure to ground or DTL drive. A rear panel connector provides access to all programmable circuits. With Oprion 002 all front panel controls are single line programmable except the FAST/NORM MODE, SEPARATE-COMMON switch (the CHECK position is programmable on the $5326 \mathrm{~A} / \mathrm{B}$ and $5327 \mathrm{~A} / \mathrm{B}$ only), input attenuators, and ac-dc input coupling switches. With Option 004 all front panel controls including all signal input conditioning are single line programmable except the FAST/ NORM MODE. Both Options 002 and 004 provide programmable trigger level controls through single line analog signals.

In addition, the HP 10542 A Remote Programming Interface provides two digital-to-2nalog converters to enable the 5326/ 5327 series with Option 004 to be completely programmed from a 40-bit digital output register.

5326/5327 Family Selection

Model	Oescription	Frequenoy Range	Perlod Average Tolmiza/Ratlo $3 \mathrm{cal} \mathrm{mg}_{\mathrm{n}}$	Thme Interval Time interval Avoraging	$\begin{gathered} \text { DVM } \\ \text { (DC Vostage) } \end{gathered}$	Price
5326C	Mulit-Function Countor	50 MHz				\$ 950
5326A	Universal Timer/Counter	50 MHz				1,250
S328B	Universal TImer/Counter/OVM	50 MHz				1.585
5327C	Mult-Function Counter	550 MHz	\|r14014			1,496
5327A	Universal Timer/Counter	550 MHz	FIETR	2181518		1.785
53278	Universal Timer/Counter/DVM	550 MHz	1246101	1	18.8181	2, 150

General 5326/5327 Specifications

Dlsplay: 7 digits (8 optional)
Blanking: suppresses display of unwanted zeros left of the most significant digit.
Display storage: holds reading between samples. Rear panel switch overrides storage.
Sample rate: FAST and NORM ranges, and HOLD position.
Overlow: neon indicates when display range is exceeded.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$ (see DVM Temp. Range).
Gate output: TTL level pulses, low while gate open, rear panel.
Power requlrements: $115 / 230 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 70$ watts (max).
Weight: max: net, $16 \mathrm{lbs}(7,4 \mathrm{~kg}$): shipping, $18 \mathrm{lbs} 160 z(8,7 \mathrm{~kg})$.
Dimensions: $3.15 / 32^{\prime \prime}$ high $\times 163 / 4^{\prime \prime}$ wide $\times 11 / 4^{\prime \prime}$ deep ($88,2 \times$ $425 \times 286 \mathrm{~mm}$).
Accessories furnished: power cord, $71 / 2$ ft and rack mount kit.
Accessoriles available
HP 20503A: 50Ω BNC cable, $4 \mathrm{ft}(122 \mathrm{~cm}$). Price, $\$ 7$.
HP 10532A: extender board kit containing 2 each. 15 -pin ex, tender $5060.0049,1$ each. 18 -pin extender $5060-2041$, and 1 each amplifer extender. 10532-60001. Price, $\$ 50$.
HP 10542A: remore programming interface enables interfacing between the $5326 / 5327$ series counters with Option 004 and a 40 -bit output register. Includes two (2) 7 bit digital-to. analog converters for level controls and decoding for time base

and function selector. Price, $\$ 400$

HP Cable 562A-16C: ($6 \mathrm{ft}_{1} 183 \mathrm{~cm}$) to connect $5326 / 5327$ series with Option 003 to HP 50508 Digital Recorder. Price, \$50.
Optlon 001: 8-digit display. Price, $\$ 75$.
Option 002: remote programming.
Controls: all front panel controls are single line programmable except:
SEP-COM switch; CHECK is programmable (S326A/B, 5327A/B only).
FAST/NORM mode.
Input attenuators.
$A C / D C$ input signal coupling.
Price: $\$ 75$.
Option 003: digital outpur (for numerals and polarity only). Price: $\$ 50$.
Optlon 004: remote progranming including all signal input cons. diitions (includes attenuators and ac/de switches).
Controls: all front panel concrols are programmable except: FAST/NORM mode. Price: S200.
Option H6O: higher sensitivity for the 550 MHz input channel on the 5327 series. 25 mV rms. 0 to $50^{\circ} \mathrm{C} ; 10.15 \mathrm{mV}$ rms typical at $25^{\circ} \mathrm{C}$.
Price: $\$ 129$.

High Stability Time Base Options

Optlon	Aghag Rate	Short Torm Stablity	Temperature Stablity	Priod
Standard	$<3 \times 10^{-7} / \mathrm{mo}$	$<5 \times 10 \rightarrow / 1 \mathrm{sec}$ pms (typ)	$< \pm 2.5 \times 10^{-8}, 0$ to $50^{\circ} \mathrm{C}$	included
189	$<3 \times 10^{-9} / \mathrm{day}$	$<1 \times 10^{-10} / 1 \mathrm{sec} \mathrm{rms}$	$<1 \times 10^{-8},-2010+65^{\circ} \mathrm{C}$	\$300.00
H50	$<5 \times 10^{-10}$ day	$<1 \times 10^{-11} / 1 \mathrm{sec} \mathrm{fms}$	$<1 \times 10^{-8},-20$ to $+65^{\circ} \mathrm{C}$	450.00

550 MHz Universal Timer/Counter/DVM

5327B

5326B and 5327B Specifications

Input Channels A and B

Range: dc-coupled: 0.50 MHz ; ac-coupled: $20 \mathrm{~Hz}-50 \mathrm{MHz}$.
Sensitivity (min): 0.1 V rms sine wave; 0.3 V p-p pulse; 8 ns minimum pulse width. Sensitivity can be decreased by 10 or 100 times, using the ATTENUATOR switch.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 25 pF .
Dynamic input voltage range; 0.1 to 3 V rms ac times attenuator setting. $\pm 5 \mathrm{~V}$ de times attenuator setting.

Trigger level: PRESET to center triggering about 0 V or variable over the range of -3 V to +3 V times attenuator secting. Trigger threshold band $<1.0 \mathrm{mV}$, referred to input at maximum fre. quency.
Overload protection: 250 V ims on all axtenuator settings, except 25 V rms on XI above 50 kHz .

Slope: independent selection of positive or negacive slope.
Channel inputs: common or separate lines.
Marker outputs: rear panel BNC's. DTL pulse, low for approx $2 \mu s$ after trigger point for A and B channels.

Input Channel C and $\mathrm{C} \div 10$

Range: 5326B: Channel C : dc-coupled; $0.50 \mathrm{MHx}, 5327 \mathrm{~B}$: Channel C : ac-coupled: $1 \mathrm{kHz}-50 \mathrm{MHz} ; \mathrm{C} \div 10$ (prescale); 0.550 MHz .
Sensitivity: 5326B: Channel C: 5 mV rms. 5327B: Channel C: 5 mV rms; $\mathrm{C} \div 10$ (prescale) : 100 mV ms .
Impedance: 50Ω nominal.
Maximum input: 5 volts rms; 7.5 volts peak.
Trigger level: 0 volts.
Location: rear panel.

Start
 (Totalizing and Scaling)

Range: $0-10 \mathrm{MHz}$.
Factor: 1.10^{8} selecrable in decade steps.
Output: rear panel TIME BASE BNC.
Display: Channel A inpur divided by scaling factor.

[^34]
Frequency

Range: $5326 \mathrm{~B}: 0.50 \mathrm{MHz} .5327 \mathrm{~B}: 0-50 \mathrm{MHz}$ (direct) ; 0.550 MHz (prescaled).
Input: 5326B: Channel A or Channel C (switchable). Channel A provides triggered íequency measurement. 5327 B : Channel A ; Channel C for direct and $C \div 10$ for prescaled (switchable). Channel A provides triggered frequency measurement.
Gate tlmes: $0.1 \mu \mathrm{~s} 1010 \mathrm{~s}$ in decade steps.
Accuracy: direct: ± 1 count \pm time base accuracy, Prescaled: ± 10 counts* \pm time base accuracy.
Display: $\mathrm{MHz}, \mathrm{kHz}$, or GHz with positioned decimal point.

Time interval
Range: 0.1μ to 10^{9} seconds.
Input: Channels A and B; can be common or separate.
Frequency counted: 10 MHz ro 0.1 Hz in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm rigger error,**
Display: $\mu \mathrm{s}$, ms, seconds or 10 's of seconds with positioned decimal point.

Time interval average

Range: 0.15 ns to 10 s .
intervals averaged: $1-10^{\circ}$ selectable in decade steps.
Input: Channels A and B; can be common or separate.
Frequency counted: 10 MHz .
Accuracy: \pm time base accuracy $\pm 2 \mathrm{~ns} \pm$

$$
\frac{(\text { trigger emror** } \pm 100 \mathrm{~ns} \text {) }}{\sqrt{\text { intertals averaged }}}
$$

Display: ns, μs with positioned decimal point.

Period

Range: 0.10 MHz .
Input: Channel A.
Frequency counted: 10 MHz to 0.1 Hz in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.***
Display: $\mu \mathrm{s}, \mathrm{ms}$, seconds or 10 's of seconds with positioned decimal point.

[^35] nals with 40 dBm or better signal-to-noise ratio and 100 mV rms amplitude.

Range: $0-10 \mathrm{MHz}$.
Perlods averaged: $1-10^{3}$ selectable in decade steps.
Input: Channel A.
Frequency counted: 10 MHz .
Accuracy: ± 1 count \pm time base accuracy \pm trigger error***
(See footnote, page 224.)
Display: ns, μs with positioned decimal point.

Ratlo

Dlsplay: any input function/Fext times Multiplier (M). $M=1$ to $10^{8}\left(10.10^{6}\right.$ when prescaling) selectable in decade steps.
Range: any input function. See appropriate function section.
Fext: (External Oscillator Input) $100 \mathrm{~Hz}-10 \mathrm{MHz}$.
Mode: any input funcrion.
Accuracy: accuracy of selected inpur function \pm trigger ertor of Fex.

Integrating Digital Voltmeter (5326B and 5327B only)

The unique combination of an integrating digital voltmeter and an electronic timer/counter produces an instrument which can do mach more than can be done with a separate counter and a separate DVM. The mainframe DVM in the 5326 B and 5327 B easily measures \pm de levels in three programmable ranges from $\pm 10 \mathrm{~V} 10 \pm 1000$ V. Plus, the DVM can internally measure and set the start and stop time interval trigger point levels. This feature, together with hys. teresis compensation, gives the 5326 B and 5327 B the easiest and most accurace trigger level setting system available with none of the drawbacks of oscilloscope marker techniques. The DVM measure. ment (integration) time is selectable from 1 ms to 10 sec to permit a rade-off of resolution vs. measurement time.

Technlque: voltage-to-frequency conversion.
Voltage ranges: manual selection.

RANGE $(V \mathrm{dd})$	RESOLUTION $(1$ sec. Integration time)	INPUT IMPEDANGE
10	$100 \mu \mathrm{~V}$	$10 \mathrm{M} \mathrm{\Omega}$
100	1 mV	$10 \mathrm{M} \Omega$
1000	10 mV	$10 \mathrm{M} \Omega$

Input: single ended.
Polarity: automatic polarity detection.
Overrange: 25% overrange on 10 V and 100 V ranges with full accuracy.
Overload protection: 1100 V dc all ranges.
Accuracy: after 10 minutes warm-up (within 90 -day calibration period).

Range	Stabillity	Lmearity	Zero Drift	Counter
	(\% of Reading)	(\% of Range)	(\% of Range)	
10 V	$\pm 0.04 \%$	± 0.01	$\pm 0.01 \%$	± 1 count
100 V	$\pm 0.04 \%$	$=0.01 \%$	$\pm 0.01 \%$	± 1 count
1000 V	$\pm 0.08 \%$	$\pm 0.01 \%$	$\pm 0.01 \%$	± 1 count

Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C},<80 \% \mathrm{RH}$.

The heart of the integrating digital voltmeter in the 5326/5327 is the very stable voltage-to-frequency converter.

Using this converter, one obtains a very stable linear digital voltmeter with high resolution and excellent accuracy. This DVM can also measure high frequency ac voltages using the HP 11096 ac probe for voltages of 0.25 V to 30 V rms with $\pm 5 \%$ accuracy and with $4 \mathrm{M} \Omega / 2 \mathrm{pF}$ input impedance. The frequency range is 100 kHz 10500 MHz . The combination of an integrating digital volumerer with a timer/counter greatly expands the capabilities of both instruments. Thus the user of the 5326 B or the 5327 B Timer/Counter/ DVM has a digiral measurement system of unequaled capability at a moderate cost.

Measurement time

1 msec	2 digits	Decimal points automatically displayed
10 msec	3 digits	
100 msec	4 digits	
1 sec	5 digits	
10 sec	6 digits	

Response time: <100 μs for full accuracy with a step function point.
AC noise relection: infinite for multiples of (measurement time) ${ }^{-1}$. See graph for Nomal Mode Rejection.

50 MHz Universal Tìmer/Counter/DVM

550 MHz Universal Timer/Counter

5326A Ard 5327A Specifications

Input Channels A and B

Range: dc-coupled: 0.50 MHz , ac-coupled: 20 Hz .50 MHz .
Sensltivity (min): 0.1 V rms sine rave. 0.3 V p-p pulse. 8 ns minimum pulse width.
Sensitisity can be decreased by 10 or 100 eimes. using the AT. TENUATOR 5witch.
Impedance: $1 \lambda \Omega$ shunted by less than 25 pF .
Dynamic input voltage range: 0.1 to 3 V rms ac times attenuator setting. $\pm 5 \mathrm{~V}$ dc times attenuator setting.
Trigger level: PRESET to center triggering about 0 V of variable uver the range of -3 V to +3 V times attenuator setting. Trigger threshold band $<1.0 \mathrm{mV}$, referred to input at maximum frequency.
Overload protection: 250 V rms on all attenuator settings, except 25 V rms on Xi above 50 kHz .
Slope: independent selection of positive or negative slope.
Channel Inputs: common of separate lines.
Marker outputs: rear pancl BNC's. DTL pulse. low for approx $2 \mu s$ after trigger point for A and B channels.

Inpul Channel C and $C \div 10$
Range: 5326A. Channel C : $d c$-coupled: $0.50 \lambda 1 \mathrm{~Hz}$. 5327A: Chan. nel C: ac-coupled: $1 \mathrm{kHz} .50 \mathrm{M}(\mathrm{Hz} ; \mathrm{C} \div 10$ (presesic); 0.550 MHz .
Sensltivity: 3326A: Channel C. s mV rms. 5327A: Channel C: s mV rons: $\mathrm{C} \div 10$ (prescale) : 100 mV rms.
Impedance: son n: minal.
Maximum input: 5 , lis ims; 7.5 volts peak.
Trigger level: 0 rolts.

Start

(Totalizing and Scaling)
Range: 0.10 MHz .
Factor: 1.10^{\prime} selectable in decade steps.
Output: rear panel TIME BASE BNC.
Dlsplay: Channel A input divided by scaling factor.

Frequency

Range: $5326 \mathrm{~A}: 0.50 \mathrm{MHz}, 5327 \mathrm{~A}: 0.50 \mathrm{MHz}$ (direct) : 0.550 MHz (prescaled).
Input: 5326A: Channel A or Channel C (switchable), Channel A provides triggered frequency measurement. 5327A: Channel A_{i} Channel C for direct and $C \div 10$ for prescaled (switchable).

Channel A provides uiggered frequency measurement.
Gate times: $0.1 \mu s$ to 10 s in decade steps.
Accuracy: direct: ± 1 count \pm time base accuracy. Prescaled: ± 10 counts* \pm time base accuracy,
Display: $\mathrm{MH}_{2}, \mathrm{kHz}_{2}$ or GHz with positioned decimal point.

Time interval

Range: $0.1 \mu \mathrm{~s}$ to 10° seconds.
Input: channels A and B; can be common or separate.
Frequency counted: 10 M Hz to 0.1 Hz in decade steps.
Accuracy: \pm I count \pm time base accuracy \pm trigger error. ${ }^{\text {. }}$ *
Display: $\mu \mathrm{s}$, ms, seconds or 10 's of seconds with positioned decimal point.

Tirme interval average

Range: 0.15 ns to 10 s .
Intervals averaged: 1.10° selectable in decade steps.
Input: channels A and B; can be common or separate.
Frequency counted: 10 MHz .
Accuracy: \pm time basc accurac $\pm 2 \mathrm{~ns} \pm$

$$
\underline{\text { (crigger erros }}^{4} \doteq 100 \mathrm{~ns} \text {) }
$$

$\sqrt{\text { entervals aseraged }}$
Display: ns, us with positioned decimal point.

Period and Period average

Range: 0.10 MHz .
Input: Channel A.
Frequency counted: 10 MHz to 0.1 Hz in decade sieps for period. 10 MHz for Period Average.
Periods averaged: $1 \cdot 10^{\prime}$ selectable in decade steps.
Accuracy: ± 1 count \pm time base accuracy \mp irigecr error.s:
Display: ns, $\mu \mathrm{s}$, ms , seconds or 10 s of seconds with posttioned decimal point.

Ratio

Display: any input function $/ F_{\text {ext }}$ times Mulitplier (M) $M=1$ to 10° ($10 \cdot 10^{\circ}$ rehen prescaling) selectable in decade steps.
Range: any input function. Sec appropriate function section. Foxi: (External Oscillator Jnput) $100 \mathrm{~Hz}-10 \mathrm{NHz}$
Mode: any input function.
Accuracy: accuracy of selected input function $=$ erigger error of F.x...
-...., ".", -soe D. 227 for tootnotes

50 MHz Universal Timer/Counter

550 MHz Multi-Function Counter

5326C And 5327C Specifications

Input Channal A

Range: dc-coupled: 0.50 MHz ; ac-coupled: 20 Hz .50 MHz .
Sensitivity (mIn): 0.1 V rms sine wave; 0.3 V p.p pulse; 8 ns minimum pulse wideh.
Sensitiviry can be decreased by 10 or 100 times, using the AT. TENUATOR switch.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 25 pF ,
Dynamic input voltage range: 0.1 to 3 V ross ac times nticnuator selting. $\pm 5 \mathrm{~V}$ de times attenuator setting.
Trigger level: PRESET to center triggering about 0 V or vatiable over the range of -3 V to $\div 3 \mathrm{~V}$ times attenuator setting. Trigger threshold band $<1.0 \mathrm{mV}$, referred to inpur at maximum frequency.
Overload protection: 250 V rms on all attenuator settings, except 25 V rms on X 1 above 30 kHz .
Slope: independent selection of positive or negative slope.
Input Channel B and $\mathrm{B} \div 10$
(5327 C only)
Range: Channel B: ac-coupled, i kHz-50 MHz: B $\div 10$: dc-coupled, 0.530 MHz .

Sensithity: Channel B : 5 mV ms; $\mathrm{B} \div 10$ (prescaled): 100 mV rms.
Impedance: sor nominal.
Maximum Input: 5 volts rms, 7.5 volts perk.
Trigger level: 0 volts.

Start

(Totalizing and Scalang)
Range: $5326 \mathrm{C}: 0.10 \mathrm{MHz} .5327 \mathrm{C}: 0.10 \mathrm{MfHz}$ (direct) $: 0.100 \mathrm{MHz}$ (prescaled).
Factor: $3326 \mathrm{C}: 1-10^{\circ}$ in decade steps. 5327 C : Channel A or Channel B: $1 \cdot 10^{\circ}$ in derade steps; $B \div 10^{\circ} 10 \cdot 10^{\circ}$ ($1 \cdot 10^{\prime}$ an selector) in decade steps.

Output: rear panel TIME BASE BNC.
Display: Channel A, B, or $B \div 10$ input diveded by scaling factor.

Frequency

Range: $5326 \mathrm{C}: 0.50 \mathrm{MHz} .5527 \mathrm{C}: 0.50 \mathrm{MHz}$ (direct); 0.590 MHz (prescaled).
Input: s326C: Channel A. Channel A provides triggered frequency measurement. 5327C: Channel A; Channel B for direct and B $\div 10$ for prescaled (switchable). Any channel provides triggered feequency measurement.
Gate times: $0.1 \mu \mathrm{~s} 1010 \mathrm{~s}$ in decade steps.
Accuracy: direct: ± 1 count \pm time base accuracy. Prescaled: ± 10 councs* \pm time base accuracy.
Display: $\mathrm{MHz}, \mathrm{kHz}$ or GHz with positioned decimal point.

Period average

Range: $9326 \mathrm{C}: 0.10 \mathrm{MHz} .5327 \mathrm{C}: 0.50 \mathrm{NHz}$ (direct); $0.330 \mathrm{N(Hz}$ (prescaled).
Periods averaged: 5326C: $1-10^{*}$ in decade steps. 5327 C : Chamel A or Channel B: $1-10^{6}$ in decade steps; $\mathrm{B} \div 10: 10-10^{2}$ ($1-10^{3}$ on selector) in decade steps.
Frequency counted: 10 MHz .
Accuracy: direct: \pm count \pm time base accuracy \pm trigger error. ${ }^{2} * *$ Prescaled: ± 10 counts* \pm time base accuracy \pm trig. er crroc.***
Display: as, μs with positioned decinal poine.

Ratio

Display: any input funcion/ $\mathrm{F}_{\mathrm{rks}}$ times Mfultiplier (M). $M=1$ in 10^{8} ($10-10^{8}$ when prescaling) selectable in decade steps.
Range: sny inpur function. See appropriace function section. Foxt: (External Oscillitor Inpur) $100 \mathrm{~Hz}-10 \mathrm{MHz}$.
Mode: any input function.
Accuracy: accuracy of selected inpur function \pm trigger error of $F_{\text {ant }}$.

50 MHz Multi-Function Counter

5326C

[^36][^37]

Singie Input 1 Hz to 18 GHz - High Sensitivity, 35 dBm Wide Dynamic Range - High Damage Level - Programmable - Fast - Auto Amplitude Discrimination - Superior AM \& FM Characteristics.

The sid0A Automatic Microwave Frequency Counter provides a modern, easily used, more versatile, instrument for the direct measurement of frequencies from 1 Hz through 18 GHz . This instrument's single input, that covers the entire bandwidth, and high sensitivity result in an instrument suited to a wider variery of applications than ever before. Utilizing new microwave samplers incorporated in advanced phase lock loops, this new counter excels in virtually every microwave counter specification parameter.

Single Input \& High Sensitivlty

The single inpur simplifies the use of this instrument by allowing any unknown signal to be measured by connecting it to only this one input. In the past. several inputs have been utilized and had to be selected. complicating use and measurement. The high sensitivity enhances measuremnt in the microwave field where signals are low level and many times have to be connected via directional couplers or lossy devices. The sensitivity is such that in some cases signals can be measured directly with only the use of an antenna.

Superior AM Characteristics

The high sensitivity considerably improves measurement in the presence of audio modulation. As an exanple, measure. ment is easily achieved on a 0 dBm signal with 90% AM modulation.

High Impedance Inouk

A second high impedance input is provided covering the direct measurement range (10 Hz to 250 MHz) of the instrument. This input is useful in the measurement of IF frequencies or signals from higher impedance circuits. On a special basis the 5340 A can be modified to subtract or add the frequency at the high impedance input from that at the son input. This modification is particulaly usetul when a direct measurement of carrier irequency is desired but is offset by an intermediate frequency.

No False Answers

Measurement and display are disabled until phase lock or direct measurement are determined; automatically preventing incorrect measurement or displays.

Automatic Amplitude DiscrImination

Automatic amplitude discrimination allows the instrument to choose the largest signal in a spectrum and measure only that signal's frequency. The high sensitivity and wideband width of the 5340 A make this feature necessary so that the counter will not lock and measure lower level or harmonically related signals present with the signal of incerest.

Superior FM Characteristics

This microwave counter is designed to measure carrier frequencies in the presence of wide frequency deviations caused by frequency modulation, phase modulation, or high residual noise. FM tolerance chasacteristics are a function of modula. tion rate and carrier frequency and are fully described belon.

Figure 1. FM Characterislics.

Complete Programmability

All front panel controls and octave range programming of the phase lock loop are possible. The octave range programming allows selection of a single band for measurement reducing acquisition to rypically less than 25 ms . These features combined with the digital output are programmable via a single input/output slot of most computers. Digiral output is stan. dard on all 5340 A instruments and complete programmability may be achieved by specifying Option 003. Another valuable oprion available for systems use provides beth front panel connectors on the rear of the instrument (Option 002).

Tentative specifications

Signal input

Input 1

Range: 1 Hz to 18 GHz .
Sensitlvity: $-35 \mathrm{dBm} 1 \mathrm{~Hz}-12.4 \mathrm{GHz} ;-25 \mathrm{dBm}$ 12.4-18 GHz.

Dynamic range: $42 \mathrm{~dB}(-35 \mathrm{dBm} \cdot+7 \mathrm{dBm}) .1 \mathrm{~Hz}$ to $12.4 \mathrm{GHz} ; 32 \mathrm{~dB} 12.4$ to 18 GHz .

Impedance: SOR.
VSWR: <2:11 Hz.12.5 GHz, <3:1 $12.4 \cdot 18 \mathrm{GHz}$.
Connector: precision Type N .
Coupling: ac.
Lock-on time: < 100 ms typical for any signal $1 \mathrm{~Hz}-18 \mathrm{GHz}$ (under remote program control (optional) octave ranges may be selected reducing lock-on time to approximately 25 msec).

Input 2

Range: $10 \mathrm{~Hz}-250 \mathrm{MHz}$ direct count.
Sensitivity: 50 mV rms.
Impedance: 1 M Ω shunted by $<25 \mathrm{pF}$.
Connector: rype BNC female.
Coupling: ac.
Shelf check: counts and displays 10 MHz for resolution chosen.

Automatic amplitude discrimination: the counter will automatically select the largest of all signals present (. 250 to 18 GHz) providing that signal is 20 dB (10 dB typical) larger than any other.

Maximum am modulation: any amplitude modulation index as long as the minimum voltage of the signal is not less than the sensitivity specification. For example, with a -10 dBm inpet signal at $10 \mathrm{GHz}, 94.5 \%$ modulation index will cause the signal to drop to $-35 \mathrm{dBm}(4 \mathrm{mV})$ at its lowest input amplitude and would be the limit of modula. tion possible. This is calculated as follows:
$V_{1}=4 \mathrm{mV}$ where $V_{1}=$ minimum amplitude, $V_{D}=70$ $(-10 \mathrm{dBm})+66=136 \mathrm{mV}$, and modulation index $m_{1}=V_{1}-V_{t} / V_{D}+V_{t}=94.5 \%$

FM modulatlon: Figure 1.

Tlme base

Crystal frequency: 10 MHz .

Stabillty

Aging rate: $<3 \times 10^{-}$per month.
Short term: <5 $\times 10^{10}$ rms for 1 second averaging time.
Yemperature: $<2 \times 10^{\circ}$ over the range of $-20^{\circ} \mathrm{C}$ to + $65^{\circ} \mathrm{C}$.

Line variation: $<1 \times 10^{-}$for 10% line variation from 110 V or 230 V line.

Output frequency: $10 \mathrm{MHz} \geq 2.4 \mathrm{~V}$ square wave (TTL compatible) available foom rear panel BNC.

External time base: requires 10 MHz approximately 1.5 V Pp sinervave or squarewave into $1 \mathrm{k} \Omega$ via rear paned BNC . Switch selects either internal or external time base.

General

Resolutlon: front panel swirch selects $1 \mathrm{MHz}-100 \mathrm{kHz}, 10$ $k \mathrm{~Hz}-1 \mathrm{kHz}-100 \mathrm{~Hz}-10 \mathrm{~Hz}-1 \mathrm{~Hz}$.
Display: eight in line long life Nixie tubes with positioned decimal point and appropriate measurement units of $\mathrm{kHz}, \mathrm{MHz}$ or GHz .
Accuracy: \pm count \pm time base error.
"DR'" lamp indicates measurement is direct.
"LOCK" lamp indicates phase lock has been achieved and measurement technique is indirect.
"GATE" lamp indicates measurement is in progress.
"REM'T" lamp indicates instrument is controlled via externa! or remore device.
"OFLO" indicates most significant digits will not be displayed. Digits displayed when "OFLO" is lighted are accurate ± 1 count \pm time base accuracy. "OFLO" is necessary for some high frequency measurements where resolution of 100 Hz or greater is required.
Sample rate: controls time between measurements. Continuously adjustable from approximately 200 ms to 10 secs. Hold position holds display indefinitely. Reset button resets display to zero and activates a new measurement.

Operating temperature: $0.50^{\circ} \mathrm{C}$.
BCD output: connector 24 pirt female Cinch $\# 57.40340 \mathrm{HP}$ \$1251.0292. Mating connector Cinch \#\$7.30240 HP 표1251. 0293. Code: bit parallel digit serial 8 level ASCII (TTL compatible).
Power: 115 V or $230 \mathrm{~V} \pm 10 \% 50-60 \mathrm{~Hz} 100 \mathrm{VA}$.
Waight: net, 25 lbs ($11,4 \mathrm{~kg}$): shipping, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$),
Dimensions: dimensions in inches and (millimerers): width, 163/4 (425): depth, 131/4 (337); height, 3-15/32 (88.2).
Accessorles furnlshed: power cord $71 / 2 \mathrm{ft}(200 \mathrm{~cm})$, NEMA plug.

Time base option 001

Option No.	Agling Rate	Short Term Stabillity	Temparature
001	$<5 \times 10^{10} / \mathrm{day}$	$\begin{aligned} & <5 \times 1011 \\ & / 1 \mathrm{sec} \mathrm{RMS} \end{aligned}$	$\begin{gathered} <1 \times 100^{\circ} \\ 1.20-+65^{\circ} \mathrm{C} \end{gathered}$
Standard	$<3 \times 107 / \mathrm{mo}$.	$\begin{aligned} & <5 \times 10^{10} \\ & / 1 \mathrm{sec} \text { RMS } \end{aligned}$	$\begin{gathered} <2 \times 10^{\circ} \\ / .20-+65^{\circ} \mathrm{C} \end{gathered}$

Rear psnel input connectors (Optlon 002): this option provides input connectors on the rear panel. Input specifications remain the same. Input 1 (Type N) is on the rear panel in place of installation on the front panel. Input 2 (BNC) is available on the front and rear panels. Input impedaoce is reduced to $50 s$.

Remote programming, Option 003: connector 50 pin female Cinch \#\#57.40500 HP \#1251-0087. Mating connector male Cinch $=57.30500 \mathrm{HP} \# 1251.0086$.

Price: 5340A; $\$ 5300$; Option 001, $\$ 400$; Option 002, $\$ 100$.

COMPUTING COUNTER SYSTEM
 Precision measurement, computation 5360 Series

The Compuling Counter System . . . Precise، Total Solutions to Complex Problems

The Computing Counter is a general purpose precision digital instcument with built-in arithmetic capability.
As a measuting device the Computing Counter provides unequalled precision. For example, it can measure the time between two events to a resolution of 100 picoseconds, about the time ir takes light to travel one inch.
The Compuring Counter's unique measurement rechnique employs extensive use of digital computation. Thus the mainframe contains an arithmetic unit which is an inherent, indispensable part of the measurement cycle.

Basic 日lock Dlagram of Computing Counter. The precision measurement techniaue employs digital computation as an inharent, Indispensable part of ine measurement cycle.

Measurement

Measurement versatility is enhanced by a wide range of plug.ins in addition to the input module. All measuremenrs are made with speed and accuracy and in many respects, operation is easier than with the conventional instrument.

Computation

The acithmetic capability of the machine has been made avaiable to the user via several programming devices.

This allows the system to be programmed to solve equations where measurements are the variables, in real time. This capability enormously increases the poaer of the Computing Counter System.

Note that the programming devices are not needed to obtain the measurement capabilities of the instrument. Inclusion of the appropriate programmer, however, enhaoces the capabilities of the Computing Counting system in providing precise, total solutions to complex problems at substantial cost saving and ease of operation.

The following two pages introduce the components of the Computing Counter System. Additional details are included in the tutorial (pp. 207-211). A full description of the system is given in the Computing Counter System dara sheet. In addition, some of the many applications to which this versatile system can be put are described in the applications literature overpage. All literature is available on request.

Precision Frequency Measurements
5360A Computing Counter
5365A Input Module
5245 Series Plug-Ins

Features

- 320 MHz direct frequency range
- To 18 GHz with plugins
- Most accurate frequency measuring device available
- High speed . . . betrer than 300 measurements/sec
- External trigger capability enhances versatility
- Automatic display
- High stability time base
- Versatile measurement time controls
- High speed data gathering capability

Precision time interval measurements 5379A Time Interval Plug-In

Features

- 100 picosecond displayed resolution
- ± 500 picosecond accuracy
- Zero seconds minimum measurable time interval
- Positive or negative time intervals
- High speed, better than 1000 measurements/sec
- Hysteresis compensation of trigger levels
- Versatile arming modes
- Absolute trigger level determination
- s picosecond resolution by averaging

Measure

- Laser and radar ranging
- Delay line calibration
- Integrated circuik characterization (rise, fall, delay times)
- Computer checkout
- Nuclear time of flight measurements
- Coincidence detection
- Instrument calibration

Price: $\$ 750$.

Measure

- Pulse compression radar
- CW and pulsed, Doppler radar
- Frequency shift keyed (FSK)
- Precision oscillators for fast calibration
- PCM and fsk bit derection
- FM and transient frequencies
- Amplitude and pulse modulated signals

Prlee: $\$ 6500$.

The 5376A Systems Programmer is a programming device for the 5360 A Computing Counter. The $5360 \mathrm{~A} / 5376 \mathrm{~A}$ com. bination provides solutions to problems that formerly required the use of a computerized instrumentation system.
This versatile combination finds wide use in several general application areas. ...
crystal inductance transducer linearization equation solving phase, accumulative phase, ete
(ii) statistical analysis, e.g. mean
standard deviation
fractional frequency deviation
peak-peak fin deviation
peak-peak time jitter
maximum access time
(iii) process control
provides stimulus measures response generates appropriate control signals
Price: prices start at $\$ 1350$. There are eight options available. See dara sheet for details.

Computation

5375A Kayboard

A laboratory tool for simultaneous data reduction or statistical analysis with measurements.

Similar to the Systems Programmer. The Keyboard is a programming device for the Computing Counter. The readwrite memory enables programs to be entered or modified quickly and easily via the appropriate keystrokes. This makes it ideally suited for the laboratory environment.

Operations

Arithmetic: add, subtract, multiply, divide, square root, 10 X and $1 / 10$. In addition, short algorithms are available to program for logarithm and exponential.
Measurement: MODULE A, MODULE B, PLUG.IN. Single keystrokes of any of these keys allow measurements to be made from the A input of the 5365A Input Module, the B input or the plug-in respectively.
Price: $\$ 1350$.

Applications literature

The Computing Counter System is a powerful tool that provides solutions to problems in many applications areas. In a continuing program, a substantial amount of applications literature is available, free of charge, on request.

Application sheets

Single page descriptions of specific problems and their solution with the Computing Counter System. This program covers a wide range of applications from hydrophone testing through crystal inductance measurements to Doppler range rate errors.

Application notes

More detailed treatment of general applications areas. Four are now available:
AN 116 Precision Frequency Measurements
AN 120 A New Techaique for Pulsed RF Measurement
AN 120-2 Measuring Phase with the 5360A
AN 120.3 Non-Linear System Applications of the Computing Counter System

Programming manuals

Comprehensive manuals are available on programming the Computing Counter System from the 5375A Keyboard and the 3376 A Systems Programmer. Titles are "Programming the 5375A Computing Counter Keyboard" and "5376A Systems Programmer User's Manual," This latter includes a compre. hensive treatment of integrating the 5360A.5376A into an operational system.

Hewlett-Packard Journals

Four issues of this widely read publication deal with the Computing Counter System.

May 1969: 5360A/5365A Computing Counter and the 5379A Time Interval Plug-in.
March 1970: 5375A Keyboard.
December 1970: 5376A Systems Programmer.
November 1971: Frequency Stability Measurements.

Accessories

10536A Adapter: adapts following 5245 series plug-ins to the compuring. Counter: $5253 \mathrm{~B}, 5254 \mathrm{C}, 5255 \mathrm{~A}, 5256 \mathrm{~A}, 5258 \mathrm{~A}$, $5252 \mathrm{~A}, 5261 \mathrm{~A} .5257 \mathrm{~A}$ also compatible except gate time extender does not work.
Price: $\$ 175$

5050B Opt. 061 Digital Recorder: This reliable 18 column recorder provides a printed record of 3360 A measurements at rates up to 20 lines per second.
Price: $\$ 3190$.
K01-5360A Serial-Parallel Converter: converts serial bed output from 5360A into a patallel form compatible with the conventional HP 5050B and 5055A Digital Recorders.
Price: $\$ 995$.

FREQUENCY COUNTERS

Hewlett-Packard Model 5330A features a preset (variable) time base for normalized measurements and Model 5330 B combines this variable time capability with dual preset limirs. Additionally, a presettable count offset is offered in either model as an option. These instruments were designed for physical measurements in laboratories, automatic control systerns, and for digital measurement of all types in engineering and industry.

Models 5330A and 5330 B measure in directly usable engineering units such as GPM, PSI, RPM in real time from rate or frequency type input signals. Preset digit switches are used to vary the length of counting time or to multiply or divide the number of input cycles, depending on which one of four operating modes are employed: rate (frequency) ; time (period) ; ratio; or F / MN (frequency division). While counting is in progress, a gate signal is issued from a rear panel jack and may be used as a control or timing signal.

The 5330 B includes two separate 5 -digit limit switches (L1 and L2) for limit control and testing applications. Three high-speed output signals associated with the L1 and L2 limits indicate when the measured value is below (LO), between (1 N), or above (HI), these limits. The signais can be used to drive controllers or relays for speed control, for shutdown at predetermined totals, to actuate alarms at pre-shurdown totals, for precise timing of processes, etc.

Offset counting is possible via Option 001 which provides another 5 -digit switch, designated " R ". This switch may be set to any number from 0 to 99,999 , which presets the counter such that counting of the input signal will start from this selected number and reset to this number each cycle. Boh instruments are available with digital output and complete programmability. Further information and specifications are available in a detailed data sheet.

Price: 5330 A, $\$ 1250 ; 5330 \mathrm{~B}, \$ 1650$; Option 001, \$100.

Preset controller/counter Model 5332B

This preset controller/counter counts electrical events and issues output signals when preset count values are reached and also measures and limit-detect input rates or frequencies. This instrument provides all the features required in digital control and measurement applications: local and remote con-
trol, three versatile operating modes, wide frequency and voltage counting range, very fast recycling, high input impedance and sensitivity, lighted overflow indicaior, and BCD output for recording or further digital processing, Applications include batching and precise control of weight, liquid level. iength, rate, frequency, etc. The counter can aiso generate precise time intervals (or delays) and pulse trains, and can measure time intervals precisely. Use of integrated circuits provides compactness and maximum versatility coupled with economy, low power consumption, and low heat dissipation.

The 5332 B has a crystal time base to permit limit-detecting frequencies (or rates) of random or periodic events from 0 to over 2 million PPs at precise gate times of 0.01 . $0.1,1.0$, and 10 seconds. Similarly frequencies up to 10 MHz can be measured. These instruments also measure and limit-detect single and multiple frequency ratios as well as time intervals from $10 \mu \mathrm{~s}$ to 1.0 second.
Remote control and parallel BCD output are standard. For further details and specifications a technical data sheet is available.
Price: 5332B, $\$ 1300$.

FREQUENCY METER
Wideband, highly linear FM discriminator
Model 5210A

The Model s210A Frequency Meter/FM Discriminator directly measures frequency or repetition rate of signals from 3 Hz to 10 MHz , independent of input voltage waveform. A sensitivity control allow's for measurement of noisy signals. The special \log linear scale offers an accuracy of 1% of reading from 10% of full scale up. With calibrated offser (Option 001) the accuracy is up to 0.2% of full scale.

The 5210A is also a wideband highly linear FM discrimina. tor with a 3 dB output bandwidth of better than 1 MHz for
precise measuremeats on FM and PM signals. With output filters (HP 10531A) frequency deviation, modulation index, frequency response, distortion, incidental FM, and FM noise can be determined as well as "flutcer" and "wow" to betrer than 100 dB below carrier frequency.
For more applicarion details see the dara sheet, HewlettPackard Journal, March, 1967. and Hewletr-Packard Application Note 87.

HP 10531 A, Fister Kit

The HP 10531A Accessory Filter Kit provides a series of three plug-in low pass filters which can be adjusted to cover frequencies from 100 Hz to 1 MHz . These filters reject carrier and carrier harmonics while passing modulation components. Thus it is possible to measure demodulated signal components up to 20% of the carrier frequency using the Hewlett-Packard wave analyzers or similar narrow band volemeters.

Option 001, calibrated offset
The calibrated offset provides for display of any of the 10 major divisions on a separate full meter scale (the EXPAND scalc). This allows frequency measurements to be made with higher accuracy than is possible using the meter in the NORMAL mode.
Price: HP 5210A. \$825: Option 001, add \$125; HP 10531A, $\$ 175$.

5323A Automatic Counter

This direct reading electronic counter departs from traditional counter design to offer: much greater resolution and speed when measuring low frequencies (10^{3} times greater resolution at 100 Hz); automatic operation; measurement over the entire frequency range using any gate time up to 4 s , including non-decade and unknown values; and direct measurement of pulsed signal carrier frequency. Since the counter automatically displays high resolution measurements from 0.125 Hz to 20 MHz without requiring gate cime selection, ease of use and speed are increased both in visual readout and automatic systems applications. For tachometry applications, a rear panel X60 multiplier converts data from pulses per second to revolutions per minute to give a high resolution industrial measurement. Remote programming and digital output are also included.

The 5323A achieves its benefits of speed, resolution, and automaticity by measuring input signal period, then taking the reciprocal, which is frequency, using built-in computing circuits.

A wide selection of measurement times are provided: short times for high speed applications and long times for greater accuracy. Since the 5323A is nor limited to either counting or gating in decade values only, additional speed may be achieved by using only the minimum measuring time necessary to obtain the accuracy required.

A full complement of the other features normally found in Hewlett-Packard's latest electronic counters is also provided. Detailed information in the technical dara sheet is available upon request, or see Hewlerr-Packard Journal, May 1969.

SELECTION GUIDE TO FREQUENCY AND TIME STANDARDS

FREQUENCY \& TIME STANDARDS

Hewletr-Packard offers Frequency Standards \& clocks which provide accu rate frequency, time interval and timekeeping capabilities. Further, HewlettPackard standards provide means for comparing these quantities against national standards such as the National Bureau of Standards (NBS) and the U.S. Naval Observatory. Units of frequency or time cannot be kept in a vault for ready reference. They must be generated for each use, hence be regularly compared against recognized primary standards.

Frequency Standard \& clock sysrems manufactured by Hewlett-Packard are used for control and calibration at observatories, national centers for measurement standards, physical research laboratories, missile and satellite tracking stations, radio navigation systems, manufacturing plants and radio monitoring and transmitting stations.

Types of frequency standards

At the present time, three types of frequency standards are in common use. These are:

1. The cesium aromic beam controlled oscillator.
2. The rubidium gas cell controlled oscillator, and
3. The quactz crystal oscillator.

Hewlett-Packard is the only manufac. tures of all three types of frequency standards. Of these three standards. the first is referred to as a primary frequency standard and the last two as secondary frequency standards. The distinction between a primary standard and a secondary standard is that the primary standard does not requise any other reference for calibration; whereas the secondary standard requires calibrations bort during manufacturing and at cer. tain intervals during use depending on the accuracy desired.

Cesium beam frequency standard

Cesium beam standards are in use wherever the goal is a very high accuracy primary frequency standard. In fact, the NBS frequency scandard itself is of the cesium beam type. The cesium beam standard is an atomic resonance device which provides access to one of nature's invariant frequencies in accord with the principles of quanturn mechanics. The cesium standard is a true primary standard and requires no other reference for calibration.
The HP Mode! 5061A is a portable cesium beam standard proved capable of
realizing the cesium transition frequency to the same levels of accuracy and long. term stability usually achieved by largescale laboratory models. Its short term stability has now been improved to nearly match that of the Rubidium Frequency Standard.
periodic frequency checks are needed to maintain an accurate quartz crystal frequency standard.

Stability

Stability is specified in two ways, long. term and short-term. Long-term stability

TABLE 1
Comparison of Frequency Standards

Standaza	Prinolpal construotlan feature	Prlmolpal advantaga
Cesium Atomic Beam Resona- tor Controlled Oscillator	Atomic beam interaction with felds-minimum disturbances of resonating atoms due to colli- sions and extraneous influences	High intrinsic reproducibility and long-term slability. Desig. nated as primary standard for dafinition of time interval
Rubidium Gas Cell Resonator Controlled Oscillator	Gas buflered resonance cell with optically pumped state selection	Compact and light weight. High degree of short-term slability
Quarta Crystal Oscillator	Piezoelectrically active quartz crystal with electronic stabiliza- tion	Very compact, light and rugged. Inexpensive

Rubidium frequency standard

Rubidium frequency standards feature a high order of both short-term and long-term frequency stability. These are borh important in certain fields such as deep-space communications, satellite ranging, and doppler radar. Also, rubidium standards are noted for being of smail size.

Rubidium standards are similar to cesium beam standards in that an atomic resonant element prevents drift of a standard frequency quartz oscillator through a frequency lock loop. Yet the rubidium type is a secondary standard. Since the atomic resonant frequency of a rubidium gas cell is dependent upon gas mixture and gas pressure in the cell, it must be calibrated and then it is subject to a small? degree of drift. The drift is typically 100 times less than the best quartz crystal standard.

Quartz crystal oscillators

Quartz oscillators are used in virtually every frequency control application. They are an integral part of atomic standards and are used extensively as independent frequency sources for the less demanding applications. The quartz oscillator designs have improved over the years to provide a relatively low cost, small size source of frequency.

However, an ínherent characteristic of crystal oscillators is tinat their resonant frequency changes with time. After an initial aging period of a few days to a month, the rate of change of frequency or aging rate is almost constant. Over a long period the accumulated drift could amount to a serious etror, and
refers to slow changes in the average frequency with time due to secular changes in the resonator and is usually expressed as a ratio, $\Delta i / f$ for a given period of time. For quartz oscillacors this is often termed "aging rate" and specified in "parts per day." Rubidium standards being more invariant are specified in "parts per month." On the other hand, Cesium Beam Standards are primary units having little or no change or drift. Therefore, these primary standards are given a specified accuracy to within which the frequency is guaranteed.
Short.term stability refers to changes in frequency over a time sufficiently shork so that change in frequency due to long term effects is negligible.
Short-term stability is usually specified as the rms average of a number of mea. surements each over a specified period of time and this averaging time should be given. The longer the averaging time used, the more any deviation is obscured since the average must approach the mean or nominal outpur frequency in the long run. Hewlett-Packard specifies the short-term stability of its standards in accordance with the definition developed by the National Bureau of Standards and others.* Measurements conforming to this definition can be easily made with available test equipmenc including the HP 5360A Computing Counter. Figure 1 is a comparison of the short term stability of various frequency standards.

[^38]

Figure 1. Short-term stability of various standards.

Spectral purity

Spectral purity is the degree to which a signal is coherent or, expressed in another way, a single frequency with a minimum of side band aoise power. It is greatly desirable to have high spectral purity in a standard signal. This is especially important in applications where the standard frequency is multiplied to very high or microwave frequencies so that the frequency spectrum of the sig. nal will be reasonably narrow

The signal and its frequency spectrum are analogous to a frequency modulated wave where the total power is constant. If the frequency multiplying device is broadband, the ratio of the total sideband power to the signal power increases as the square of the multiplying factor. With frequency mulkiplication the signal-to-noise ratio will be degraded 6 dB per octave and 20 dB per decade.

Herrlett-Packard oscillators are designed to give exceptional spectral purity. One method of indicating spectral purity is with a phase noise plor. Figure 2 shows the performance of the HP 5061A, Opt. 04 Cesium Beam Atomic Frequency Standard. (See Hewlett-Packard Application Note 52, "Frequency and Time Standards," pages 3.4 and 5.1 for details of noise measurement).

Frequency standards and clocks

Frequency standards and clocks have no fundamental differences-they are based upon dual aspects of the same phenomenon. Time and frequency are intangible quantities which can be mea. sured only with respect to some physical quantity. The basic unit of time, the second, is defined as the duration of $9.192,631,770$ periods of transition within the cesium arom. Conversely an unknown frequency is determined by counting the
number of cycles over the period of a second.

The U.S. Naval Observatory (USNO) determines and keeps standard time for the United States. The Master Clock at the Observatory, one of the world's most accurate clocks, is made up of an ensemble of more than a dozen HerrlettPackard cesium beam frequency standards. The USNO directly controls the distribution of precise time and time interval (frequency) from Naval radio stations, LORAN-C (operated by U.S. Coast Guard). Omega and Satellite Navigation Systems. Herilett-Packard porrable cesíum standards, "rlying clocks," are used to periodically check the synchronization between these sta. tions and the Master Clock.

Hewlett-Packard cesium beam stan. dards are widely used to drive precision clocks because of the extremely good long-term stability and reliability of this primary standard. If a quartz oscillator or other secondary standard is used, it must be evaluated for rate of drift and be kept carefully corrected.

Frequency comparison by VLF broadcast

One excellent way to keep a local system's frequency-hence, time intervalreferenced against master time interval is by use of a LF or VLF standard broadcast such as those of the Nationa! Bureau of Standards and the Naval Oh. servarory. A prime means for doing this with ease and convenience is the HP 117A Receiver which is designed to mon!ror the NBS 60 kHz broadcast from WWVB. This unit is a complete system in itself. The strip chast produced by the 117 A iecords minute by minute the results of a precision phase comparison (resolution, $1 \mu \mathrm{~s}$) of the local signal against the received signal to show frequency offset or error of the local standard.

Time scale

The time interval of the atomic time scale is the International Second, defined in October 1967 by the Thirteenth General Conference of Weight and Measures. Starting in January 1972, Uni. versal Time, Coordinated (UTC) will go to zero offset (standard frequency). This new UTC is broadeass from the NBS Station of WWVB (60 kHz). Therefore. the HP 117A VLF Receiver will provide direct comparison to the internationally agreed upon time (frequency) reference.

Standby power supplies

Minimum down-time, important for any system, is vital to a time standard. Its worth depends directly on continuity of operation. Noninterrupted operation is also important to ultraprecise quartz oscillators.

Hewlett-Packard standby power supplies ensure conrinued operation despiee line interruptions, and operate over a range of ac line voluge to supply regulated de to operate frequency standards and frequency dividers and clocks. The batteries in the supplies assume the full load immediately when ac power fails.

Figure 2. 5061A Opt. 004 Phase Noise.

Hewlett-Packard time and frequency standard

The Hewlett-Packard House Standard has as its basic reference the HP 5061 A Cesium Beam Standard. The output is continually compared in phase with the U.S. National Bureau of Standards Frequency Standard (NBSFS) at Boulder, Colorado by reception of NBS standards stations WWVB and WWVL via HP 117A Receivers. The standard may also be compared to the Li.S. Navy's VLF stations. Frequency is maintained in agreement with NBS/USNO coordinated time scale with an accuracy of parts in 1013. Studies bave shown this standard to rank among the world's most accurate.

Time is maintained relative to the Naval Observatory and the National Bureau of Standards' master clocks to an accuracy of better than ± 2.5 microsec . onds. This accuracy is verified with Fly. ing Clock trips from the Naval Observa. tory to both Hewlett-Packard Santa Clara Division and Hewlett-Packard Geneva. Both locations have been designated U.S. Naval Observatory Time Reference Stations

Advantages:

High spectral purity
Well-buffered outputs
Aging $<5 \times 10^{-10}$ per day

Uses:

In-house frequency and time standards
Microwave spectroscopy
Advanced navigation, communication systems
Models l05A and B Quartz Oscillators provide state-of theart performance in precision frequency and time systems because of their excellent long and short term stability character. istics, spectrally pure outputs, unexcelled reliability, and ability to operate under a wide range of environmental conditions. They fill a need for a small and economical yet highly stable precision quartz oscillator for frequency and time standards. Both models can be operated from the ac line; the 105 B has a built-in 8 -hour standby battery for uninterrupted operation should line power fail. Both have $5 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz buffered sinusoidal outputs with excellent short term sta. bility (5 parts in $10^{12} \mathrm{rms}$ for 1 s averaging time) and aging rate (<5 parts in 10 ro per day).
The $105 \mathrm{~A} / \mathrm{B}$ features rapid warm-up. Typically, the oscillator will be within 1 part in 10^{9} of the previous frequency in 20 minutes a fter an "off" period of 24 hours. The basis of these oscillators is an extremely stable 5 MHz , Sth overtone quastz crystal developed by Hewlett-Packard. New technologies in the crystal mounting and packaging have resulted in a cleaner crystal which in turn has a lower aging rate. The crystal, oscillator and AGC circuit are all enclosed in a proportional oven which reduces the temperature effects on these components and circuits.
The $2.7^{\prime \prime} \times 2.7^{\prime \prime} \times 9.4^{\prime \prime}$ package containing the oven en. closed crystal oscillator with AGC circuit and buffer amplifier are available separately as a component oscillator, the $\mathrm{K} 07-$ 105 A , for use in equipment where a high quality 5 MHz source is required. Details are available from Hewlett-Packard sales offices.

Pacticular care was taken to provide a spectrally pure $\$ \mathrm{M} H z$ output which, when multiplied high into the microrave region, provides signals with spectra only a few cycles wide. Spectra less than 1 Hz wide can be obtained in X-band (8.2 to 12.4 GHz). The stability and purity of the S MHz ourput make it suitable for doppler measurements, microwave spectroscopy, and similar applications where the reference frequency musc be multiplied by a large factor.

Specifications

Outputs: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz} ; 1 \mathrm{~V}$ rms into 50Ω front and rear connectors.
Clock output: 1 MHz or $100 \mathrm{kHz} ; 0.5 \mathrm{~V}$ rms into $1 \mathrm{~K} \Omega$, rear connecror. Normally' supplicd wired for 1 MHz output.
Frequency stabllity:
Aging rate: $<5 \times 10^{-10}$ per 24 hours.
Short-term stability: for 5 MHz output only.

T (s80)	$\sigma_{\text {at/ } / 2}(2,7)$	$\sigma_{\Delta t}(2, \tau)$
10^{-2}	1.5×10^{-10}	1.5×10^{-12}
10-1	1.5×10^{-11}	1.5×10^{-12}
10°	5×10^{-12}	5×10^{-12}

Temperature: $<2.5 \times 10^{-0}$ total change $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Load: $\pm 2 \times 10^{-11}$ open to short circuit, $50 \Omega \mathrm{R}, \mathrm{L}$ or C load change.
Supply voltage: $\pm 5 \times 10^{-11}$ for $22-30 \mathrm{~V}$ dc from 26 V dc reference and for $115 / 230 \mathrm{~V} \pm 10 \%$.
Warm-up (at $25^{\circ} \mathrm{C}$): to within 1×10^{-7} of previous frequency in 15 min., 1×10^{-8} in $20 \mathrm{~min}, 1 \times 10^{-8}$ in 30 min .
Distortion ($5 \mathrm{MHz}, 2 \mathrm{MHz}, 100 \mathrm{kHz}$) below rated output:
Harmonic: $>40 \mathrm{~dB}$.
Nonharmonic: $>80 \mathrm{~dB}$.
Slgnal-to-noise ratlo: for 1 and $5 \mathrm{MHz}_{1}>90 \mathrm{~dB}$ in a 30 kHz noise bw (5 MHz outpur filter bo is approximately 100 Hz).
Frequency adjustments:
Fine: 5×10^{-8} range with digical dial reading parts in 10^{10}.
Coarse: 1×10^{-6} front panel screwdriver concrol.
Phase locking! external $\div 5 \mathrm{~V}_{10}-5 \mathrm{~V}$ allows $>2 \times 10^{-8}$ frequency control for locking to external source.
Environmenta:
Temperature, operating: $0^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$.
Temperature, storage: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(+50^{\circ}\right.$ for 105 B$)$.
Altitude: $50,000 \mathrm{ft}$.
Shock: AIIL-T-21200 (30 G's).
Vibration: MLL-STD- 167 and MIL-T-21200.
Electromagnetlc compatlbility (EMC): MIL.1.6181D.
Standby supply capacity: Model 105 B only, 8 hours as $25^{\circ} \mathrm{C}$ ambient temperatures.
Power requirements: $115 / 230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}$ at 17 W (70 W warm-up) for 205 A . For 105 B add 1 W for float charge and 12 W for íast charge. 22.30 V de at 6.4 W (10.3 W warm-up).
Dimensions: $3 \cdot 15 / 32^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $111 / 4^{\prime \prime}$ deep ($88 \times 425 \times$ 286 mm).
Weight: 105 A -net, $16 \mathrm{lbs}(8 \mathrm{~kg}$); shipping, $23 \mathrm{lbs} 10,5 \mathrm{~kg}$). $105 \mathrm{~B}-\mathrm{net}, 24 \mathrm{lbs}(11 \mathrm{~kg})$; shipping, $31 \mathrm{lbs}(14 \mathrm{~kg})$.
Price: Model 105A, \$1650; Model 105B. \$1950.

FREQUENCY \& TIME STANDARDS

RUBIDIUM FREQUENCY STANDARD
Compact, lightweight atomic standard Models 5065A, E21.5065A

Advantages:

Low price atomic standard.
Long term drift rate of $<1 \times 10^{-11} / \mathrm{mo}$.
Short term stability of $<5 \times 10^{-13}$ for 1005 average.
Calibrated fine frequency adjustment.
Battery standby power guards against power failure (op. tional).
Built in clock and digital divider (optional).
Rubidium Vapor Frequency Reference warranted 3 years.

Uses:

Precise frequency source for systems operating in the radio and TV spectrum.
Precision timekeeping.
House standards and calibration laboratories.
Doppler radar.
The HP Model 5065A is an atomic-lype secondary frequency standard which uses a rubidium vapor resonance cell as the stabilizing element. As a result, ir has long term stability of better than 1×10^{-11} per month which exceeds that of high quality quartz oscillator frequency standards by 90 to 100 times. Furthermore, it has excellent short term scability. These features contribute to its desicability as a coherent signal source, as a master oscillator for radio and radar systems where special sequirements for stability and/or narrow bandwidth must be met, as a precision timekeeper where the bettes performance of a cesium beam primary standard is not required, and as a house frequency standard for improved accuracy with ferver NBS calibrations compared to that required with quartz standards.

Front panel controls and circuit check meter of the 5065 A are protecred by a panel door. The magneric field controi provides fine frequency adjustment with which the frequency can
be set to a precision of better than 2×10^{-12} without reference to a chart. The 5 MHz low noise quartz oscillator is phase locked to the atomic frequency and provides the standard 5 $\mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz outputs. The circuit check meter with selector switch monitors key voltages and currents for routine maintenance readings, calibration procedures, and fault finding.

The 5065A is designed for assured operation-to give the user confdence that the standard outpur signals are correct and locked to the atomic frequency. Logic within the unit maintains power to a "continuous operation" light on the front panel. If operation is interrupred, even momentarily, for any reason the light goes out and stays out until manually reset. An integrator limit light warns when the frequency correcting servo loop is approaching the limit of its dynamic range.
A time standard option generates 1 pulse per second available at a front panel BNC connector and drives a clock movement indicating hours, minutes and seconds. The clock pulse is adjustable over a range of 1 second in $1 \mu \mathrm{~s}$ increments to permit precise synchronization with another clock using a counter or oscilloscope. A screwdriver control allows continuous fine adjustment over any $1 \mu \mathrm{~s}$ range. The clock can also be automatically ser to a $10 \pm 1 \mu \mathrm{~s}$ delay with respect to an external clock pulse.
An optional built in standby battery assures continuous operation of the HP 5065 A in the event of brief power failures. The 5085A or K02.5060A Power Supplies will provide battery power for longer periods.

The HP Model 5065A is contained in a small sized package and is lightweight in comparison to a cesium beam standard. Additionally, the rubidium resonance cell is much more trequency stable than quartz oscillators while subjected to shoch: and vibration. Its environmental specifications include tempera. ruse, shock, vibration, EMC, humidiry, and magnetic held effects.
The most significant module in the HP s06sA in terms of performance is the Rubidium Vapor Frequency Reference (RVFR). This cemperature controlled, magnetically shieided unit which includes the Rbsi lamp, Rbss filter cell, microwave cavity with $\mathrm{Rb}^{5 i}$ gas cell and a photo sensitive detector can be expensive to replace. It has been designed for maximum pos. sible reliability. Field experjence, including several million hours operation, have demonstrated this reliability and the module is now warranted for a period of three years. This increased warranty protects the owner in the event of a random failure.

E21.5065A

Portable Time Standard

E21.5065A Portabie Time Standard is a complete system for precision timekeeping and for transporting time from one location to another. It consists of the 5065A Rubidium Standard with digital clock and divider (option 01) and the K02.5060A Power Supply with 6 or more hours standiy capability. The K02.5060A is described in derail elsewhere in this catalog. The component units are held together by side bars, and the inter. connecting cables are protecied by a back cover.
Weight: $110 \mathrm{lb}(50 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ (425 mm) wide, $12-13 / 16^{\prime \prime}$ (326 mm) high. $191 / 2^{\prime \prime}$ (495 mm) deep
Price: $\$ 12,225$

HP $5065 A$ shown with Option os consisting of clock and standby baltery

Frequancy stablity:
Long term: $\pm 1 \times 10^{-11}$ per month (maximum limit of drift rate).
Short term (s MHz oulpur):

$\frac{\Delta f}{f}($ Sed. Dev. $)$	Avg. Time
$<7 \times 10^{-12}$	1 sec.
$<2.2 \times 10^{-12}$	10 sec.
$<7 \times 10^{-11}$	100 sec.

Calibration aceuracy; set at factory to $\pm 1 \times 10^{-11}$. Tunability:

Coarse frequency synthesizer adjustment:
Range: 10^{-7}. Resolution: $<2 \times 10^{-8}$, thumbwheel adjusiable.
Fine frequency magnetic field adjustment:
Range: 2×10^{-9}. Resolution: 2×10^{-18}.
Warm-up; within 1×10^{-19} in one hour and 5×10^{-11} in 4 hours after 24 hours "of" time at $25^{\circ} \mathrm{C}$.
Outputs:
Frequencies: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$.
Voltage levels: $>1 \mathrm{~V}$ rms into 50 ohms.
Connectors: BNC front and rear.
Distortion ($5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$) belorv rated output: Harmonic: > 40 dB .
Nonharmonic: $>80 \mathrm{~dB}$.
Slgnal-to-noise ratio: for 1 and $5 \mathrm{MHz},>87 \mathrm{~dB}$ at rated output (in a 30 kHz noise bw). 5 MHz output filter bw is approx. 100 Hz .
Environmental:
Temperature, operating: 0° to $50^{\circ} \mathrm{C}$. Frequency change is $< \pm 4$ $\times 10^{-11}$ from frequency reference at $25^{\circ} \mathrm{C}$.
Temperature, nonoperating: -40° in $+75^{\circ}$. (With Options to $50^{\circ} \mathrm{C}$.)
Production units have passed tests as follows:
Humidity: 0 to 95% relative humidite.
Vibratlon: MIL-STD-167 and MIL-E-5400, Curee 1, with isola. tors.
Shack: MIL-T-21200, and MIL-E-5400 (30 G's)
Electromagnetic compatibility (EMC): MIL-1.6181D and MIL-STD-461, Class A.
Altitude: frequency change is $\left\langle 5 \times 10^{-11}\right.$ from 0 to 40.000 ft . Frequency stability due to:

Magnetic fields: $<5 \times 10^{-12}$ for 1 gauss de change or 1 gauss peak ac, $60 \pm 10 \% \mathrm{~Hz}$ and $400 \pm 10 \% \mathrm{~Hz}$.
Line voltage: $<\frac{4}{} \times 10^{-1}$ over specified input range.
Power: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 5010400 Hz or 23 to 30 V de. Approx. power required:

Without options
Option 001
Option 002
Option 003

24 V dc	115 Vac
35 W	49 W
Add 8 W	9 W
0 W	6 W
Add 8 W	15 W

Accessories furnished: power cord, $6 \mathrm{ft}(180 \mathrm{~cm})$ detachable. Rack Mounting Kit, HP 50G0-0775. Accessory Kit, HP 05065.

5065A
6066, includes Micon connector adapter male-male, mating connector HP 1251.0126 for EXT de input. 3 circuit board extenders, test cable, and a special coil-tuning screwdriver.
Dimensions: $163 / 4$ " (425 mm) wide, $5.7 / 32^{\prime \prime}(132.6 \mathrm{~mm})$ high, $163 / \mathrm{s}^{\prime \prime}$ (416 mm) deep.
Waight: net, $34 \mathrm{lbs}(15,4 \mathrm{~kg})$: shipping, $52 \mathrm{lbs}(23,5 \mathrm{~kg})$. Option 001 add $2 \mathrm{lbs}(, 9 \mathrm{~kg})$; Option 002 add $3.5 \mathrm{lbs}(1,6 \mathrm{~kg})$.
Accessories available: EXT de cable: connects 5065 A to 5085 A Standby Supply. HP 103A-16A, \$21.50.
Price: $\$ 7,500$.
Warrenty: 1 year except 3 years for RVFR.

Option 001 time standard

Clock pulse:
Rate: 1 pulse per second.
Amplitude: +10 V peak $=10 \%$.
Width: $20 \mu \mathrm{~s}$ min.
Rise time: $<50 \mathrm{~ns}$.
Fall time: $<1 \mu \mathrm{~s}$.
Jitter: $<5 \mathrm{~ns}$ rms.
All specs are with 5008 load.
Output: front-panel BNC.
Synchronization: auromatic to $10 \pm 1 \mu 5$. delajed from reference input pulse (rear BNC). Manual adj. to $\pm 50 \mathrm{~ns}$. Reference pulse must be $>+5 \mathrm{~V}$ with a rise time <50 ns and width $>0.5 \mu \mathrm{~s}$.
Clock movement: 24 -hour with sweep second hand.
Price: Option 001, add $\$ 1.500$.

Option 002 standby power supply

Capacity: 10 -minute minium at $25^{\circ} \mathrm{C}$ after full charge (incl. Oprion 013.
Charge control: front panel, Fast Charge-Float-Reset switch.
Indicator: a front-panel ight flashes when ac power is interrupted and batrery is being used. A continuous light indicates a fast charge condition.
Price: Option 002, add $\$ 300$.

Option 003

(Combines Options 001 and 002)
Price: Option 003, add $\$ 1,800$.

Performance of quartz oscillator only

(Rubidium Control Loop Open)
Aging rate: $\pm 5 \times 10^{-10}$ per 24 hours.
Frequency adjustments:
Fine adjustment: $5 \times 10^{--}$range, with dial readings of parts in 10^{10}.
Coarse adjustment: 1 part in 10^{n}, screwdriver adjustment at front panel.
Stability:
As a function of ambient temperature: frequency change is less than 2.5×10^{-8} total from 0° to $+50^{\circ} \mathrm{C}$.
As a function of load: $\pm 2 \times 10^{-11}$ from open circuit to short, 50Ω R, L, of C load change.
As a function of supply voltage: $\pm 5 \times 10^{-11}$ for 23 to 30 V ds from 26 V dc reference, or for $115 / 230 \mathrm{~V}$ ac $\pm 10 \%$.

Advantages

Accuracy of ± 7 parts in 10^{14}
Sertability of 1×10^{-12}
Shorr term stability of 5×10^{-15} (1 s an'g.)
The Hewlett-Packard Model sogiA is a compact, self-contained primary standard which has, since is inuriduction is i 967 . become the standard of worldwide frequency and rimekeeping. Its proven periormance has made feasible many advanced systems requiring microsecond iming such as precision mavigation (to bundred foot accuracy) and airborne collision avoidance.

Now, a new beam tube design concept including dual beam optics, improved magnetic shielding, and ruggedizarinn has resulted in sig. nificant improvements in accuracy, short term stability, setrability and environmental performance. This tube retains the unique cesium standard feature of sirtually no long tern instability or aging. This new beam ube is offered as Option 004 in new units and is als, available as a retrofir kir for units already in use.

The intrinsic accuracy is improved to $7 \times 10^{-4}\left(\mathrm{~s} \times 10^{-12}\right.$ exclud. ing environmenal effects) which provides an excellent reference standard without need of calibation. If desired, such as in many timekecping applications, two or more units may be set or calibrated of each other. The new setability specification of 1×10^{-13} means wo calibrared units (olncks) would accumulate less than 10 nann. seconds per day time errot (exeluding environmental effects). A poovision for degrussing the ube without adversely afferting the instrumen: operation allow's remotal of any residual magneat feld in the tube. This is important in achieving the new sertablity performance. The K24-506iA Degausser accessory unit is available for use with instruments using the new high performance cube.

The shone com stability specification is improved by a factor of ten with the new wbt. The 5×10^{-13} (1 sec av g) periormance compares wery favorably with that of rubidium type standards which are noted for their excellent shont term stability. An imponsant ad. vantage from the better short term stability is the capability to make measurements wa 1 signat precision of $!\times 10^{-1 \underline{1}}$ in about one minute compared ") the two hours required previously.

Whan the 5061A Prinary Frequency Standard, the beam tube utilizes a quantum mechanical transition in the cesium 133 atom to stabilize a high quality quartz uscillator through a closed•loep, self. checking conisol circuit yiedding exceptional accuracy. The 5061A has provision for an optional internal clock and digital dividet and for a battery with $1 / 2$ hour standby power eapaciry and automatic charging.
The quariz orystal oscillator used in the 5061 A has superior characceristics even withour control by the atomic resonator. The gtartz ascillator portion of this cesium beam standard is identical to the HP 105 A .

The s061A is compact and portable, no complex perroanent installation is required.

Accuracy and intrinslc reproducibllity

The daia in figure 1 is based on over 250 independently aligned sandard Model 5061A's. It demonstrates that the cesium beam ube frequency perturbations are so small that all units ate within $\pm 5 x$ 10^{-23} of each other and the National Bureas of Standarcis. The no sigma standard deviation is 1×10^{-22} between the standards. This performance is intrinsic to the 3061 A primary frequenc! standard and is achieved without calibration.

Rellability and warranty

Over 10 million operational hours of history have proven she performance and reliability of Hewlet-Packard cesium bean standards in various worldwide applications. The units have provided dependable microsecond accurag' in aircralt, ship, and fixed environmen:5.

A 3 year instrument warrants is pxosided as a result of the 5061A's proved field reliability. Thas warranty includes the replace. ment of the cesium beam tube if it should fail with:n 3 rears. Typically' the beam zube life is in cxcess of a years.

Applications

Hewlett-Packard Cesium Bearn Sundares are used in critical ap. plications such as Apollo timing and misslle macking where their therent reliabilisy and accuracy play an important role. They are also used in worldwide navigation stations (Loman C and Omega), sarious national obscruatories and scientife laboravories around the world. calibration labs, and in the feld as very accurate, portable frequenc; and time standards fer instrument and click calibration. Other areas of application include precision mapping, long baseline interferometry, investigation of radio tronsmission pheramena, a;d aircraft collision avoidance spstems. As indicated above. suicess of

Figure 1.
NBS VIA VN

[^39]the cesium beam standard in each of these applications is dependent on its high reliability and accuracy.
The improved characteristics of the new bigh performance tube will make possible improvements in the performance of systems which depend on precise time and fequency.

E21-5061A Flying Clock

The E21.5061A consists of a 5061A Cesium Beam Standard and a K02-5060A Power Supply (page 244) joined together to make one portable unit. The power supply, which can be operated from 6 or $12 \mathrm{~V} \mathrm{dc}, 24$ to 30 V dc , or $115 / 230 \mathrm{~V} \pm 10 \%, 50$ to 400 Hz , will provide approximately 7 hours standby power (from sealed nickel-cadium batteries) for the 5061 A Cesium Beam Standard.

This wide range of operacing power capabilities enables the E2I5061A to operate on local power in virtually any country in the world. Operation is approved aboard commercial aircraft. The seven hours of standby capability make it possible to travel where there is no power available and, of course, allow the E21-5061A to con. veniently be transported between power sources and operated in almosi any rehicie.

The improred settability and magnetic field (10 times better) performance of Option 004 significantly increases the accuracy of this portable standard. The E21-5061A Option 004 is a reliable truly portable primary frequency standard. And with Option 001 in the 5061A, it becomes a complete "Ajuing clock" (see Hewlett. Packard Journal, August 1966 and December 1967).

Specifications

5061A Cesium Beam Standard

Note: Specifications for the 5061 A with the high performance, Option 004, Cesium beam tube are given first and enclosed in brackets [] where they differ from those of the standard instrument.
Accuracy: $\left[7 \times 10^{-2}\right], 1 \times 10^{-11}$; maintained when subjected to temperatures from 0 to $50^{\circ} \mathrm{C}$ magnetic fields up to 2 gauss or any' combination thereof.
Reproducibility: $\left[\pm 3 \times 10^{-12}\right]$, $\pm 5 \times 10^{-13}$.
Sattablity (frequency): [$\pm 1 \times 10^{-28}$ using K24-5061A degausser], $\pm 7 \times 10^{-13}$.
Long-term stability (for life of cesium tube): $\left[\begin{array}{lll} \pm 3 & 10^{-12}\end{array}\right]$,上 5×10^{-13}.
Short-term stablity

Time constanti adjustable slide switch for 1 and 60 seconds, recommend 1 s for nomal operation. Use the longer time constant for improved short-term stability in controlled environments.
Warm-up time: [30] 45 minutes to fully operational from $25^{\circ} \mathrm{C}$ ambient temperamre.

Outputs

Frequencies: $3 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$.
Voltage levels: >1 V ims into so ohms at $S \mathrm{MHz}, 1 \mathrm{MHz}$, 100 kHz .
Connectors: BNC front and rear for $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$.
Harmonic distortion: ($5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$) down more than 40 dB from rated output.
Nonharmonically related output: (s MHz, $1 \mathrm{MHz}, 100 \mathrm{kHz}$) down more than 80 \&B from rated ouiput.
Signal-to-nolse ratio: for 1 and $5 \mathrm{MHz},>87 \mathrm{~dB}$ at rated output (in a 30 kHz noise bandwidth, $5 \lambda \cdot(\mathrm{~Hz}$ output fitter bandwidih is approxionately 100 Hz).

Quartz oscillator

The high quality internal oscillator may be used without turning on the cesium beam tube. See page 237 for specifications.

General

Warranty: 3 years, including the cesium beam tube. 1 year for optional battery and clock.
Environmental
Temperature: operating, 0 to $50^{\circ} \mathrm{C}$. Stability, over full operating compersture range, $< \pm 5 \times 10^{-47}$ change from $25^{\circ} \mathrm{C}$ reference. Nonoperading, -40 to $+75^{\circ} \mathrm{C}$.

Production units have passed type testing as follows:
Humidity: 0 to 95% operating.
Aftitude: $<2 \times 10^{-13}$ change up to $40,000 \mathrm{ft}$ operating.
Magnetic! dc field, [$\pm 1 \times 10^{-19}$ per gauss], $< \pm 2 \times 10^{-12}$ any orientation in 2 gauss field.
AC Fields, $< \pm 2 \times 10^{-12}$ for 2 gauss peak for 50,60 or 400 $\mathrm{Hz}(\pm 10 \%)$.
Shack: MIL-T-21300, Class 1 and MLL-E-S400 (30 G's).
Vibration: N(1L.T-21200 with isolators and MIL-S'TD-167.
EMC: MIL-STD.461A and MLL-1-G181D.
Power: 115 or $230 \mathrm{Vac} \pm 10 \%$, 50 to 400 Hz , or 22 to 30 V dc. Approximate power required: 39 watts de, 75 watts ac, with Option 003.
Net welght: 60 lbs Option 001, add 2 lbs Option 002, add 5 lbs. Option 004, add 8 lbs.
Accessories furgished: power cord, derachable. Rack mounting kit, two extender boards, test cables, maintenance tools, and a mating connector for Ext. dc inpus.
Accessories avallable: ext, de cable, comnecrs 5061 A to 5085 A standby supply, $103 \mathrm{~A} \cdot 16 \mathrm{~A}, \$ 21.50$. K24.5061A Degausser required with Option 004 to achieve settability specification.
Price: HP Nodel 5061A, \$14,800.

Option 001 Time Standard

Clock pulse
Rate: 1 pulse per second.
Amplitude: +10 V i 10% peak.
WIdth: $20 \mu \mathrm{~s}$ min.
Rise time: < 50 ns.
Fall time: <1 $\mu \mathrm{s}$.
Jitter: <5 ns rms pulse-to-pulse.
All specs are with 90 ohm load.
Synchronization (rear BNC): automatic, $10 \mu s(\pm 1 \mu s)$ delayed from reference input pulse. Manual adj. to $< \pm 50$ ns. Reference pulse musi be $\geq+g v$, with a rise time of $<50 \mathrm{~ns}$.
Clock movement: 24 hour with sweep second hand.
Price: Option 001, add 51500.

Option 002 Standby Power Supply

Capacity: 30 minutes minimum (1 hour typical) at $25^{\circ} \mathrm{C}$ at finll charge. Includes Option 001.
Charge control: automatic when ac power is connected.
Indicator: a front panel light flashes when ac power is intermepted and batuety is being used.
Price: Option 002, add $\$ 600$.

Option 003 (combines Option 001 and 002)

Price: Option 003, add $\$ 2100$.

Option 004 High Performance Cesium Beam Tube

Includes high performance tube and necessary circuit changes to give improved accoracy, reproducibility and scability performance shown above for Option 204. Options 001,002 or 003 may be ordered with Option 004. (High performance retrofit kit avaiJable to replace the seandard beam tube. Consult Hewlett-Packard field sales offices for details.)
Price: Option 004, add $\$ 2000$.

Advantages:

Parts in 10^{11} accuracy possible over 24 -hour period
Provides traceability to NBS
Plots minute-to-minute phase record
Provides all equipment needed for frequency comparison

Uses:

Offser and drift determinations for crystal oscillators Quick and easy checks of counter time.base accuracy Monitors atomic standards against NBS
The HP 117A VLF Comparator measures the frequency off. set of a local standard frequency source against a standard radio frequency to an accuracy that can reach 2 parts in $10^{3 n}$ in a 24 -hour period or parts in 10^{12} over longer periods. The HP 117A thus provides a link between house frequency standards and the Boulder, Colorado laboratories of the National Bureau of Standards (NBS) via station WWVB which broadcasts at 60 kHz with coverage of the entire continental United Staces. The modified H44-117A may be used to receive the 75 kHz broadcasts of HBG, Prangins, Switzerland.

The strip chart record of the HP 117A provides a precision phase comparison to show frequency offset of the local standard permitting its calibration to parts in 10^{10} in a few hours or long term monitoring to measure oscillator drift rate. A transparent template overlayed on the recording enables the operator to read at a glance the frequency offser of his local standard. A front panel meter shows relative level of the received signal, proper adjustment of the phase-locked oscillator and phase difference. Full-scale chart width and meter reading can be set for either a $50 \mu \mathrm{~s}$ or $16.2 / 3 \mu \mathrm{~s}$ phase difference.

Rear panel outputs provide for connection to external meters or recorders. An external recorder with a chart speed of several inches a minute can be used to record the amplitude modulated time code giving time of day and LiT2 time corrections broad. cast by WWVB.

Method of operation

The VLF Comparator is a complete system for comparison of a received standard broadcast signal with a locai standard. It consists of a receiver, an electronic servo-controlled oscillator which functions as a narrori band tracking filter (and assures a continuous output signal despite noise and interference), a linear phase comparator and a strip chart recorder. A loop ani-
tenna with a built-in preamplifer can be located up to 300 meters from the comparator. The cable carries power to the preamplifier.

Specifications

Recelved standard frequency: 60 kHz , NBS Siation WWVB.
Sensitivity: $1 \mu \mathrm{~V}$ rms into 50Ω. Minimum field strength, $60 \mu \mathrm{~V} /$ meter.
Local standard input: $100 \mathrm{kHz}, 1 \mathrm{~V}$ rms into $1 \mathrm{~K} \Omega$ (divider to accept 1 MHz available as option).
100 kHz phase-locked output: 5 V rectangular positive pulses into $5 \mathrm{~K} ?$ phase-locked to received signal.
60 kHz test output: For self-checks of the 217A.
Recorder ouputs: Phase comparison, 0.1 mA de into 1400Ω. Rela. tive signal strength, 100 mV dc from $2 \mathrm{~K} \Omega$.
Overall phase stability: $\pm 1 \mu \mathrm{~s}, 0-50^{\circ} \mathrm{C}$.
Chart speed: $1 \mathrm{in} / \mathrm{hr}$ (6 or $12 \mathrm{in} / \mathrm{hr}$ available at excra cost).
Chart width: $16 \frac{2}{3}$ us or $50 \mu \mathrm{~s}$ (selected by frone panel switch).
Mater readings: Three switch positions: (1) relative signal level; (2) phase comparison; (3) phase-lock range to ensure negligible phase error.
Adjustments: A front panel control adjusts f̂ree-running frequency of coltage-controlled oscillator; three rear panel conerols for fullscale adjustment for internal recorder, internal meter, and externai recorder.
Storage temperature: $-50^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Dimensions: 16 3/4" wide, 3 15/3 " high, $111 / 4^{\prime \prime}$ deep ($425 \times$ $88 \times 286 \mathrm{~mm}$).
Weight: 117 A : Net $20 \mathrm{lbs}(9,1 \mathrm{~kg})$, shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$; antenna: net $12.5 \mathrm{lbs}(5,7 \mathrm{~kg})$, shipping 2 L lbs ($9,5 \mathrm{~kg}$).
Power: 115 or $230 \mathrm{~V} \doteq 10 \% .60 \mathrm{~Hz}, 40$ watts.
Accessories (Included):
10509A Loop Antenna: Electrical height $1.6 \mathrm{~cm}, 43 \mathrm{in}$. (109 (m) in dia, mounts on 1 -in. pipe thread. Operating cemperature: -60° to $+80^{\circ} \mathrm{C}$. Available separately (for use only with HP 117A), $\$ 425$ (incl cable).
10512A Coaxia! Lead-in Cable: 50Ω BNC-BNC connecrors, 100 feet ($30,5 \mathrm{~m}$) long. Available separately at $\$ 40$ or in lengths to 300 m on special order.
9281-0081 Recorder Chart Paper: Box of six 30 -ft. rolls, $\$ 8.40$. One roll shipped with 117A.
Prices: Nodel 117A including 10509A Ancenna/Pre-amp and 10512A Lead-in Cable, $\$ 1550$.
Option H44.117A: 117A, modified for 75 kHz , with 10509 A An-tenna/Pre-amp and 10512A Lead-in Cable, $115 / 230 \mathrm{~V}, 50 \mathrm{H}_{2}$, $\$ 2050$.

DISTRIBUTION AMPLIFIER
 Multiple high quality frequency std. outputs Model 5087A

FREOUENCY \& TMME STANDARDS

Features

```
12 outputs
3 input channels
    Low noise
Excelleot isolation High stability Versatile
```

This new distribution amplifier provides the isolation and flexibility sequired in various frequency distribution systems. Its low distortion and excellent isolation make it ideal for providing multiple outputs from high quality atomic and crystal frequency standards. The 3 input channels will accept 5 MHz , 1 MHz or 100 kHz in any combination with the number of outputs for each channel selectable up to a total of 12 outputs for the 3 channels. The output levels are individually adjustable from 0 to 3 V rms (1 V for 10 MHz). All outputs and inpur levels are monitored on a front panel meter.

Additional features are divider preamps that provide 1 MHz and 100 kHz from a single 5 MHz source and 2 multiplieroutput amplifier that provides 10 MHz out from a 5 MHz input. The 10 MHz is convenient for driving the new genera. tion counters which only accept 10 MHz as an external stan. dard.

Advantages

Advantages include plug-in modular construction, meter monitored inputs and outpurs, short circuit isolation, excep. tional phase stability, low noise and crosstalk, and adjustable output levels.

The Model 5087A is designed for maximum versatility. The standard configuration is shown in Figure 1. Many combinations of inputs and outputs are possible. The unit has a mother board which provides the proper interconnections for many module combinations and eliminates wiring-increasing the instrument's reliability. The data sheet lists the module options and details concerning their selection for any confguration.

Figure 1. Standard configuration. Other configurations may be ordared.

Tentative Speciflcations, 5087A

Inputs

Frequencies: 3 each, any combination of $5.0 \mathrm{MHz}, 1.0 \mathrm{MHz}$, or 100.0 kHz .

Level: 0.3 to 3.0 voles rms at 1 K ohm.
Outputs
Frequencles: up to 12 , total of $5 \mathrm{MHz}, 1 \mathrm{MHz}$. or 100 kHz . Also 10 MHz suitable for counters (1 V at 50 ohm).
Level: 0 to 3 volts rons ar 50 obms.
Channels: 1 to 12.
Harmonic distortion: -40 dB .
Crosstalk: -60 dB.
isolation

Amplitude change: 0.1%.

Phase change (open to short on any other channel): less than 0.1 nanosecond.
Spurious: -80 dB.
SSB phase noise: $-145 \mathrm{~dB}(1 \mathrm{~Hz} B W)$ for frequencies greates than 1 kHz from carrier.
Temperature
Operating: $0.50^{\circ} \mathrm{C}$.
Nonoperating: -40 to $+70^{\circ} \mathrm{C}$.
Stability
Amplitude: $\pm 1 / 2 \mathrm{~dB}, 0$ to $50^{\circ} \mathrm{C}$.
Phase: 0.1 nanosecond $/{ }^{\circ} \mathrm{C}, 5 \mathrm{M} \mathrm{Hz}$.

Power

AC input: $115 / 230$ volts, 48 to $440 \mathrm{~Hz}, 20$ voit amperes, max.
DC Input: $22-30$ volts dc, 600 milliamperes, max.
Weight: 16 lbs.
Size: $31 / 2 \times 19 \times 111 / 2$.

Frequency and Time Raference Systems

The E10-5061A System pictured below is an example of custom reference systems which Hewlett-Packard can provide. Vaious types of frequency standards, comparators, distribution amplifiers, counters, etc. may be combined to meet specific requirements. Contact your Hewlett-Packard feld engineer for details.

The HP Models 508sA and K02-5060A Standby Power Sup. plies furnish de power to keep frequency or time standard sys. tems operating during extended interruptions of ac line power. For applications where it is essential to maintain continuous operation and avoid loss of precise time, the use of a standby pon'er supply is an absolute necessity. These units are designed for use with the Hewlett-Packard Cesium Beam Standards, Rubidium Vapor Standards, Quartz Oscillators and other equipment which will operate from 26 V dc. No switching is used in transferring power from line to battery operation and back again assuring uninterrupted operation.

HP K02.5060A

The K02-5050A is a very versatile unit which was designed specifically as a portable power supply for the 5061 A and 5065A "Flying Clocks" where it is necesary to operate from a wide range of power sources along with the standby capability to maintain continuous operation where no external power is

Specifications, K02.5060A

Input and output voltages:
Input
Output
6 or 12 V dc
$0-230$ V. 60 Hz nominal
IIS or $230 \mathrm{Vac}: 50.400 \mathrm{~Hz}$
0.230 Vac
$24-30 \mathrm{~V} \mathrm{de}$
24.30 V dc

Srandby battery, $26 \pm 4 \mathrm{~V}$ dc arailable at all times.
$A C$ and both dc inpuss may' be connected simultanenusly.
Output current: 0.5 A ac, 2 A dc.
Standby capacity: 12 ampere-hours at $29^{\circ} \mathrm{C}, 7$ hours standby when used in E21.5061A, 6 hours in E21.5005A.
Recharging: 1.6 hours recharging time required for each ampere hour of discharge.
Alarm indicator: external pnwer failure.
Panel meters: volmeter, ammeter indicating volage and current of 4 internal batteries and load.
Battery: fuur paralleled rechargeable battery packs each conizining 20 sealed nickel-cadmium cells. Packs mas be remored individually without interfering with pou'er supply operation.
Dimensions: $163 / 4{ }^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($125 \times 177 \mathrm{x}$ 416 mm).
Weight: net, 67 lbs .
Accessories furnished: ac and $d c$ imput and oucput cables.
Price: $\$ 2850$.
a vailable. A special inverter permits operation from a 6 or 12 V dc car battery in addition to the $115 / 230 \mathrm{~V}$ ac and 24.30 V dc capability. The 12 ampere-hour standby barteries are the sealed, nickel-cadmium type and thus spill-proof. Mounting hardware is available to attach the K02.5060A to either the 5061A or 5065 A Standards to make a portable standard, the E21.5061A or E21.5065A.

HP 5085A

The HP 5085 A is intended for installations where 115 or 230 Vac is available. Vented nickel-cadmium batteries with an 18 amperehour guaranreed capacity (derated from 25) are used. They provide about 10 hours of standby power for the 5061A Cesium Standard or 5065 A Rubidium Standard (at average ambient temperature of $25^{\circ} \mathrm{C}$).

Front panel lights indicate mode of operation, report fuse failure, and ac interrupt. A float-charge switch permits rapid recharge after an as power failure.

Specifications, 5085A

Output voltage: $2 \mathrm{~d} \pm 2 \mathrm{~V}$ de at rated current.
Output current: 2 amperes (2.5 A for 30 min).
Standby capacity: (ac $25^{\circ} \mathrm{C}$) 18 amp -hrs. after 48 hours tharge.
Alarm indicators: panel lamps indicate: (1) FUSE FAILURE.
(2) AC POWER. (3) AC INTERRUPT; (4) CHARGE.

Remote alarm provislons: SPDT relay contacis provided at rear terminals for operating remote alarm from separate power system.
Panel meters: battery voltage and charge/discharge cursent.
Power requirements: 115 or $230 \pm 10 \% \mathrm{~V} \mathrm{ac;} 50$ o 0400 Hz (2.0 A max. at ils V line).
Battery (supplied): ،ented nickel-cadmium 25 ampere-hour capar. ity derated to 18 ampere-hours. Periodic maintenance required.
Additional (external) battery provision: rear connector.
Dimensions: $163 / 4^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high. $163 / 8^{\prime \prime}$ deep ($425 \times 177 \times$ 416 mm).
Weight: net, $75 \mathrm{lbs}(34,1 \mathrm{~kg}$); shipping, $101 \mathrm{lbs}(45,9 \mathrm{~kg})$ including battery Option 01 (no batteries) is $50 \mathrm{lbs}(22,8 \mathrm{~kg})$ less.

Accessories furnished:

AC Power Line Power Cable, 6 ft Iong, DC Output Connector.
Insirument Extension Slides (for sed. 24" deep rack).
Price: Model 5085A (complere with batteries). \$1700.
Options: Model S0ssA without batteries, Option 001, is $\$ 1060$.

Hewlett-Packard frequency synthesizers translate the stable frequency of a precision frequency standard to any selected one of thousands, even billions of frequencies over a broad spectrum that extends from de to 500 MHz . The selected frequency is known to quartz crystal oscillator accuracy; resolution is as fine as 0.01 Hz ; and a new frequency can be switched upon electronic command in $20 \mu \mathrm{~s}$ or from a keyboard as fast as the operator can push burtons. One synthesizer can do the work of a whole battery of oscillators and special. purpose signal generators and can do it better.

Synthesizers find application in many areas where the stability of a high-quality standard is required, including advanced communications, radio sounding, testing of frequency sensitive devices, and spectrum analysis.

Direct and indirect synthesis

Hewlett-Packard builds two types of frequency synthesizers, "direct" and "in. direct." Direct synthesis simply performs a series of arithmetic operations on the signal from the frequency standard to achieve the desired output frequency. In indirect synthesizers of the type built by Hewlett-Packard, severa! internal oscillators are phase-locked to signals derived from the frequency standard. The outputs of these phase-locked oscillators are then combined to form the desired output frequency.

The direct synthesis approach has the advantage of faster switching time-microseconds as opposed to millisecondsand somewhat finer frequency resolution -.01 Hz to .1 Hz as opposed to 1 Hz or 100 Hz for Hewlett. Packard indirect synthesizers.

Indirect synthesis, on the other hand, offers the advantage of lower cost for applications where microsecond switch. ing time and frequency resolution finer than 1 Hz are not required.

Hewlett-Packard direct synthesizers are covered in this section. Indirect synthesizers are covered under the $3320 \mathrm{~A} / \mathrm{B}$ and $8660 \mathrm{~A} / \mathrm{B}$ model numbers.

Hewlett-Packard Syntheslzers

Model No./ /Typo	Range	$\begin{gathered} \text { Mlnimum } \\ \text { Step } \\ \hline \end{gathered}$
$\begin{aligned} & 51008 / 5110 \mathrm{~B} \\ & \text { Direct } \end{aligned}$	$\begin{aligned} & .01 \mathrm{~Hz} \text { to } \\ & 50 \mathrm{MHz}^{2} \end{aligned}$.$_{01} \mathrm{~Hz}$
$\begin{aligned} & 5105 \mathrm{~A} / 5110 \mathrm{~B} \\ & \text { Direct } \end{aligned}$	$\begin{gathered} 1 \mathrm{Hz10} \\ 500 \mathrm{MHz} \\ \hline \end{gathered}$. 1 Hz
3320A/B Indirect	$\begin{aligned} & 01 \mathrm{~Hz} \text { to } \\ & 13 \mathrm{MHz} \end{aligned}$. $001 \mathrm{~Hz}{ }^{\text {* }}$
8660A/B Indirect	$\begin{aligned} & .0110 \\ & 1300 \mathrm{MHz} \end{aligned}$	1 Hz

Direct Type Synthesizers

The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ and the $5105 \mathrm{~A} /$ SILOB Synthesizers are made up of two completely solid.state units: the syothesizer proper, and the driver.

The driver contains a frequency source, a spectrum generator, and appropriate selecrive nerworks. The source is a high quality crystal oscillator housed in an oven. It is well protected from line voltage variations, and has an aging cate of less than 3 parts in 10° per day.

The driver provides a series of fixed frequencies between 3 and 39 MHz which are fed to the synthesizer unit. The s110B Driver provides outputs (optional) to drive up to four synthesizers simultaneously. This feakure effectively reduces the cost per synthesizer in multiple output systems.

The synthesizer unit contains harmonic generators and suitable mixers, dividers, and amplifiers to derive the desired outpu: frequency as a function of the fixed frequencies. Tise front-panel pushburtons actuate a diode switching matrix.

All frequencies appearing at the inputs to this matrix are always present. This is the advantage of the direct synthesis method; it allows fast switching speeds.

High-speed switching

The oscillogram of Figure 1, page 247, shows the speed which is rypical of Hewlett-Packard 5100B and 5105A Synthesizers when they change output frequency under electronic command. The upper naveform is synthesizer output; the lower is the externally applied switch. ing voltage. Note the virtual absence of dead time and switching transients.

Synthesizer Programmer

The HP Model 2759B Syathesizer Programmer provides a means to interface a parallel BCD coneroller command (such as a computer) to the 10 line remote control input requirement of the syothesizers. The 2759 B provides rapid and smooth transition between frequency changes.

Reliability

Since their introduction in 1963, Hew. lett-Packard 5100 Series Synthesizers have found many applications.

The synthesizers have proven their high performance and reliability in many critical applications. Their continued use in deep space racing systems, military satellite communication systems and radar applications attest to their performance and reliabilicy. Actual operating field history has demonstrated a mean
time between failure (MTBF) in excess of 10,000 hours for the synthesizer sys. tem. You can be certain your synthesizer needs will be met with the proven performance and reliability of the HewlettPackard synthesizers.

Communications Applications

The high spectral purity of synthesizer output signals makes them ideal as local oscillators in receiver applications where frequency agility and/or narrow I.F. bandwidths are required of the receiver.

A surveillance receiver system which monitors multiple data channels by rapidly switching between channels is an ideal area of application for one of the Hewletr. Packard frequency synthesizers. With its rapid, highly repeatable switching capability, a synthesizer will serve as the local oscillator in this type of receiver, providing the proper local oscillator frequency for each channel under surveillance. A similar application arises in radio sounding applications.

Radar Applications

The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ is capable of switch. ing between ourput frequencies in 0.01 Hz increments at a very fast rate; thus it is capable of making very good approximations of frequency versus time functions. This performance feature finds application in high performance "chirp" radar installations, which require an ultra linear sweep.

In doppler radar applications the Hewletr. Packard frequency synthesizer supplies all the nocessary requirements for precise velocity measurements. The excellent stability of the synthesizer makes it ideal as the basic signal source in the transmitter, which requires stability capable of staying within a receiver bandwidth only a few cycles wide in the microwave region. A $5100 \mathrm{~B} / 5110 \mathrm{~B}$ or another of the synthesizers also is well suited for use as the local oscillator in the doppler receiver, where the local oscillaror must be capable of rapid change in order to keep the returning signal within the narrow receiver bandw.idth.

NMR Applications

Nuclear magnetic resonance spectroscopy methods are used to determine the qualitative and quantitative structure of molecules. In NMR, the strength of an applied dc magnetic field and the frequency of simultaneously applied rf field uniquely determine the spin-interaction of nuclei. In this application the broad frequency range and precise 0.01 Hz increments of frequency are very valuable.

Advantages:

Frequencies from ds to 500 MHz
Remote programming
Switching speed kypically $20 \mu \mathrm{~s}$
Proven reliability

Applications:

Automaric testing of frequency-sensitivity devices
Communications systems
Doppler radar
The Models $5105 A / 5110 B$ and $5100 B / 51108$ together provide complete frequency coverage from dc to 500 MHz . The instruments both use direct synthesis to achieve their very fast switching speeds and high spectral purity. This technique trans. lates the stability and spectral purity of a reference source to the selected output and in addition provides a fail-safe output. A precision tigh stability 1 MHz quartz oscillator is provided, or an externa! 1 MHz or $\$ \mathrm{MHz}$ srandard may be used. Both units provide pushbutton or remote frequency selection and include a selectable search capability. The 5105 A has 0.1 Kz steps from 100 kHz to 500 MHz in addition to a variable ourput level and phase modulation. The 5100 B provides 0.01 Hz steps from dc to 50 MHz (dc to 100 kHz from separate connector). The 5110 B Synthesizer Driver supplies 22 fixed frequencies required to input to the 5105 A or 5100 B . Both
units or any combination of them up to four may be driven by the 51108 .

Continuous tuning, sweep, FM

For both units a search oscillator provides continuously variable frequency selection over the range of any one column except the left-hand two. Operation of a front-panel control or application of an external de voltage tunes the search oscillator over the complete frequency range of the selected digit (column). One of the advantages afforded by continuous control is the easy identification of an unknown frequency by beating it against the synthesizer output.
The search oscillator can be frequency modulated from an external source (sinewave) at a maximum rate of 1 kHz while retaining the voltage control calibration.

Remote operation

The S105A/S110B and $51008 / 5110 \mathrm{~B}$ Synthesizers provide great control flexibility of a precision frequency soucce over a range greater than ever before availabie. Any frequency or search oscillator position available from the keyboard can be remotely selected and can be rapidly switched; in $20 \mu 5$, typically.
Rear panel connectors on the $5105 \mathrm{~A} / 5100 \mathrm{~B}$ provide pins corresponding to each front panel pushbutton, a ground connection, and a -12.6 volt line for use in remote programming. A combination of remote and local programming may be used, if so desired. For parallel BCD commands use HP 2759 B Programmer.

No actual contact closure, such as a relay, is required. The -12.6 volts de may be applied to the selected pin by electronic means.

Fast switching

The remarkably fast switching speed, valuable for such tasks as automatic digital frequency tracking, is one of the significant advantages of the direct synthesis method.

Figure 1 shows (upper trace) the $5105 \mathrm{~A} / 5110 \mathrm{~B}$ output frequency switched between 399.8 MHz and 400.2 MHz with 400 MHz subtracted to display switching in greater detail. The sweep is $25 \mu \mathrm{~s} / \mathrm{cm}$. The lower trace is that of the switching waveform applied to the synthesizer. The $\$ 100 \mathrm{~B} / 5110 \mathrm{~B}$ displays similar performance up to 50 MHz .

Figure 1. Synthesizer switching speed ($25 \mu \mathrm{~s} / \mathrm{cm}$).

Low noise performance

To achieve the excellent low-noise output specified for the Hewlett-Packard synthesizers over the full range requires the utmost care in design to identify and minimize noise sources followed by extensive testing at each stage of manufacture.

Figure 2 shows typical phase noise distribution for both synthesizers. The ratio of output signal to single-sideband phase noise (in a 1 Hz bandwidith) is plotred against frequency of offser from the signal.

The noise performance refferted in this plot is very good for instruments as complex and versatile as the $5 \cos A$ and 5100 B . It also demonstrates their suitability for applications where spectrum requirements are critical.

Figure 2. Composite phase noise plot for Hewlott-Packard synthesizers.

Spectral purity and stability

Particular care has been exercised in the design of the Hewlett-Packard synthesizers to insure a very clean output signal is provided over the entire frequency range of the instruments. A high order of spectral purity is essential for accurate doppler measurements, microwave spectroscopy, narrow band telemetry, communications and similar applications. The careful design and modular construction of the synthesizers make it possible to obtain output signals with spurious content at least 90 dB below the selected output in the case of the 5100 B . The $\sin \operatorname{A}$ spurious signals are at least 70 dB below its output over the entire 500 MHz range.
Many applications require that a signal be multiplied into the microwave region. If the frequency multiplying device is broadband, the ratio of rotal sideband power to signal power increases as the square of the multiplying factor. Since the total power in a frequency modulated wave is constant, the increased sideband power must come from the carrier. The spectrum of the signal begins to "spread" since the increased sideband amplitude causes the intermoduation between sidebands to become appreciable. It is desirable, then, that the original signal have the highest possible signal to phase noise ratio.

The specified values in the table on the next page for rms Fractional Frequency Deviation at various averaging times and at various output frequencies represent the standard deviation of the short term frequency instability due to random noise. For example, the value given for one-second averaging at an outpur of 500 MHz is 1×10^{-1}. This corresponds to a standard frequency deviation of 0.0050 Hz . In orher words, 68.3% of all observed frequency variations for measurement times of one second will differ from the cacrier by less than plus or minus that amount. 99.7% of all irequency vaciations will differ from the carrier by less than $\pm 0.0150 \mathrm{~Hz}$.

Moduiar construction

Modular construction has been used throughout the synthe. sizers and driver. The modular concept enables the system to meet stringent demands regarding spurious signals since the isolation that it affords minimizes spurious coupling. It also enhances serviceability and reliability. Careful design and quality control insure that all modules are interchangeable from one instrument to another.

Synthesizer driver, 5110B

The HP 5110B Synthesizer Driver supplies the HP 51008 and S105A Synthesizers with 22 fived, spectrally pure signals derived from a : MHz precision quartz oscillator.

The 1 MHz quartz oscillator which is the source for all outpur frequencies of the synthesizer driver is stable to 3 parts in 10^{0} per 24 hours. To help maintain this excellent crystal stability, oven circuits are energized any time the instrument is connected to the power line. A circuir check meter allows verification of correct oven operation.
Where special requirements make it necessary that synthesized frequencies be derived from an external frequency standard, a rear panel connector on the 5110 B accepts a 1 MHz or 5 MHz signal. The output spectral purity is partially dependent on the purity of the remote frequency standard.

Specifications

Specifications for the 5105 A and s100B Synthesizers and 5110 B Synthesizer Driver are given on the following page.

Specifications
51008/5110B and 5105A/5110B Synthesizers

- With the 51108 Driver internal frequency standard. When the 51100 Driver utilizes an external frequency standard, this wilf affect the stadifty and spectral aurity of the output. Performance data stated above are based on the excellent internal frequency standard in the silog.

51IOB Internal I MHz Quartz Oscillator

Aging rate: less than 3 parts in 10^{9} per 24 hours.
Stability: as a function of ambient temperature: $\pm 2 \times 10^{-30}$ per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. As a function of line coltage $\pm 5 \times 10^{\circ 6}$ for a $\pm 10 \%$ change in line voltage (rated at 115 or 230 volts rms line voltage).

Output, buffered: available at rear panel (1 V $\pm 1.5 \mathrm{~dB}$ into 50Ω resistive load).

Phase-locking capability: a voltage control leature allow's 5 parts in 10^{8} frequency control for -5 to $t s$ volts applied externally to the 5110 B .

External frequency standard input requlrements: 1 MHz or $5 \mathrm{MHz}, 0,2 \mathrm{~V}$ mis minimum, 5 V maximum across 500 ohms.

General (5105A/5110B and 51008/5110B)

Operating temperature range: 0 to $\frac{1}{+} 55^{\circ} \mathrm{C}$.
interference: complies with MILL-T-26600, Class 1 and 3, MILL-I6181D.**

Susceptiblity: complies with MIIL-1-26000, Class 1 and 3. MILL-I. 6181D.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 cycles. 35 W each synthe. sizer and driver (separate power supplies).
Optional features: the synthesizer drivers are capable of driving up to four frequency synthesizers:
Oprion 002, outputs for driving two sfnthesizers, s125: Option 003. For three, $\$ 235$; Oprion 004, for four. $\$ 345$.

Any unused outputs must be terminated in 50Ω BNC termina. tions, 10510A.
Note: small phase jumps may be experienced in additional synthesizer when first is switched in frequency.
Weight: 5105 A and 5100 B , nec $85 \mathrm{lbs}(38 \mathrm{~kg}$); shipping, 96 lbs (42 kg) each. 5110 B, nef. $56 \mathrm{lbs}(26 \mathrm{~kg}$); shipping 62 lbs (28 kg)

Accessories furnished: 5100 B and 5105 A ; Power Cable, Decade Test Cable, Connecting Cable to 5110 B Driver (permits approx 2.5 ft vertical separation-longer cables available). 3110B: Power Cable.
** Interference compliance requies that the $51003 / 5105 A$ and 51108 are connectod by a low inductance path such as adjacent rack mounting.

SIGNAL SOURCES
 Oscillators, Function Generators and Precision Sources

Oscillators and function generators

Signal sources have been described by various names-oscillators, test oscilla. tors, audio signal generators, atc. Different names are applied, depending on the design and intended use of the source. In the recently developed transistorized sources, the name "test oscillator" has been used to describe an oscillator having a calibrated attenuator and output monitor. The term "signal generator" is zeserved for an oscillator with modulation capability.

A function generator is a signal generator that delivers a choice of different waveforms with frequencies adjustable over a wide range. The keynote of the modern function generator is versatility. Function generators now produce sine, triangle, square wave, sawtooth waves, and pulses with a provision to sweep or analog program frequency up to four decades. This is useful for automatic testing systems and sweeping audio am. plifers, filters, and servo systems. The function generator is also used extensively in medical rescarch projects for nerve stimulation and electroanesthesia. Hewlett-Packard's function generarors cxtend from a low frequency of 0.0000 s Hz (HP 203A Option 002) up to a high frequency of 5 MHz (HP 3310A).

Basic requirements

In selecting an oscillatar or function generator, the user will be most interested in its frequency coverage. The question to be answered here is, "Will the instrument supply both the lowest and highest frequencies of interesk for anticipated rests." As shown in Table 1, HerolettPackard manufacturers a broad range of oscillators and function generators covering the frequency spectrum from 0.0000 s Hz to 32 MHz .

The user's next concern will be with the available ourput power or voltage. Some tests require large amounts of power, while others merely require suff. cient voltage output. For almost any application, there is a Hewletr-Packard oscillator capable of delivering the desired voltage output into a high-impedance load or of supplying the desired power into lower impedance loads.
Besides frequency range and power output, the user will be interested in the instrument stability, its dial resolution and the amount of harmonic distortion, hum and noise in the output signal.

Table 1. Frequency range and power output of Hewlett.Packard oscillators.

In the ideal case, the user should be able to set the tuning dial of his oscillator to a particular frequency with assurance that the oscillator will deliver that frequency at all times. The dials may be precisely set by a vernier control, and the calibration marks may be easily read The accuracy with which the frequency tracks the tuning dial enters into the overall accuracy figure.

Frequency stability

The erequency stability of the oscilla. tor determines the ability of the instrument to maintain a selecred frequency over a period of time. Component aging, power-supply variations and temperature changes all affect stability. Carefully chosen components. such as precision resistors and variable capacitors in the frequency-derermining networks, contrib. ure to long-term stability.

Amplitude stabillty

Amplitude stability is important in certain oscillator applications. Amplitude stability is inherent in the Herwlett-Pack. ard RC oscillator circuit because of the large negative feedback factor and the amplitude stabilizing reciniques. The "frequency response," or amplitude vari. ation as the frequency is changed, is of special interest when the oscillator is used for response measurements throughout a wide range of frequencies.

Distortion

Distortion in the oscillator's output signal is an inverse measure of the purity of the oscillator's ruaveform. Distortion is undesirable in that a harmonic of the test signal may feed through the circuits under test, generating a false indication at the ourput. If the ascillator is used for distortion measurements, the amount of distortion that it contributes to the measurements should be far less than that contributed by the circuits under rest.

Hum and noise

Hum and noise can be introduced at a variety of points in oscillator circuits: but when the circuit operates at a rela. tively high level, the amount of hum and noise incroduced into the device under test is usualiy negligible. Hum and noise introduced by a power amplifier usually remain constant as the output signal amplitude is diminished. Hence, even though the hum and noise power may be quite small compared to the rated output, these spurious signals sometimes become a sig. nificant portion of low-level ourput sig. nals. To overcome such a limitation. many Hewlert-Packard oscillators have their amplitude control on the output side of the power amplifier so that hum and noise are reduced proportionally with the signal when low-level signals are desired for test purposes.

Frequency synthesizer

The 3320A has the frequency accuracy and stability of synthesizers, and the spectral purity of oscillators at a very low price. The 3320 B has all the features of the 3320 A plus a precision leveling loop and a 100 dB attenuator (0.01 dB steps). Full (BCD) programmability of frequency is available on the 3320A. Frequency and amplitude are programmable (BCD or ASCII) with the 3320B. A complete interface kit and a low-cost mark-card programmer can be used with the 3320 B . See page 264.

Precision sources

As industrial and military electronics become more sophisticated, measurements require greater precision in normal working environments. To help alleviate today's measurement demands, Hewlettpackard offers a broad line of precision instruments. Refer ro Hewletr-Packard Application Note 70, revised Oct. '69. for additional information.

Traceable to NBS

The absolute accuracy of HewlettPackard's precision instruments and cali. brators is traceable to the National Bureau of Standards, as shown in the flow charr, Figure 1. Specia! care has been taken to develop instruments with stateof the art stability so that specified accuracy and uraceability can be maintained for long periods of time.

AC calibrator

0.1 mV to $1100 \mathrm{~V}(10 \mathrm{~Hz}$ to 110 kHz$)$

The 745A AC Calibrator with the 746A High Voltage Amplifier now makes it possible to calibrate precision ac volt. meters from 0.1 millivolt to 1100 volts. The wide band frequency range, from 10 Hz to 110 kHz , has an accuracy up to 0.022% at midrange. Voltage long term stability is 0.01% over a calibration period of six months for frequencies from 50 Hz to 20 kHz . The ac calibrator has a six digit readout and the error of the instrument under test can be read di. rectly in $\%$ of serting withour time. consuming calculations.

The 746A is basically an Xio amplifier which supplies an additional 1000 volt range for the 745A AC Calibrator. The 746 A contains logic circuits that insure proper operation and includes safery fea. tures that disconnect the high voltage if any operating condition is not normal.

DC orecision sources

The long.term accuracy and stabilicy of the Hewlett-Packard de precision sources are dependent on selected Zener diodes. Three distinct steps are necessary to provide a reliable reference diode: 1) process control in its original fabrication, 2) design of a compatible circuit, and, 3) a 100% thorough test of the com. pleted circuit.
To achieve the stability and accuracy

Figure 1. Hewlott-Packard instrument taceablity to Nas.
necessary for the Hewlett-Packard precision de sources, a selected Zener diode and its associated ciecuitry is housed in a temperature-controlled oven. The inneroven temperature is held nominally at $80^{\circ} \pm 0.01^{\circ} \mathrm{C}$ during normal room variations.

The HP 735A Transfer Standard uses this reference supply to obrain accurate stable voltages of 1.000 volts, 1.018 to 1.020 volts, and 0 to $1000 \mu \mathrm{~V}$. It is quickly calibrated by a front panel adjustment using a standard cell (or another 735 A) and a null meter.

The HP 740B and 741B DC Standards use the oven reference suppiy for a reference voltage to generate the 0 to 1000 volt accurate, stable output. This reference voltage is applied to precision resistive divider, which is the input to an amplifier chain, as shown in Figure 2.

Figure 2, Simplifiad de standards diagram.

The summing point compares the input of the amplifier to an attenuated sample of the output taken from the range voltage divider. The current limit control is nominally adjusted for the protection of the output load.

AC/DC meter calibration systems

The HP 738BR Oprion E02 Voltmeter Calibration System includes the Model 652A Test Oscillator and the Mode! 738BR Voltmeter Calibrator, mounted in a convenient cabinet. This system was designed specifically for calibrating high impedance voltmeters and oscilloscopes.

The 738 BR provides a 400 Hz rms or peak-to-peak ac voltage and a dc voltage output from $300 \mu \mathrm{~V}$ to 300 volts. The accuracy is betrer than $0.1 \% \%$ dc and $0.2 \% \mathrm{ac}$. The 652 A provides a frequency response, by using the expand position of the meter, from 10 Hz to 10 MHz with a flatness of $\pm 0.25 \%$.

The HP Model 6920B Meter Calibra. tor is an easily portable, simple device used to calibrate ac and de meters from 0.01 volt to 1 kV , and from 0.01 mA 105 A . The output setting of voltage or current is adjusted by means of a three. digit, ten-turn readout on any volt, milli. ampere, or ampere range. The dc accuracy is 0.2%, and ac accuracy is 0.4% of output.

Msdel No	DC Rargos	$A C$ Renges	Freguancy	$\begin{gathered} \text { Refor } 10 \\ \text { 9gge } \end{gathered}$
7354	$\begin{aligned} & 0101000 \mu \mathrm{~V} \\ & 3.000 \mathrm{~V}, 1.018 \mathrm{~V}, 1.019 \mathrm{~V} \\ & \hline \end{aligned}$		DC	251
7400	$\begin{gathered} 1 \bar{V} 101000 \mathrm{~V} \\ 4 \text { ranges } \end{gathered}$		06	253
741	$\begin{gathered} 1 \mathrm{~V} 101000 \mathrm{~V} . \\ 4 \text { Pa nges } \end{gathered}$		DC	254
745A/748A		1 mV to 1000 V . 7 ranges	$\begin{gathered} 10 \mathrm{~Hz} \text { to } 110 \mathrm{KHz} . \\ 4 \text { ranges. } \\ \hline \end{gathered}$	255
E02-738日R	$\begin{aligned} & 300 \mathrm{uV} 10300 \mathrm{~V} . \\ & 40 \mathrm{ste0s} \end{aligned}$	$\begin{gathered} 300 \mu \mathrm{~V} 10300 \mathrm{~V} . \\ 40 \text { sisps } \end{gathered}$	OC and 400 Hz	251
69208	$\begin{aligned} & .01 \mathrm{~V} 191000 \mathrm{~V} . \\ & 4 \text { anges } \end{aligned}$	$\begin{aligned} & .01 \mathrm{~V} \text { to } 1000 \mathrm{~V}, \\ & 4 \text { ranges } \end{aligned}$	OC and Dowar line trequency	252

Table 2. Precislon sources.

DC TRANSFER STANDARD Portable instrument transfers std. voltages Model 735A

The Hewletr-Packard 735A is a general purpose laboratory transfer standard. It may be used as a 1 V standard output with standard cell accuracy, a standard cell comparator with seven digits, or as a 0 to $1000 \mu \mathrm{~V}$ standard source for de and potentiometric measurements.

Specifications

Standard outputs: $1.00000 \mathrm{~V} ; 1.018+\triangle^{*}: 1.019 \pm \triangle^{*}: 0$ to $1000 \mu \mathrm{~V} \Delta *$.
Transfer accuracy: (after 30 min, warmup) 2 ppm between saturated standard cells or unsaturated standard ceils; 10 ppm standard cell to 1 V ; 10 ppm saturated standard cell to unsaturaced standard cells.
Stability: (after 30 min, warmup) better than 10 ppm/month.
Line regulation: $<1 \mu \mathrm{~V}$ for 10% line change.
Output impedance: $1 \mathrm{k} \Omega \pm 1 \%$.
Short circuit current: $<1.5 \mathrm{~mA}$.
Temperature coefflcient: $<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $+50^{\circ} \mathrm{C}$.
Varlable output
Range: 0 to $1000 \mu \mathrm{~V}$.
Accuracy: $\pm(0.1 \%+1.5 \mu \mathrm{~V})$.
Resolution: i $\mu \mathrm{V}$.
Output Impedance: $146 \Omega \pm 1 \%$.
Output noise: dc to $1 \mathrm{~Hz}<1 \mu \mathrm{~V}$ p.p. 1 Hz to $1 \mathrm{MHz}:<100$ $\mu \mathrm{V}$ ms.
Output: floating and guarded.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, $4810440 \mathrm{~Hz}, 20 \mathrm{VA}$ max.
Output terminals: four 5 -way binding posts. Positive, negative, circuit-guard shield, and chassis ground, positive and nega-

tive terminals are solid copper with gold flash. A maximum of 500 V dc may be connected between chassis ground and guard or circuit ground.
Dlmensions: standard $1 / 3$ module ; $51 / 3^{\prime \prime}$ wide, $3^{\prime \prime}$ high (with. out removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$).
Weight: net, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Price: HP 735A DC Transfer Standard, $\$ 435$.

* 3-digit reading 0 to $1000 \mu \mathrm{~V}$ oflset valtage.

VOLTMETER CALIBRATOR DC, rms and p-p volts; flatness $10 \mathrm{~Hz}-10 \mathrm{MHz}$ Model 738BR option E02 (738BR \& 652A)

The 738BR Option EO2 Volmeter Calibration system combines the 652A Test Oscillator and the 738BR Voltmeter Cali. brator. These instruments calibrate high impedance voltmerers and oscilloscopes for both frequency response and voltage accuracy. The system calibrates for ac" and do volrage levels from $300 \mu \mathrm{~V}$ to 300 V in precise preselected steps and calibrates for frequency response from 10 Hz to 10 MHz .

Specifications

738BR opt. E02 voltmeter calibration system
$7388 R$
Voltage range: $300 \mu \mathrm{~V}$ to $300 \mathrm{~V}, \mathrm{dc}$ or ac (rms and p-p. 400 Hz).
Levels: calibration voltage $300 \mu \mathrm{~V}$ to 300 V in steps of 1,3 , 1.5 and 5 : tracking voltages 0.1 to 1 V in 0.1 V steps and 0.05 to 0.5 V in 0.05 V steps.

Accuracy: 300 V working voltage into attenuator, accurate within 0.1% de and 0.2% ac, after a 30 -minute warmup.
Attenuator accuracy: within $\pm 0.1 \%$ or $\pm 2.5 \mu \mathrm{~V}$. whichever is larger, open circuit.
Long-term stability: drift per week: $<0.1 \% \mathrm{dc},<0.2 \%$ ac.
Power: 115 or (230 V must be specified) $\pm 10 \%$ so to 60 Hz , 275 VA max.
Dimenslons: 19 " wide, ${ }^{\prime \prime}$ high, $153 / 4^{\prime \prime}$ deep behind panel ($483 \times 178 \times 400 \mathrm{~mm}$).
Weight: ner, $38 \mathrm{lbs}(17 \mathrm{~kg}$); shipping, $50 \mathrm{lbs}(22,6 \mathrm{~kg})$.
Price: HP 738 BR, $\$ 1100$ (rack mount).

652A

Specifications are listed on page 262 of this cataiog. General (738BR opt. EO2)
Dimensions: 201/2" wide, $155 / 8^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep (521×397 x 470 mm).
Welght: ner, $75 \mathrm{lbs}(33,8 \mathrm{~kg}$) ; shipping, $110 \mathrm{lbs}(49,8 \mathrm{~kg})$.
Accessories furnished: cable HP part number 739A-16A, BN'C to shielded 50Ω terminated dual banana plug.
Price: HP 738BR option EO2, $\$ 2235$.

* Rofers to 400 Hz orly; see data sheet.

PAECISION voltage sources

AC/DC METER CALIBRATOR

Four calibrators in one case
Model 6920B

Can be used to check:

1. DC Voltmeters up to 1000 volts
2. Average reading $A C$ Voltmeters up to 1000 rolts
3. DC Ammeters up to 5 amps
4. Average reading AC Ammeters up to 5 amps

Description

Model 6920 B is a versatile ac/dc meter calibrator, capable of both constant voltage and constant current output. Its absolute accuracy makes it suitable for laboratory or production testing of panel meters, multimeters, and other meters having accuracy of the order of 1.0% or higher. This calibrator has been designed for conrenience, and combines in one instrument all the outputs needed to test the more commonly used meters. Model 6920B has been packaged in an HP cabinet module suitable for bench or rack use.

Output switch

An output switch selects the safest mode of operation for the particular type of meter being tested. A "lock" position leaves the testing parameters in operation to free both hands for attaching and disconnecting successive meters. A "test" position, springloaded so that the meter calibrator output is presented to the terminais only while finger pressure is ap. plied, facilitates testing meters with several full-scale values and reduces the danger of burn-out.

AC Output waveshape

When the function switch is set on " $A C$ ", the output w'aveshape is sinusoidal (to a first approximation) and has the same frequency as the input line power applied to the instrument (except when an external ac reference is used). The feedback loop, which controls and regulates this ac. is actually monitoring the average value of the ac output, although the front panel contcols are calibrated in terms of rms. Thus, this calibrator is suitable for use with average
reading ac voltmeters scaled in mms. In addition, the calibrator can be used with true rms meters, provided allowance is made for the total output distortions. This distortion is approximately equal to the line input waveshape distortion (or distortion of the external ac reference) plus 3%.

Specifications

Input: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%$, single phase, $58.62 \mathrm{~Hz}, 0.7 \mathrm{~A}, 65$ W max.
Output voltage ranges:
0.01-1 V current capability 0.5 A
$0.1-10 \mathrm{~V}$ current capability 0.1 A
$1-100 \mathrm{~V}$ current capability $0-100 \mathrm{~mA}$
$10-1000 \mathrm{~V}$ current capability $0-10 \mathrm{~mA}$
Above output voltage canges and maximum curcent capa*
bilities for each range apply in fuil for either do or ac operation.
Output current ranges: (5 A maximum output)
$1.100 \mu \mathrm{~A}$ voltage capability 0.500 V (uncalibrated)
0.01 .1 mA roltage capability 0.500 V
$0.1-10 \mathrm{~mA}$ voltage capability 0.500 V
$1-100 \mathrm{~mA}$ roltage capability 0.50 V
$0.01-1 \mathrm{~A} \quad$ roltage capability 0.5 V
$0.1-10 \mathrm{~A} \quad$ voltage capability 0.0 .5 V
Above output current ranges and maximum voltage capa-
bilities for each range apply in full for either do or
60 Hz operation.
Output aceuracy: DC- 0.2% of set value plus 1 digit. AC-
0.4% of set value plus 1 digit (when used with average
reading meters). Above accuracy applicable over a tem-
perature range from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and orer full input
voltage range.

Controls:

FUNCTION SWITCH—This is a 3 -position switch: "OFF", "AC", and "DC". In the "OFF" position the ac power input is disconnected from the unit. In the " AC " position the meter calibrator produces an ac output; similarly, in the "DC" position the calibrator produces a dc output.
RANGE SWITCH- 10 positions, one for each voltage and current range.
CALIBRATED OUTPUT CONTROL—Digital potentiometer readout control (3 significant digits) determines exact value of output.
OUTPLT SWITCH-Switch described at left.
Output terminals: two front panel terminals are provided; these are the output terminals for both ac and dc opera-
tion. In voltage ranges, the negative terminal is grounded.
Ripple: in de operation the output ripple is typically less than
$1.0 \% \mathrm{rms} / 5 \% \mathrm{p}-\mathrm{p}$ of the output range switch setting.
Operating temperature range: $0.50^{\circ} \mathrm{C}$.
Size: $63 / 4^{\prime \prime}(172 \mathrm{~mm}) \mathrm{H} \times 7.13 / 16^{\prime \prime}(198 \mathrm{~mm}) \mathrm{W} \times 11^{\prime \prime}$ (279 mm) D.
Weight: $15 \mathrm{lbs}(6,8 \mathrm{~kg})$ net, $17 \mathrm{lbs}(7,71 \mathrm{~kg})$ shipping. Price: 5-50.
Option 005: 50 Hz ac input regulation realignment, add $\$ 25$.
Option 028: 230 V ac $\pm 10 \%$, single phase input, add 510 .

DC STANDARD/D VOLTMETER Ultra stable, high resolution dc calibration source

 Model 740B SIGNAL SOURGES
Description

The Hewlett-Packard Model 740B is a precision multifunction instrument that operates as a de standard voltage source, a dc differential voltmeter, a high impedance dc volumeter and a dc porver and voltage amplifier. The instrument is designed for use in both the standards laboratory and the field.

Specifications*
 DC standard

Ranges

Output voltage: 0 to $1000 \dagger \mathrm{~V}$ in 4 decade ranges.

Performance

Accuracy ($<70 \%$ RH, conscant line, load and temperature $\pm 1{ }^{\circ} \mathrm{C}$. Calibrated at factory at 115 V and $23^{\circ} \mathrm{C}$.) 30 day: $\pm(0.002 \%$ of setting $+0.0004 \%$ of range $) .90$ day: $\pm(0.005 \%$ of setting $+0.0004 \%$ of range $)$.
Stability $\{<70 \%$ RH, constant line, load and temperatura $\pm 1^{\circ} \mathrm{C}$):

Period	Zero stability ppm of range	Voltage stability (excludes zero stability) setting + range
1 hr	$\pm 1 \mathrm{ppm}$	$\pm(0 \mathrm{ppm}+1 \mathrm{ppm})$
24 hr	$\pm 2 \mathrm{ppm}$	$\pm(5 \mathrm{ppm}+1 \mathrm{ppmi}$

Temperature coefficient
$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}:< \pm 0.0002 \%$ of setting $/{ }^{\circ} \mathrm{C}$ or $\pm 0.0001 \%$ of range $/{ }^{\circ} \mathrm{C}$, whichever is greater.
Line regulation: $< \pm(0.0005 \%$ of setring $+0.0001 \%$ of range) for 10% line voltage change.
Load regulation (no lood to full load): $<(0.0005 \%$ of serring $+10 \mu \mathrm{~V})$.
Output characteristics
Output current: maximum output current 50 mA at 1 V output, decreasing linearly to 20 mA at 1000 V output. Current limiter continuously adjustable from 10% to 100% of maximum output current.
Output resistance: $<\left(0.0002+0.0001 \mathbf{E}_{\text {o111 }}\right) \Omega$.
Noise (rms value)

Ranae	$0.01 \mathrm{~Hz}-1 \mathrm{~Hz}$	$1 \mathrm{~Hz}-1 \mathrm{MHz}$
1 V	$<1 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
10 V	$<10 \mu \mathrm{~V}$	$<100 \mu \mathrm{~V}$
100 V	$<100 \mu \mathrm{~V}$	$<1 \mathrm{mV}$
1000 V	$<1 \mathrm{mV}$	$<10 \mathrm{mV}$

Period	Zero stability	Raading stability (axcludes zaro stability) readino + ranoa
1 hr	$\pm(1$ ppm of range $+\uparrow \mu \mathrm{V})$	$\pm(0 \mathrm{ppm}+1 \mathrm{ppm})$
24 hr	$\pm(1 \mathrm{ppm}$ of range $+2 \mu \mathrm{~V})$	$\pm(5 \mathrm{ppm}+1 \mathrm{ppm})$

Temperature coefficient
$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}:< \pm(0.0002 \%$ of reading $+1 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$.
Line regulation: $< \pm(0.001 \%$ of reading $+2 \mu \mathrm{~V})$ for 10% line voltage change.
Input characteristies
Input resistance: (independent of null).
100 mV to 2000 V ranges: $>10^{10} \Omega$.
10 mV tange: $>10^{\circ} \Omega$.
1 mV range: $>10^{8} \Omega$.
Effective common-mode rejection (ECMR): $>120 \mathrm{~dB}$, at and above 60 Hz .
Normal-mode rejection (NMR): $>100 \mathrm{~dB}$. at and above 60 Hz .

DC voltmeter

Voltage ranges: $1 \mu \mathrm{~V}$ to $1000 \mathrm{~V}+$ in 10 decade ranges.
Accuracy: $\pm(2 \%$ of range $+0.1 \mu \mathrm{~V})$.
Input resistance: 100 mV to 1000 V range: $>10^{100}$: 10 mV range: $>10^{\circ} \Omega ; 1 \mu \mathrm{~V}$ to 1 mV range: $10^{8} \Omega$.
Zero drift: $<2 \mu \mathrm{~V}$ per day; zero control limits: $> \pm 10 \mu \mathrm{~V}$.
Normal-mode rejection: same as dc differential voltmeter.

DC amplifier

Voltage gain: 1 mV range, $60 \mathrm{~dB} ; 10 \mathrm{mV}$ range, $40 \mathrm{~dB} ; 100$ mV range, $20 \mathrm{~dB} ; 1 \mathrm{~V}$ to 1000 V ranges, 0 dB .
Gain accuracy: $\pm(0.01 \%$ of input $+0.0005 \%$ of range +2 $\mu \mathrm{V}$) referred to input.
Linearity: $\pm 0.002 \%$ on any range.
Stability, temperature coefficient, line regulation, input resistance, ECMR, NMR: same as dc differential voltmeter.
Load regulation, output current, and output resistance: same as de standard.

General

Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless specified otherwise.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
RFI: meets MIL-I-6181D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 100 \mathrm{VA} \max$. Oimensions: fuli module, $16^{3} / 4^{\prime \prime}$ wide, $67 / 3^{\prime \prime}$ high, $1814^{\prime \prime}$ deep. ($425 \times 175 \times 464$).
Welght: net, $47.3 \mathrm{lbs}(21,3 \mathrm{~kg})$; shipping, $64 \mathrm{lbs}(28,8 \mathrm{~kg})$.
Accessories furnished
11054 A input cable assembly; t 1059 B output cable assembly. Price: HP 740B, $\$ 2800$.
tMaximum of $-500 \vee$ dc with respect to Ine ground can be applled to or

* Reter to data sheet tor complete speciticstions.

SIGNAL SOURCES

AC-DC $\Delta V M / D C$ STANDARD Multi-function calibration instrument Model 741B

Description

The Hewlett-Packard Model 7-1B is a versatile and accurate instrument with six modes of operation: dc standard, ds dif. ferential voltmeter, dc volmeter, ac differential volmeter, ac voltmeter, and de power amplifier.

The 741B is easy to use. The four most significant digits are digitally displayed; the meler displays the remaining resolution. The decimal point is placed automatically by the zange switch. The voltage set switches ace concentric with the sensitivity buttons: thus, there is no confusion about which switch to turn.

Specifications*

DC standard

Voltage ranges: 0 to 1000 V in 4 decade ranges.
Performance rating (after 1 -hour warmup)
Accuracy**: $<80 \%$ RH. constant line, load and remp $\pm 1^{\circ} \mathrm{C}$. 90 day: $\pm 0.01 \%$ of setting or $\pm 0.001 \%$ of range, whichever is greater.
180 day: $\pm 0.015 \%$ of setting or $=0.0015 \%$ of range, whichever is greater.
Stablity: $<80 \% \mathrm{RH}$, constant line, load and temp $\pm 1^{\circ} \mathrm{C}$, after 8 his warmup, 100 V range and below.
1 hr : < $(0.0003 \%$ of setring $+0.0001 \%$ of range $)$.
24 hr : < 0.001% of setting $+0.0001 \%$ of range $)$.
Temperature coefficient: $<(0.0003 \%$ of setting $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Line regulation: $<(0.0001 \%$ of setting $+1 \mu \mathrm{~V}) / 1 \%$ change.
Load regulation (no load to full load): $<(0.001 \%$ of serting $+10 \mu \mathrm{~V}$).
Output characterlstics
Output current: current limiter coorinuously adjustable from $<4 \mathrm{~mA}$ to $>20 \mathrm{~mA}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Reduced to 10 W maximum from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Output resistance: $\left.<10.0005 \%+0.0005 V_{\text {aIIt }}\right) \Omega$.
Noise (rms value)

Ranpe	DC. 1 Hz	$1 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$
1 V	$<10 \mu \mathrm{~V}$	$<200 \mu \mathrm{~V}$
10 V	$<100 \mu \mathrm{~V}$	$<200 \mu \mathrm{~V}$
100 V	$<1 \mathrm{mV}$	$<1 \mathrm{mV}$
1000 V	$<10 \mathrm{mV}$	$<10 \mathrm{mV}$

$20 \mathrm{~Hz}-20 \mathrm{kHz},<500 \mathrm{~V}: 1 \mathrm{hr}<0.003 \%$ of range: 24 hr $<0.005 \%$ of range.
$20 \mathrm{kHz}-50 \mathrm{hHz},<500 \mathrm{~V}:<0.005 \%$ per day.
$20 \mathrm{kHz}-100 \mathrm{kHz},<500 \mathrm{~V}:<0.02 \%$ per day.
Accuracy (stabillty and temperature coefficient Included): $<80 \% \mathrm{RH}$, constant line, temperature $\pm 1^{\circ} \mathrm{C}$, with 1 hr warmup.
$20 \mathrm{~Hz}-20 \mathrm{kHz}:$
90 day.

Frequency	Voltage	Accuracy $亡(\%$ of reading $\%$ \% of range)
$400 \mathrm{~Hz} \cdot 5 \mathrm{kHz}$	$50 \mathrm{mV} \cdot 100 \mathrm{~V}$	$0.02 \%+0.01 \%$
$20 \mathrm{~Hz} \cdot 30 \mathrm{~Hz}$	$50 \mathrm{mV} \cdot 500 \mathrm{~V}$	$0.2 \%+0.01 \%$
$30 \mathrm{~Hz} \cdot 50 \mathrm{~Hz}$	$50 \mathrm{mV} \cdot 500 \mathrm{~V}$	$0.15 \%+0.01 \%$
$50 \mathrm{~Hz} \cdot 100 \mathrm{~Hz}$	$50 \mathrm{mV} \cdot 500 \mathrm{~V}$	$0.1 \%+0.01 \%$
$100 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$	$50 \mathrm{mV} \cdot 500 \mathrm{~V}$	$0.04 \%+0.01 \%$
$20 \mathrm{~Hz} \cdot 20 \mathrm{kMz}$	$1 \mathrm{mV} \cdot 50 \mathrm{mV}$	$0.4 \%+0.01 \%$
$50 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$	$500 \mathrm{~V} \cdot 1000 \mathrm{~V}$	$1 \%+1 \%$

Frequency	Voltage	Accuracy $\pm 1 \%$ of reading $+\%$ of range)
$60 \mathrm{kHz} \cdot 100 \mathrm{kHz}$	50 mV .500 V	0.6\% + 0.01\%
$20 \mathrm{kHz} \cdot 50 \mathrm{kHz}$	1 mV - 50 mV	0.4\% + 0.01\%
$20 \mathrm{kHz} \cdot 100 \mathrm{kHz}$	$500 \mathrm{~V} \cdot 1000 \mathrm{~V}$	1\% $+1 \%$

Line regulation: $<0.001 \%$ of range per 1% line change. Input characteristics

Input Impedance: $1 \mathrm{M} \Omega$ shunted by <s pF,
Overload protection: 1000 V can be applied on any range.

DC differential voltmeter

Voltage renges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$.
Performance rating (after 1 -hour warmup).
Accuracy**: $<80 \%$ RH, conseant line and temp $\pm 1{ }^{\circ} \mathrm{C}$.
90 day: $\pm 0.02 \%$ of reading or $\pm 0.004 \%$ of range, whichever is greater.
180 day: $\pm 0.025 \%$ of reading or $\pm 0.004 \%$ of range, whichever is greater.
Stability: with 8 hour warmup, $<80 \% \mathrm{RH}$, constant line and temp $\pm 1^{\circ} \mathrm{C}, 100 \mathrm{~V}$ range and belon.
1 hr : $<(0.0003 \%$ of reading $+0.0001 \%$ of range).
24 hr : < $(0.001 \%$ of teading $+0.0001 \%$ of range $)$
Temperature coefflcient: $<(0.0003 \%$ of reading $+0.0001 \%$ of range) per ${ }^{\circ} \mathrm{C}$.
Line regulation: $<0.0002 \%$ of range per 1% line change. Imput resistance: $>10^{\circ}$ n. independent of null.
Normal mode relection (NMR): 50 Hz and above: >80 $d B$.

General

Power supply: 115 of $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $440 \mathrm{~Hz}, 90 \mathrm{VA}$ max.
Dimenstons: $163 / 4^{\prime \prime}$ wide, $67 / 8^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep ($429 \times 175 \times$ 464 mm).
Weight: net, $42 \mathrm{lbs}(18,9 \mathrm{~kg})$; shipping. $58 \mathrm{lbs}(26,1 \mathrm{~kg})$.
Accessories furnished: rack mounting kir for $19^{\prime \prime}$ rack.
Price: HP 741B, S2145; HP 741B, Option 001**. \$2145.

- For complete specificadions, refer to dala sheal.
- Option 001: accuracles for DC AVM and DC Standard ate interchanged.

AC CALIBRATION SYSTEM
 Precision source; to $1100 \mathrm{~V} ; 10 \mathrm{~Hz}$ to 110 kHz Models 745A \& 746A

Description

The 745A AC Calibrator combined with the 746 A High Voltage Amplifier, is a compact, calibrated as source with a continuously-adjustable frequency output from 10 Hz to 110 kHz . The output can be varied from 0.1 mV to 1099.999 V in steps of 1 ppm of range over the entire frequency band.

The Model 745A provides the first six voltage ranges, 0.1 mV to 109.9999 V . while the combination of the 7.45 A and 746 A permits the expansion to 1099.999 V as a seventh range.

745A/746A Combined Specifications

(Refer to data sheet for complete specifications)

Ranges

Output voltage ranges: 7 ranges with 10% overrange as follows:

Range	Settability and Resolution
1 mV	0.100000 mV to 1.099999 mV in 1 nV steps
10 mV	1.00000 mV to 10.99999 mV in 10 nV steps
100 mV	10.0000 mV to 109.9999 mV in 100 nV steps
1 V	0.100000 V to 1.099999 V in $1 \mu \mathrm{~V}$ steps
10 V	1.00000 V to 10.99999 V in $10 \mu \mathrm{~V}$ seps
100 V	10.0000 V to 109.9999 V in $100 \mu \mathrm{~V}$ steps
1000 V	100.000 V to 1099.999 V in 1 mV steps

The output voltages from $100 \mu \mathrm{~V}$ to 110 V are available from 749 A ourput terminals; voltages from 100 V to 1100 V are available from the 746A output cable.
Output frequency range: continuously adjustable from 10 Hz to 110 kFz in 1 decade ranges with 10% overlap.
Error measurement: 2 ranges with zero center dial; $\pm 0.3 \%$, $\pm 3 \%$. A zero range is provided to switch out the effects of the error measurement system.

Performance rating

Accuracy: accuracy holds for a 90 -day period and is met after a 1.hr warmup period at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<95 \% \mathrm{RH}$. This applies only to the 745A. 746A narmup time required is approximately 30 s .
Voltage: specifications are absolute, traceable to the National Bureau of Standards.
1 mV to 100 V ranges:

Frequency	Accuracy
50 Hz to 20 kHz	$\pm(0.02 \%$ of setting $+0.002 \%$ of range $+10 \mu \mathrm{~J})$
20 Hz to 50 Hz	$\pm(0.05 \%$ of setting $+0.005 \%$ of range $+50 \mathrm{JV})$
20 kHz 10110 kHz	
10 Hz to 20 Hz	$\pm(0.2 \%$ of setting $+0.005 \%$ of range $+50 \mu \mathrm{~V})$

1000 V range:

Frequency	Accurscy
50 Hz to 20 kHz	$\pm 0.04 \%$ of setting
20 Hz to 50 Hz	$\pm 0.08 \%$ of setting
20 kHz to 50 kHz	
50 kHz to 110 kHz	$\pm 0.15 \%$ of setting
10 Hz to 20 Hz	$\pm 0.2 \%$ of setting $+0.005 \%$ of rangs)

Frequency: $\pm(2 \%$ of serting $+0.2 \%$ of end scale).
Error measurement: $\pm(0.5 \%$ of setting $+0.5 \%$ of range $)$.
Temperature coefficlent
Voltage: 1 mV to 100 V ranges: $\pm 0,0003 \%$ of setting per
${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} .1000 \mathrm{~V}$ range: $\pm 0.0005 \%$ of setting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Frequency: $=0.05 \%$ of end scale per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. De. rate accuracy specifications by this temperature coefficient

for operation in temperature range of $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Voltage stability: stability mer after 1 -hr warmup period at constant temperature with $<95 \%$ RH.
1 mV to 100 V ranges
Long.term: $\pm 0.01 \%$ of setting for 6 mo .
short-term: $\pm 0.00 \mathrm{~s} \%$ of setting for 24 hr .
1000 V range
Long-term: 50 Hz to $20 \mathrm{kHz}: \pm 0.01 \%$ of setting for 6 mo. 10 Hz to 50 Hz and 20 kHz to $110 \mathrm{kHz}: \pm 0.02 \%$ of setting for 6 mo .
Short-term: $\pm 0.005 \%$ of setting for 24 hr .

Output characteristics

Total distortion and noisa: 0.05% of setting $+10 \mu \mathrm{~V}$ over 100
kHz bandwidth on all tanges.
Load capability
1000 pF or 50 mA on 1 mV to 100 V ranges (50 mA allows 800 pF at $100 \mathrm{~V}, 100 \mathrm{kHz}$).
1000 pF or 63 mA on 1000 V range (63 mA allow's 100 pF as 1000 V .100 kHz).
LIne regulation: $\pm 0.001 \%$ of selting change in output voltage
for 10% change in line voltage (included in accuracy spec).

General

Operating temperature: $0^{\circ} \mathrm{C}$ रo $35^{\circ} \mathrm{C}$.
Power: 745A: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 115$ VA max. $746 \mathrm{~A}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%$. 50 Hz to $60 \mathrm{~Hz}, 1$ kVA max. 746A aux power output rated at 120 VA max.
Dimensions: 745A: 163/4" wide, $83 / 4^{\prime \prime}$ higli, $183 / 8^{\prime \prime}$ deep (425 x 221. x 467 mm). $746 \mathrm{~A}: 163 / 4^{\prime \prime}$ wide, $7^{" ~ h i g h, ~} 181 / /^{\prime \prime}$ deep $(425 \times 177 \times 464 \mathrm{~mm})$.
Weight: 745A: net, $65 \mathrm{lbs}(29,3 \mathrm{~kg})$; shipping. $81 \mathrm{lbs}(36,5 \mathrm{~kg})$. 746 A : ner, $75 \mathrm{lbs}(34 \mathrm{~kg}$) ; shipping, $93 \mathrm{lbs}(41,8 \mathrm{~kg})$.
Accessories furnished
745A: rack mount kit: HP Part No. 5060-0630, 22 -pin printed circuit board extender; HP Part No. 5060.0043, 15-pin printed circuit board extender; HP Part No. 50600031. 10 -pin printed circuit board cxtender; HP Paft No. 1251.0084 remote programming mating plug.

746A: accessory kit: HP Part No. 00746.84401; HP Part No. 1251.0485, remote right angle connector: HP Part No. 1450.0356, incandescent lamp: HP Pars No. 4040.0427, extractor; HP Part No. 5040.0404, probe holder: HP Part No. 5060.0216 , joining kit bracket; HP Part No. 50600630 , 22-pin printed circuit board extender; 7H rack mounting kit; HP Part No. 00746.02701, foam filter.
Price: HP 745A, \$4615; HP 746A, \$2050.

Description

The Hewlett-Packard series oscillators have high stability and accurate, easily resellable toning circuits, Low'impedance operating levels together with superior insulation guarantee peak performance throughout years of trouble free service. The instruments have a wide frequency range and long dial lengths and feature an improved vernier frequency control. Operation is simplifed-just three controls are required. Instruments are compact, light in weighr, and enclosed in a convenient, aluminum case with carrying handle. They occupy minimum bench space and are easily portable. Rack mounting is available on order

The 200AB sinewave oscillator's frequency range of 20 Hz to 10 kHz is covered in four overlapping decade bands. The oscillator provides 1 W or 24.5 V into 600Ω load. The output circuit is balanced and foating over the encire frequency zange so that the instrument may be used to drive off-ground loads.

The 200 CD covers the range of 5 Hz to 600 kHz in five overlapping decade jands. Accurate frequency is provided by 112 dial divisions and an effective scale length of 78 inches; a vernier drive allow's precise adjusment. The 200 CD gives a
maximum sinerrave output of at least 10 V accoss its rated load of 600% and at least 20 V open circuit. Its distortion rating is very low, $<0.2 \%$ from 20 Hz to 200 kHz . A special feature of the 200 CD is that its waveform purity does not depend on load.
Particularly designed for amplifier testing, transmission line measuremenrs, loudspeaker testing, frequency comparison, and other high fidelity tests. The 201C meets every requirement for speed, simplicity and pute waveform. The frequency range, 20 Hz to 20 kHz , is covered in 3 bands; response is $\pm 1 \mathrm{~dB}$ full tange. Output is 3 W or 42.5 V into 6000: an attenuator adjusts output 0 to 40 dB in 10 dB steps and provides either low impedance or constant 6000 impedance.

Model 202C brings to low-ffequency oscillators the accuracy and stability associated with audio measurements. It provides excellent waveforms as lan as 1 Hz .
The tansformercoupled, balanced output of the Model 202C enables it to meet the signal source requirements for tests of a ride variety of systems. The instrument provides an output of at least 10 V across its rated load of 600Ω and at least 20 V open circuit.

Specifications

(Refer to data sheet for complete specifications)

HP Madel	Fraquency range	Calı. bration accuracy	Output 10 600 ohms	$\begin{gathered} \text { Outpur } \\ \text { imped- } \\ \text { ance } \end{gathered}$	Maximum distartion	Maximum hum and noise \dagger	Input power	Weight net	-lit (kg) ship	Size-inches (mm) W $\quad \mathrm{H} \quad \mathrm{D}$	Price
200AB	$\begin{aligned} & 20 \mathrm{~Hz} 1040 \mathrm{kHz} \\ & (4 \text { ranges }) \end{aligned}$	$\pm 2 \%$	$\begin{aligned} & \hline \mathrm{W} \\ & 124.5 \mathrm{VI} \end{aligned}$	75 n (midfreq)	$\begin{aligned} & 1 \% 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & 2 \% 20 \mathrm{kHz} 1040 \mathrm{kHz} \end{aligned}$	0.05\%	75 VA	$\begin{aligned} & 15 \\ & (6,7) \end{aligned}$	$\begin{aligned} & 16 \\ & (7,2) \end{aligned}$	$\begin{aligned} & 71 / 2 \times 11 \frac{1 / 2 \times 12}{} \\ & (191 \times 292 \times 305) \end{aligned}$	S255
$\begin{array}{\|l\|} \hline 200 \mathrm{CD} \\ 20 \overline{C D} \\ \text { Opr. } \mathrm{H} 2 \mathrm{O} \end{array}$	5 Hz to 600 kHz (5 ranges)	土2\%	$\begin{array}{\|l\|} \hline>160 \mathrm{~mW} \\ >(10 \mathrm{~V}) \\ -(7.5 \overline{\mathrm{~V}})^{-} \end{array}$	$600 \cap$	$\begin{aligned} & 0.2 \% 20 \mathrm{~Hz} \text { to } 200 \mathrm{kHz} \\ & 0.5 \% 5 \mathrm{~Hz} \text { to } 20 \mathrm{~Hz} \text { and } \\ & 200 \mathrm{kHz} \text { 20 } 600 \mathrm{kHz}- \\ & .- \end{aligned}$	$\rightarrow 60 \mathrm{~dB}$ below (<0 0 1\% of) rated output	90 VA	$\begin{aligned} & 22 \\ & (9,9) \end{aligned}$	$\begin{aligned} & 24 \\ & !10,8) \end{aligned}$	$\begin{aligned} & 73 / 8 \times 111 / 2 \times 143 / 8 \\ & (187 \times 292 \times 365) \end{aligned}$	$\$ 295$ ---1 $\$ 350$
2016	20 Hz to 20 kHz (3 ranges)	$\pm 1 \%$	$\begin{aligned} & 3 W \\ & (42.5 V) \end{aligned}$	600°	0.5\%	0.03\%	75 VA	$\begin{aligned} & 16 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 19 \\ & (8,6) \end{aligned}$	$\begin{aligned} & 71 / 2 \times 111 / 2 \times 121 / 2 \\ & (191 \times 292 \times 318) \end{aligned}$	\$315
202C	$\begin{array}{\|l\|} \hline 1 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ \text { (5 ranges) } \end{array}$	$\pm 2^{\circ} \%$	$\begin{aligned} & 160 \mathrm{~mW} \\ & (10 \mathrm{~V}) \end{aligned}$	$\begin{gathered} 600 \\ 0 \end{gathered}$	0.5% above 5 Hz	0.1%	90 VA	$\begin{aligned} & 25 \\ & (11,3) \end{aligned}$	$\begin{aligned} & 28 \\ & 112,7) \end{aligned}$	$\begin{aligned} & 71 / 2 \times 11 / 2 \times 141 / 2 \\ & (191 \times 292 \times 368) \end{aligned}$	\$350

-Output impedance' $6000 \pm 10 \%, 20 \mathrm{~dB}, 30 \mathrm{~dB}$ and 40 dB setting: $\times 600 \mathrm{n}, 0 \mathrm{~dB}$ and 10 dB seitings

* Same as 200 CD excepr. $0.06 \% 60 \mathrm{~Hz}$ to $50 \mathrm{kHz} ; 0.1 \% 20 \mathrm{~Hz}$ to 50 Hz and 50 kHz to $400 \mathrm{kHz} ; 0.5 \% 5 \mathrm{~Hz}$ to 20 Hz and 400 kHz to 600 kHz Outpul 7.5 V into 600 n load.
1 Measured with respect to full rated output.

General

Frequency response: flat $\pm 1 \mathrm{~dB}$ over instrument range; reference level at 1 kHz .
Size and weight: maxinium overall size and weights are given for cabinct models; $19{ }^{\prime \prime}$ rack models also available.

Power: 115 or (230 V must be specified) $\pm 10 \%$ at 48 to 440 Hz .
Accessories avaílable: 11000 A Cable Assembly, $\$ 6 ; 11001 \mathrm{~A}$ Cable Assembly, 57: $1100-4$ A Line Maching Transformer. $\$ 65$; 11005 A Line Matching Transformer, $\$ 85$. SIGNAL SOURCES

209A

2040

204D

The HP 209A is a small, lighrweight, sine/square oscillator. Stable, accurate signals which can be synchronized with an external source are instantly avallable over a frequeng' range from 4 Hz to 2 MHz . Separately adjustable sine/square outpurs are located on the front panel. Distortion and fatness can be minimized at low frequencies by a rear panel LOW DISTORTION MODE switch.

The HP 204C is a small, lighrweighe capacitive-tuned oscillator. Interchangeable power packs, line, rechargeable batceries or mercury batteries make this instrument ideal for boch feld and laboratory use. Internal heat generation and temperature coefficient is small, result. ing in unusually low drift. Stable, accurate signals which san be synchronized with an extemal source are instantly available over a frequency range from $S \mathrm{~Hz}$ to 1.2 MLHz . Distortion can be mini. mized at low frequencies by a rear panel Low Distortion Mode swith; however, setting time with a rapid frequency change is increased.

The HP 204D Oscillator is identical to the 204 C with the addition of an 80 dB attenuatos and vernier. The attenuator with the vernier provides excellent output amplitude settability.

Specifications (209A)

Frequency: 4 Hz to 2 MHz in 6 ranges.
Dial accuracy: $\pm 3 \%$ of frequency setting.
Flatnes5: at maximum output into 600Ω load. 1 kHz reference.

Low distoriton mode	$=1 \%$	$=0.5 \%$	$\pm 1 \%$	$\pm 5 \%$							
Normal mode	$+5 \%,-1 \%$	$=0.5 \%$	$\pm 1 \%$	$\pm 5 \%$							
100									300 k	IM	$2 \mathrm{M} \mathrm{(Hz)}$

Distortion: 200 Hz to $200 \mathrm{kHz}, 0.1 \%$ (-60 dB): 4 Hz tn 200 Hz , $<0.2 \%(-54 \mathrm{~dB}) ; 200 \mathrm{kHz} .2 \mathrm{MHz},<1 \%(-40 \mathrm{~dB})$.
Hum and nolse: $<0.01 \%$ of inpue.

Output characteristics sine wave

Output voltage: S V rms (40 mW) into 600 n ; 10 V open circuit. Output Impedance: 600
Output control: $>26 \mathrm{~dB}$ range continuously adjuscable
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Ourput can be floated up to $=500 \mathrm{~V}$ p between ourpur and chassis ground.

Output characteristics square wave

Output voltage: 20 V p.p open circuit symmetrical abour 0 V . Output can be floated up to $\pm 500 \mathrm{~V}$ p.
Rise and tall time: < 50 ns into 600Ω. Symmers: $\pm 5 \%$
Output Impedance: goon.

Synchronization

Sync output: sine wave in phase with ourpus: 1.7 V rms open circuit (high end affected by capacitive loads) ; impedance $10 \mathrm{k} \Omega$.
Sync input: same as 204C.
Price: HP 209A, 5353.

Specifications (204C)

Frequency: 5 Hz to 1.2 MHz in 6 overlapping ranges.
Dial accuracy: $\pm 3 \%$ of frequency setting.
Flatness (at maximum output into 600Ω load, 1 kHz reference)

Low milatartion modio	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$
Normal made	+5\%, -1\%	$\pm 0.5 \%$	$\pm 1 \%$

Distortion: 30 Hz to $100 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB})$: $\$ \mathrm{~Hz}$ to 30 Hz , $<0.6 \%$ (-44 dB); $100 \mathrm{kHz} \cdot 1.2 \mathrm{MHz}$, lineasly derated $10<1 \%$. Hum and noise: $<0.01 \%$ of output.

Output characteristics

Output voltage: $>2.5 \mathrm{~V}$ rons (10 mW or +10 dBm) into $600 \Omega_{\text {; }}$ $>s \mathrm{~V}$ rms open circuil.
Output impedance: 600Ω.
Output control: >40 dB range; concincously adjuscable.
Output balance: $>40 \mathrm{~dB}$ belor 20 kHz . Can be foated up 10 $\pm 500 \mathrm{~V}$ p between output and chassis ground.

Synchronization

Sync output: sine wave in phase with output; $>100 \mathrm{mV}$ rms into $<100 \mathrm{pF}$ over entire range: impedance $10 \mathrm{k} \Omega$.
Sync Input: oscillator can be synchronized to external signal. Sync range, the difference berween sinc freouency and ser frequency, is a linear íunction of ginc voltage. $=1 \% / \mathrm{V}$ ms for sine wave with a maximum input of $=7 \mathrm{Vp}(\pm 5 \mathrm{~V}$ (ms) .

Specifications (204D)

(Identical to 204 C except "output control" is replaced by the following:)
Output attenuator
Range: 80 dB in 10 dB stcps.
Overall accuracy: $\pm 0.3 \mathrm{~dB},+10 \mathrm{~dB}$ through -60 dB ranges; $\pm 0.5 \mathrm{~dB}$ on -70 dB range.
Output vernier: $>10 \mathrm{~dB}$ range, continuously adjustable.

General

Operating temperature: specifeations are met from $0^{\circ} \mathrm{C}$ ro $55^{\circ} \mathrm{C}$.
Power: standard: ac.line 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz . <7 VA max. Opt. 001 : mercury batteries 300 hours operstion. Opt. 002: line/rechargeable batteries 113 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $440 \mathrm{~Hz},<7$ VA max. 35 hours operation per recharge.
Dlmensions: $\mathrm{s}^{1 / \mathrm{s}^{\prime \prime}}$ wide, $61 / 4^{\prime \prime}$ high (without removeable feet), $8^{\prime \prime}$ deep ($130 \times 159 \times 203 \mathrm{~mm}$).
Welght: net 6 lbs (2.7 kg); shipping $9 \mathrm{lbs}(4 \mathrm{~kg})$
Accessories avaliable: HP 11139A AC Power Pack for 204C. $\$ 60$. HP 11136A Mercary Power Pack for 204C, $\$ 75$. HP 11137 A Rechargesble Battery/AC Power Pack for 204C, \$9S. HP 11075 A Insurnent Case, $\$ 60$.
Price: HP 204 C (ac line), 5260 ; HP 204D, $\$ 335$; HP 204 C or 204D option 001 (mercury batteries), add $\$ 15$. HP 204C or 204 D option 002 (rechargeable batceries. acline), add $\$ 35$.

Simple, tapid 0.2% frequency selection Flat frequency response, 10 Hz to 1 MHz 0.01% frequency repeatability Excellent stability

Uses

Production line and repetitive testing
Standard source for calibrating ac to do converters Response tescing of wide or nacrow band devices Filter checkout

Descríption

The Hewletr-Packard 4204A Digital Oscillator provides ac. curate, stable test signals for both laboratory and production
work. This one instrument does the jobs of an audio oscillator, and ac voltmeter, and an electronic counter, in applications requiring an accurate frequency source of known amplitude.

Any frequency between 10.0 Hz and 999.9 kHz can be digitally selected with an in-line rotary switch. As many as 36,900 discrete frequencies are available. Infinite resolution is provided by one vernier control, which also extends the upper frequency limit to 1 MHz . Frequency accuracy is better than $\pm 0.2 \%$ and repeatability is typically better than $\pm 0.01 \%$.

A built-in high impedance voltmeter measures the output. The meter is calibrated to read volts or dBm into a matched 600 ohm load. ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600 ohms .) The output attenuator has an 80 dB range, adjustable in 10 dB steps with a 20 dB vernier. Maximum output power can be increased to 10 wolts into $600 \mathrm{ohms}(+22 \mathrm{dBm})$

Specifications

Frequency renge: 10 Hz to $1 \mathrm{MHz}, 4$ ranges.
Frequency accuracy: $\pm 0.2 \%$ or $\pm 0.1 \mathrm{~Hz}$ (at $25^{\circ} \mathrm{C}$).
Frequency stability
$\pm 10 \%$ line voltage variation: < $\pm 0.01 \%$.
Change of frequency with temperature: $< \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Frequency response: fat within $\pm 3 \%$.
Output: $10 \mathrm{~V}(22 \mathrm{dBm})$ into $600 \Omega,(160 \mathrm{~mW}) .20 \mathrm{~V}$ open circuit.
Output attenuators: 80 dB in 10 dB steps: $< \pm 0.5 \mathrm{~dB}$ error.

Distortion: $<0.3 \%, 30 \mathrm{~Hz}$ to $100 \mathrm{kHz} .<1 \%, 10 \mathrm{~Hz}$ to 1 MHz . Hum and noise: $<0.05 \%$ of output.
Dimensions: cabinet, $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $111 / 4^{\prime \prime}$ deep (134 x $426 \times 286 \mathrm{~mm}$).
Power: $115 \mathrm{~V} / 230 \mathrm{~V}$ swith, $\pm 10 \%, 11 \mathrm{VA}$ max, 50 to 60 Hz .
Weight: net, $19 \mathrm{lbs}(8.5 \mathrm{~kg})$; shipping, $26 \mathrm{lbs}(10,7 \mathrm{~kg})$.
Price: HP 4204A, $\$ 910$.
Option 001: output monitor top scale calibrated in $\mathrm{dBm} / 600$?; bottom scale calibrated in volts, add $\$ 10$.

The solid-state HP Model 203A Low-Frequency Function Generator provides two transient-free low-distortion square and siousoidal test signals particularly useful for a wide variety of low frequency applications. Field and laboratory testing of servo, geophysical, medical and high-quality audio equipment becomes practical when using the 203 A .

The 203A frequency cange of 0.005 Hz to 60 kHz is covered in 7 overlapping bands (2 additional ranges available on special order, offering freguency range to 0.0000 s Hz). Accurate $\pm 1 \%$ frequency setting is provided by 180 dial divisions. A vernier drive allows precise adjustment.

30 volt output

The 203A provides a maximum outpur voltage of 30 V peak-to-peak for all waveforms. The sinusoidal signals have a distortion that is less than 0.06% and provide virlually transient-free outputs when frequency and operating conditions are varied rapidly. The four output circuits of the 203A have individual 40 dB continuously variable attenuators.

Outputs consist of a reference sine and square wave, and a variable-phase sine and square wave. The two sine- and square-wave outputs are electrically identical except that one sine- and square-wave output contains a 0 .to- 360 degree phase-shifter. These four signals (two reference phase and two variable phase) are available simultaneously from the 203 A. The output system is floating with respect to ground and may be used to supply an output voltage that is terminal grounded, or may be floated up to 500 volts de above chassis ground. The output impedance is 600 ohms for all outputs.

Special features

A front-panel calibration provision permits the user to easily calibrate the oscillator frequency to the envitonment in which the instrument is used. The HP 203A features a unique method of mixing, filtering and dividing the frequency to maintain an exact decade relationship. Interchangeable decade modules provide greater reliability and ease of servicing.

Specifications, 203A

Frequency range: $0,005 \mathrm{~Hz}$ to 60 kHz in seven decade ranges.*
Dial accuracy: $\pm 1 \%$ of reading.
Frequency stability: within $\pm 1 \%$ including warmup drift and line voltage variations of $\pm 10 \%$.
Qutput waveforms: sine and square waves are available simultaneously; all outputs have common chassis terminal.
Reference phase: sinc wave, 0 to 30 V peak-to-peak; square wave, 0 to 30 V peak-to-peak (open circuit).
Variable phase: sine wave, 0 to 30 V peak-to peak: square wave, 0 to 30 V peak-to-peak; continuousiy variable, 0 to 360°; phase dial accuracy, $\pm 5^{\circ}$ sine wave, $\pm 10^{\circ}$ square wave (open circuir).

Output impedance: 600 ohms .
Output power: 5 volts into 600 ohms (40 mW) ; 40 dB continuously variable attenuation on all outputs.

Distortion: total harmonic distortion hum and noise $>64 \mathrm{~dB}$ below fundamental ($<0.06 \%$) ar full outpue.
Output system: direct-coupled output is isolated from ground and may be operated foating up to 500 V dc .

Frequency response: $\pm 1 \%$ referenced to I kHz .
Square wave response: rise and fail time, <200 ns; overshoot, $<5 \%$ at full output.

Power: 115 or 230 volts $\pm 10 \%$, 48 to $440 \mathrm{~Hz}, 27.5$ VA max.
Dimensions: cabinet: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $11 / 2^{\prime \prime}$ deep (133 $\times 425 \times 286 \mathrm{~mm}$): rack mount $\operatorname{kit}(00203.84401)$ furnished with instrument.

Weight: net, $20 \mathrm{lbs}(9.17 \mathrm{~kg}$); shipping, $28 \mathrm{Ibs}(12,6 \mathrm{~kg})$.
Price: HP 203A, \$1465; Option 001 (0.0005 Hz range), add s50; Oprion 002 (0.0000 S Hz range), add $\$ 150$.

[^40]FUNCTION GENERATOR
Multiple outputs, plug-in versatility
Model 3300A \& 3301A plug-in

Description

Plug-ins and multiple outputs set the HP 3300A Punction Generator apart from other function generators. Any two of three waveforms-sine, square or triangular-may be selected by a front-panel swith over the frequency range from 0.01 Hz to 100 kHz , continuously adjustable in seven decade ranges. This solid-state, multi-purpose source provides simultaneous signals of any two waveforms over the entire frequency range with independent variable amplitudes.
Plug.ins, which insert directly into the front panel, include the HP 3301A Auxiliary Plug-in to provide internal connections for basic unit operation. The 3302A plug-in provides single and multpile-cycle operation with adjustable start-stop phase. A phase-lock loop in the 3302A permits syachronizing the 3300 A with an external signal and gives adjustable phase control. The HP 3304A Sweep/Offset Plug-in provides internal sweeping, dc offset. sawtooth waves and offset square waves. The 3305A Sweeper Plug-in supplies internal log sweep and manual sweep over four decades with calibrated variable stantstop frequency control within four decades. Sweep width is continuously-adjustable. It has manual or external triggering. Sweep can be analog-programmed with horizontal sweep available for driving scopes or recorders.
The frequency of the HP 3300A can be conerolled by either the front-panel frequency dial or an external voltage applied to a rear-terminal connector. This feature is useful for sweeping filters, amplifers and other frequency-dependent devices and for externally programming frequencies for production testing,

The output system of the HP 3300A is de coupled and fully floating with respect to power-line ground. An internal shield reduces radiated interference and provides common-mode rejection with floating output. A balanced output can be obtained by using both output amplifers. Each output amplifier will deliver 35 V p-p into an open circuit.

Specifications

Output waveforms: sinusoidal, square and triangular selected by paral swith (any two outputs a vailable simultaneously).

Frequency range: 0.01 Hz to 100 kHz in 7 decade ranges.
Typical frequency stability
Short term: drift $< \pm 0.05 \%$ of setking for 10 min .
Long term: drift $< \pm 0.25 \%$ of setting for 24 hrs .
Frequency response: $\pm 1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz}: \pm 3 \%, 10$ kHz to 200 kHz on the X 10 k range.
Dial accuracy: $\pm 1 \%$ of maximum dial setting (1 minor division), 0.01 Hz to 10 kHz at $+25^{\circ} \mathrm{C} ; \pm 2 \%$ of maximum dial setting (2 minor divisions). 10 kHz to 100 kHz on the Xiokrange.
Maximum output per channel: $>35 \mathrm{~V} \mathrm{p}-\mathrm{p}$ open circuit; $>15 \mathrm{~V}$ p-p into 600Ω; $>2 \mathrm{~V}$ p-p into 50Ω.
Output attenuators (both channels): 40 dB range.
Sine-wave distortion: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<3 \%, 10$ kHz to 100 kHz on the X 10 k range.
Square-wave response: <250 ns rise and fall time on all ranges; $<1 \%$ sag, $<\$ \%$ cvershoor at full output; $<1 \%$ symmetry error; $<500 \mathrm{~ms}$ rise and fall time (-A).
Triangle-linearity error: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<2 \%, 10$ kHz to 100 kHz at full output; $<1 \%$ symmetry error
Sync-pulse autput: $>10 \mathrm{~V}$ p-p open circuit. $<5 \mu \mathrm{~s}$ duration.
Output impedance (both channels): $600 \Omega \pm 20 \%$.
DC stabillty: drif: $< \pm 0.25 \%$ of p-p amplitude over a period of 24 hours (after $30-\mathrm{min}$, warmup).
Remote frequency control: 0 to -10 V will linearly change frequency >1 decade within a single range. Prequency resettability with respect to voltage $\pm 1 \%$ of maximum frequency on range selected.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 65 \mathrm{VA}$ max.
Dimensions: standard Hewlett-Packard full module $163 / 4$ " wide, $5.7 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($425 \times 133 \times 279 \mathrm{~mm}$).
Weight: net, $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping. $25 \mathrm{lbs}(11.3 \mathrm{~kg})$.
Accessories furnlshed: rack mount kit for $19^{\prime \prime}$ rack.
Plug.ins available
HP 3301 A Auxiliary Plug-in, $\$ 30$.
HP 3302A Trigger/Phase Lock Plug in (see page 261).
HP 3304A Sweep/Offser Plug-in (see page 261).
HP 3305A Sweeper Plug-in (see page 261).
Price: HP 3300A Function Generator, $\$ 725$.

The HP 3302A Trigger/Phase Lock Plug-in provides singlecycle, multiple-cycle, and phase-lock operation. The inserument can be triggered over the entire frequency range, either manually or by applying an external voltage.

The HP 3304A Sweep/Offset Plug-in provides internal sweep. ing, dc offset, sawtooth waves, and offset square waves. Up to $\pm 16 \mathrm{~V}$ of de offset is available for all signals generated in the main frame and plug-in. In addition, the independendy frequencycontrolled sawtooth wave may be switched intemally to the frequency control circuit of the HP 3300 A Function Generator to permit sweeping over a decade of frequency within a single range.

The HP 3305A Sweep Plug-in will sweep logarithmically, re. petitively between any two frequencies within one of the three (4-decade) ranges: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to 10 kHz , and 10 Hz to 100 kHz . Calibrated independenk START-STOP controls greatly simplify seting desired sreeep end points. Adjustable sweep time, from 0.01 to 100 seconds, provides sweep times slow enough for accurate response testing of low-frequency high. Q systems and fast enough for good visual displays of higher frequency responses,

Specifications, 3302A

Trigger requirements
Single cycle: manual or external, dc coupled, Requires at least 0.5 V to rtigger externally. May be triggered with positive of negative input volkage which starts at ur goes through o V ($\pm 20 \vee p$ max.).
Multiple cycle: manual or external start/stop, de coupled. Requires at least 0.5 V to start, 0 V to stop. May be triggered with either positive or negative ($\pm 20 \mathrm{~V}$ p max.).
Phase lock: 10 Hz to 100 kHz (upper 4 ranges only), dc coupled. Requires + and -0.5 V p to lock, 10 V p.p for specified accuracy with sine wave input. The 3302 A will lock on a fundamental or harmonic of the inpur signal.
Phase dial accuracy: $\pm 10^{\circ}$ from 10 Hz to $10 \mathrm{kHz} ; \pm 20^{\circ}$ from 10 kHz to 100 kHz on X 10 k range (fundamental).
introduced distortion: $<1 \%, 10 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<3 \%, 10 \mathrm{kHz}$ to 100 kHz on X10 k range (fundamental).

Specifications, 3304A

DC offsat

Voltage range: adjustable 0 to $\pm 16 \mathrm{~V}$ open circuit and $\pm 1 \mathrm{~V}$ vernict.
DC stability: $\pm 30 \mathrm{mV}$ over $24 . \mathrm{hr}$ period (aíter $30-\mathrm{min}$, warmup).
Offset square wave
Output polarity: positive or negative, from dc offser voltage or ground potential.
Amplitude: $>$ is V p-p open circuit; continuously adjustable with 3300 A amplitude control. Rise time: <400 ns. Overshoot: $<5 \%$ at full outpur. Sag: $<1 \%$.

Sawtooth waveform

Frequency range: 0.01 Hz to 100 kHz , continuously adjustable over 7 decade ranges.

Dial accuracy: $< \pm 10 \%$ full scale, 0.01 Hz to $\mathrm{I} \mathrm{Hz} ;< \pm 5 \%$ full scale, 1 Hz to 100 kHz .
Ampltude: $>15 \mathrm{~V}$ p.p open circuit; continuously adjustable over a 40 dB range with 3300 A amplitude control.
Frequency response: $<2 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<5 \%$. 10 kHz to 100 kHz .
Output polarity: positive or negative, from de offset voltage or ground potencial.
Linearity: $<1 \%, 0,01 \mathrm{~Hz}$ to 10 kHz ; overshoot, $<5 \%$.
$<2 \%, 10 \mathrm{kHz}$ to 100 kHz ; overshoor, $<5 \%$.
Flyback time: $<5 \%+250 \mathrm{~ns}$.

Internal sweep

Controls: start frequency set by 3300A frequency dial; sweep range set by sweep width control on plug-in.
Sweep rate: deternined by sawtooth frequency seting.
Sweep width: adjustable from 0 to at least 1 decade on any one cange.

Specifications, 3305A

Frequency range: 0.1 Hz to 100 kHz in 3 overlapping ranges.
Sweep width: limits adjustable 0 to 4 decades in any of 3 (4 . decade) bands: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 10 \mathrm{~Hz} 10$ 100 kHz . Start-stop dial accuraç: $=10 \%$ of setting.

Sweep modes

Automatic: reperitive logarithmic sweep between start and stop frequency settings.
Manual: vernier adjustment of frequency between start and stop frequency settings.
Trigger: sweep belween start and stop frequency settings and retrace with application of external trigger voliage or by depressing front-pancl trigger button.

Trigger requirements: ac coupled. positice going at leash $1 \mathrm{~V} p$ with $>$? V per ms rise rate. Max, input, $\pm 90 \mathrm{~V}$ p.
Sweep time: 0.01 s to 100 s in 4 decade steps, continuously ad. juslable vernier.
Retrace time: $<0.003 \mathrm{~s}$ for 0.1 to 0.01 s sweep times; $<0.01 \mathrm{~s}$ for 1 to 0.1 s sweep times; $\langle 4 \mathrm{~s}$ for 100 to 1 s sweep times.
Blanking: oscillator disabled during retrace.
Pen lift: terminals shorted during sweep; open during retrace in auto and trigger modes for 100 to 1 s sweep times.
Sweep output: linear ramp at CHANNEL B OUTPUT (PLUG.
IN): amplitude adjustable 'independently of sweep width; max. output $>$ is V p.p into oper circuit, $>7 \mathrm{~V}$ p-p into 600Ω.
External frequency control
Sansitivity: $6 \mathrm{~V} /$ decade (refer: 5 TART setting), $\pm 24 \mathrm{~V}$ max.
V-to-F conversion aceuracy: for each 6 V change in programming voltage, frequency changes 1 decade $\pm 3 \%$ of end F.
Input impedance: $400 \mathrm{k} \Omega \pm 5 \%$. Max. rate: 100 Hz .

General

Dimensions: $6-1 / 16^{\prime \prime}$ wide, $43 / 4^{\prime \prime}$ high, $101 / 4^{\prime \prime}$ deep (154 x $121 \times 260 \mathrm{~mm}$)
Weight: net, 4 lbs 602 (2 kg); shipping 8 lbs
$(3,6 \mathrm{~kg})$.
Price: HP 3302A, $\$ 259$; HP 3304A, $\$ 295$: HP 3305A, $\$ 1015$.

10 Hz to $10 \mathrm{MHz} ; 2 \% / \mathrm{mo}$ amplitude stability Models 651B, 652A, 654A

Description

Amplitude and frequency stability of the 651B Test Oscillator provides test quality signals for laboratory or production measurements from 10 Hz to 10 MHz . Two output impedances are available from the front panel providing 200 mW into 50Ω or 16 mW into 600Ω.

The 652 A is the same as the 651 B with the addition of an expandable monitor for amplitude control to 0.25% across the band.

The 654A Test Oscillatot is a lightweight, portable solidstate signal source. Its 10 Hz to 10 MHz frequency band, amplitude stability, accuracy, and level flatness make it an ideal general purpose test oscillator. The selective output impedances of $50 \Omega, 75 \Omega$ unbalanced, and $135 \Omega, 150 \Omega, 600 \Omega$ balanced make it useful in electronic research laboratories, in production testing, and for use as a commercia! test instrument.

651B Specifications ${ }^{\text {po }}$

Frequency range: 10 Hz to $10 \mathrm{MHz}, 6$ band. dial calibration: 1 to 10.
Amplitude stability: $\pm 2 \%$ per mo. $20^{\circ} \mathrm{C} \cdot 30^{\circ} \mathrm{C}$.
Dial accuracy (including warmup and $\pm 10 \%$ line voltage variations): $\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz} ; \pm 3 \%, 10 \mathrm{~Hz}$ to 100 Hz and 1 MHz to 10 MHz .
Output (max): 3.16 into 50Ω or $600 \Omega ; 6.32$ open circuit.
Ranges: 0.1 mV to 3.16 V full scale, 10 steps in $1,3,10$ sequence: -70 dBm to +23 dBm (50Ω outpur) full scale. 10 dBm per step; coarse and fine adjustable.

flatness

Amplitude not readjusted to a reference on the output monitor: $\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz}_{i} \pm 3 \%, 10 \mathrm{~Hz}$ to 100 $\mathrm{Hz}: \pm 4 \%$. 1 MHz to $10 \mathrm{MHz}^{* *}$.
Amplitude readjusted to a reterence on the output monitor:

Range	Frequency					
	10 Hz	20 Hz		4 MHz	10 MHz	
3 V and 1 V	2\%		1\%		2\%	
. 3 V to 0.3 mV	2.5\%		1.5\%		2.5\%	
. 1 mV	3\%		2\%		3\%	

[^41]Dimensions: $163 / /^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep (425×133 x 337 mm).
Weight: net, $17 \mathrm{lbs}(7,7 \mathrm{~kg}$) ; shipping, $22 \mathrm{lbs}(9,9 \mathrm{~kg})$.
Accessories furnished: rack mount kil for $19^{\prime \prime}$ rack.
Price: HP 651B, $\$ 625$.
Option 001; output monitor calibrated to read dBm for 600Ω, add $\$ 25$.
Optlon 002: outputs, 75Ω and. 600Ω; calibrated in $\mathrm{dBm} / 75 \Omega$, add \$2s.
Note: other output impedances above 50Ω are available.

652A Specifications*

(Same as Model 651B except as indicated below')
Expand scale: expands reference voltage of the normal scale from 0.9 to 1.0 or 2.8 to 3.2 .
Flatness (amplitude readjusted using expanded scale on output monitor: $\pm 0.25 \% 3 \mathrm{~V}$ and 1 V range; $\pm 0.75 \% 0.3 \mathrm{~V}$ to 0.3 mV range: $\pm 1.75 \% 0.1 \mathrm{mV}$ range.

Accessorles furnished: HP 11048 B son feed-thru termination; rack mounting kit.
Price: HP 652A, $\$ 755$.

654A Specifications*

Frequency range: 10 Hz to 10 MHz in 6 bands.
Frequency accuracy: 100 Hz to $5 \mathrm{MHz}, \pm 2 \% ; 10 \mathrm{~Hz}$ to 100 $\mathrm{Hz}, \pm 3 \% ; 5 \mathrm{MHz}$ to $10 \mathrm{MHz}, \pm 4 \%$.
Level flatness $(+10 \mathrm{dBm}$ and 0 dBm$):=0.5 \%$ from 10 Hz to 10 MHz for unbalanced outputs, 10 Hz to 5 MHz for 135Ω and 150Ω outputs, and 10 Hz to 1 MHz for 6008 output.
Output impedance: 50Ω unbalanced, 75Ω unbalanced, 135Ω balanced, 1500 balanced. and 6000 balanced.
Output level: +11 dBm to $-90 \mathrm{dBm}, 10 \mathrm{~dB}$ and 1 dB steps with adjustable $\pm 1 \mathrm{~dB}$ meter range; calibrated for each impedance.

Attenuator

Range: 99 dB in 10 dB and 1 dB steps.
Accuracy: $\pm 1.5 \%(0.15 \mathrm{~dB})$ except $\pm 10 \%$ (1 dB) ar out. put levels below 60 dBm at frequencies $>300 \mathrm{kHz}$.
Amplitude accuracy: $\pm 1 \%$ for 90 days ($1 \mathrm{kHz}+10 \mathrm{dBm}$).
Meter tracking: $\pm 0.05 \mathrm{~dB}$.
Balance (on balanced impedances): $>50 \mathrm{~dB}$ for (requencies from 10 Hz to $1 \mathrm{MHz},>40 \mathrm{~dB}$ to 5 MHz .
Distortion (THD): 10 Hz to $1 \mathrm{MHz},>40 \mathrm{~dB}$ below fundamental: 1 MHz to $10 \mathrm{MHz}_{3}>34 \mathrm{~dB}$ below fundamental.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.130^{\circ} \mathrm{F}\right)$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 35 \mathrm{VA}$ max.
Dimensions: $163 / /^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep (425×133 $\times 286 \mathrm{~mm}$).
Weight: aet, $21 \mathrm{lbs}(9,5 \mathrm{~kg}$) : shipping, $23 \mathrm{lbs}(10,4 \mathrm{~kg}$).
Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 654A, $\$ 910$.

FUNCTION GENERATORS
 Compact, 7 functions, 10 decades of frequency
 Model 3310A/B

Description

The 3310A Function Generator is a compact voltage.controlled generator with 10 decades of range. Ramp and pulse functions in addition to sine, square and triangle plus de offset and external voltage control provide wide versatidity. Aiso on the front panel is the fast rise time sync ourput, square wave in symmettical functions and rectangular in pulse and ramp. Aspect ratio of non-symmetrical function is $15 \% / 85 \%$.

The 3310B has all the features of the standard 3310A plus single and multiple cycle output capability. With the start/stop phase knob in the detent position (max ccw) the instrument has the same specifications as the standard 3310A. When the start/stop phase knob is out of the detent, single or multiple cycle outputs can be obtained using either manual or external triggering.

Specifications (3310A)

Output waveforms: sinusoidal, square, triangle, positive pulse, negative pulse, positive ramp and negative ramp. Pulses and ramps have a 15% or 85% duty cycle.
Frequency range: 0.0005 Hz to 5 MHz in 10 decade ranges.

Sine wave trequency response

0.0005 Hz to $50 \mathrm{kHz}: \pm 1 \% ; 50 \mathrm{kHz}$ to 5 MHz : $\pm 4 \%$. Reference, 1 kHz at full amplitude into son.
Díal accuracy
0.0005 Hz to 500 kHz all functions: $\pm(1 \%$ of setting $+1 \%$ of full scale).
500 kHz to 5 MHz sine, square and triangle: $\pm(3 \%$ of setting $+3 \%$ of fuil scale).
500 kHz to 5 MHz pulse and ramps: \pm (10% of setting $+1 \%$ of full scale).
Maximum autput on HIGH: $>30 \mathrm{~V}$ p.p open circuit: $>15 \mathrm{~V}$ p-p into 50Ω (except for pulses at frequency $>2 \mathrm{MHz}$).
Pulse (frequency $>2 \mathrm{MHz}$) : $>24 \mathrm{~V} \mathrm{p}-\mathrm{p}$ open circuit: $>12 \mathrm{~V}$ p-p into 50Ω.
MInImum autput on LOW: $<30 \mathrm{mV}$ p-p open circuit: <1s $m \mathrm{~m}$ p-p into 50Ω.
Output level control: range $>30 \mathrm{~dB}$. HIGH and LOW outputs overlap for a total cange of $>60 \mathrm{~dB}$; LOW outpur is 30 dB down from HIGH output.
Sine wave THD (below tundamental)
0.0005 Hz to $10 \mathrm{~Hz}:>40 \mathrm{~dB}(1 \%)$.

10 Hz to 50 kHz (0n 1 k range): $>46 \mathrm{~dB}(0.5 \%)$.
50 kHz to $500 \mathrm{kHz}:>40 \mathrm{~dB}$ (1%).
500 kHz to $5 \mathrm{MHz}:>30 \mathrm{~dB}(3 \%)$.
Square wave and pulse response: $<30 \mathrm{~ns}$ rise and fall times at full output: <35 ns tise and fall times with AMPLITUDE control not fully CW: $<5 \%$ total aberrations.
Triangle and ramp linearity: 0.0005 Hz to $50 \mathrm{kHz},<1 \%$.
Triangle symmetry: 0.0005 Hz to $20 \mathrm{~Hz}:<1 \% ; 20 \mathrm{~Hz}$ to 50 $\mathrm{kHz}:<0.5 \%$.
Impedance: 50Ω.
Sync
Amplitude; $>\left\{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{p}\right.$ open circuit, $>2 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ inco son.
Rise and fall times: <20 ns.
Waveform: square for symmerrical functions, rectangular for pulse and ramp.
Output impedance: 50Ω.

Offset

Amplitude: $\pm 10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ into 50n, continuously adjustable.
Note: max V ac $p+V$ de offset is $\pm 15 \mathrm{~V}$ open circuit; $\pm 7.5 \mathrm{~V}$ into 50 n .
External frequency control range; 50:1 on any range.

Input requirement: with dial set to low end mark, a linear positive ramp of 0 to $+10 \mathrm{~V} \pm 1 \mathrm{~V}$ will linearly increase frequency $50: 1$. With dial set ac 50 , a linear negative ramp of 0 to $-10 \mathrm{~V} \pm 1 \mathrm{~V}$ will linearly decrease frequency $50: 1$. An ac voltage will $F M$ the frequency about a dial setting within the limits ($1<\mathrm{f}<50$) x range setting.
Linearity: ratio of outpur frequency to inpur voltage $\left(\frac{\Delta F}{\Delta V}\right)$
will be linear within 0.5%.
Sensitluity: approximately $100 \mathrm{mV} /$ minor division.
Input impedance: $10 \mathrm{k} \Omega$.
Note: specifications apply from 5 to so on the frequency dial.

General

Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $440 \mathrm{~Hz}, 32 \mathrm{VA}$ max. Dimensions: $73 / 4^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high (without removable feet) $8^{\prime \prime}$ deep ($297 \times 114 \times 203 \mathrm{~mm}$).
Weights net, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$: shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Accessories available
HP Part No. 5060.0105 filler strip for use with HP 1051A combining case or HP 5060.0797 rack adapter frame.
Price: HP 3310A, \$595.

Specifications (3310B)

Specifications for 3310 B are same as 3310 A with the addition of the following:
Modes of operation: free run, single cycle, multiple cycle.
Frequency range: $0,0005 \mathrm{~Hz}$ to 50 kHz (usable to 5 MHz).
Single cycle**: EXT TRIGGER (ac coupled) requires a positivergoing square wave or pulse from $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ to $10 \mathrm{~V} \mathrm{p}-\mathrm{p}$ of lower frequency than that set on the 3310 B ; the triggering signal can be dc offset, but (V ac peak $+V \mathrm{dc}$) $\leq \pm 10$ V. EXT GATE (dc coupled) will trigger a single cycle on any positive waveform $\geq 1 \mathrm{~V}$ but $\leq 10 \mathrm{~V}$ which has period greater than the period of the 3310 B output, and a duty cycle less than the period of the 3310 B output. The gate signal cannot exceed 10 V .
Multiple cycle ${ }^{* *}$: MANUAL TRIGGER will cause the 3310 B to free run when depressed. When the rrigger button is released, the waveform will stop on the same phase as it started. EXT GATE will cause the 33108 to free tun when the gate is held at between +1 and +20 V . When the gate signal goes to zero, the 3310 B will stop on the same phase as it started. For accurate gating. a square wave or square pulse is recommended.
Start-stop phase: The start-stop phase can be adjusted over a range of approximately $\pm 90^{\circ}$ using the front panel control.
Input impedance: EXT TRIGGER: 390 pF in series with 5008. EXT GATE: 500Ω.
Price: HP Model 3310B, $\$ 735$.

[^42]
SIGNAL SOURCES

$\sqrt{112}$

FREQUENCY SYNTHESIZER 0.01 Hz to 13 MHz

Models 3320A, 3320B

Description

The 3320A/B Frequency Synthesizer has the frequency accuracy, stability, and resolution demanded by many of today's exacting applications. The ease and fexibility of adding greater stability means the $3320 \mathrm{~A} / \mathrm{B}$ can be railored to your needs as they emerge. Spectral purity and low signal-to phase noise complement the frequency qualities of the $3320 \mathrm{~A} / \mathrm{B}$.

The capability of the 3320 A means you can add synthesizer quality to your design and production effort, yer the price al. lows you to avoid cutting deeply into your instrumentation budget.

The 3320 B is more than a synthesizer. It offers precise level control, superior frequency response, low harmonic distortion and high power output which are features normally not found on frequency synthesizers. This makes the 3320 B a precision bench signal source where neither frequency nor amplitude quality is sacrificed.

However, the 3320 B is even more. It is a quality program. mable signal source. Two choices of digital remote control afford great flexibility for today's system applications. High precision in both frequency and amplitude means that expensive system monitoring is unnecessary.

Features-frequency

The 3320A/B Frequency Synthesizer has a broad frequency range of 0.01 Hz to 13 MHz in seven frequency ranges (the two lower ranges, 100 Hz and 10 Hz , are optional).
Three digits plus a ten-turn two-digit continuous vernier plus 30% overrange capability gives the $3320 \mathrm{~A} / \mathrm{B} 1$ part in 10° frequency resolution across its total frequency range. The standard instrument utilizes an ambient temperature crystal reference which reduces drift to less than ± 10 parts in 10° per
year. The ability to phase lock to an external frequency standard or to add an optional reference crystal oven provide a range of frequency stabilities covering most applications.

The $3320 \mathrm{~A} / \mathrm{B}$ is a synthesizer with ranges. This means the signal-to-phase noise is reduced as the instrument is downranged. The low spurious content of $>60 \mathrm{~dB}$ down and low harmonic distortion, which ranges from -60 to - 40 dB depending on frequency, contribute to a high quality spectral output.

Features-amplitude

The 3320A has a maximum 1 volt rms into 508 output (+13 dBm) with a continuous +13 dBm to 0 dBm amplitude vernier. The 3320 A is therefore recommended for applications where level control is not a critical parameter.

In applications where a high quality output amplitude is needed or it is desired to digitally control the outpur amplitude, the 3320 B is recommended. The 3320 B features a four-digit leveling loop with a 0.01 dB level resolution of a calibrated output from +26.99 dBm to $-69.99 \mathrm{dBm}(-73.00 \mathrm{dBm}$ under remote control). This is a maximum of a full half watt of outpur power (s volts rms into 50 ohms or 10 volts rms into an open circuit).

Frequency response of $\pm 0.05 \mathrm{~dB}$ over the range of 10 Hz to 13 MHz and level accuracy of $\pm 0.05 \mathrm{dBm}$ absolute at 10 kHz complement the level capability of the 3320 B .

Programmability/remote contros

The $3320 \mathrm{~A} / \mathrm{B}$ is a programmable signal source. Digital remote control capability may be purchased installed in the in. strument or may be added larer if the need arises.

The 3320A with its Option 003 allow's parallel BCD remore control of frequency only. The first digit of the frequency
vernier and the frequency range may be controlled digitally as well as the main Frequency digits.

The 3320B has two remote control options. Both options allow full control of all functions except the last vernier digit and the line switch. Option 004 is parallel BCD remore control capability. Option 005 is a unique bit-parallel/word-serial ASCII programming option. This option is advantageous where several 3320B's need to be controlled since only one programming device is needed. The ASCII programming option has eight input lines thus allowing direct interface to the HP 3260A Marked Card Programmer, phoro reader, or any other 8 -bit conrroller. This buss line programming means a saving of computer interlace slots and a simplification of software.

3320A/B Specifications

Frequency range: 0.01 Hz to 13 MHz in 7 eanges.
Frequency ranges: $10 \mathrm{MHz}, 1000 \mathrm{kHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1000$ $\mathrm{Hz} ; 100 \mathrm{~Hz}$ and 10 Hz (optional). 30% overrange on all ranges.
Frequency resolution:

Parge	Varniar Out (local or remote)	Varnier In (local)	Vernier In (remote)
10 MHz	10 kHz	10 Hz	1 kHz
1000 xHz	1 kHz	1 Hz	100 Hz
100 kHz	100 Hz	0.1 Hz	10 Hz
10 kHz	10 Hz	0.01 Hz	1 Hz
1000 Hz	1 Hz	1 mHz	0.1 Hz
100 Hz	0.1 Hz	0.1 mHz	0.01 Hz
10 Hz	0.01 Hz	0.01 mHz	0.001 Hz

Frequency accuracy

Vernier out: $\pm 0.001 \%$ of setting for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Vernier in: $\pm 0.01 \%$ of range for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Frequency stability
Long term: ± 10 parts in 10^{6} of setting per year (vernier out) with ambient temperature reference. Optional high stability crystal reference oven available (Option 002).
Slgnal-to-phase noise (integrated): $>40 \mathrm{~dB}$ dorn in 30 kHz band, excluding $\pm 1 \mathrm{~Hz}$, centered on carrier. 10 MHz range, vernier out. Improves on lower frequency ranges.
Harmonic distortion: with output frequencies $>0.1 \%$ of sange at full ourput amplitude, any harmonically related signal will be less than the following specified levels.

- 60 dB with output from $s \mathrm{~Hz}$ to 100 kHz .
-50 dB with output from 100 kHz to 1 MHz .
-40 dB with output from 1 MHz to 13 MHz .
Spurious: $>60 \mathrm{~dB}$ down.
Internal frequency standard: 20 MHz ambiens temperature crystal. Optional 5 MHz reference crystal oven availatie Opr. 002.
Phase locking: the 3320A/B may be phase locked with a 200 mV to 2 V rms signal that is any subharmonic of 20 MHz from 1 MHz through 10 MHz (e.g., : $\mathrm{MHz}, 2 \mathrm{MHz}, 2.5$ $\mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$). BNC female connector.
Rear panel output: front or rear panel ourput is available. Can be easily changed by routing internal cable to front or cear female BNC connectors. No degradation of performance for reas panel output.
Auxiliary outputs
Tracking output: 20 MHz to 33 MHz offset signal. Tracks main output with 20 MHz offser. Rear panel fenale BNC, $>100 \mathrm{mV} \mathrm{rms} / \mathrm{son}$.
1 MHz reference output: sine wave, rear panel female BNC, $220 \mathrm{mV} \mathrm{rms} / 50 \mathrm{n}$ ($>0 \mathrm{dBm} / 50 \Omega$).

Low level output: same frequency as main output but re. mains between 50 mV rms and 158 mV rms (into 50Ω) depending on main output level setcing. May be used as counter output if wanted, Rear panel female BNC, sine wave.
3320A amplitude section
Amplitude: maximum 2 V rms $\pm 10 \%$ open circuit. maximum 1 V rms $\pm 10 \%$ into 50Ω.
Amplitude range: 0 dBm to +13 dBm range through $3 / 4$ turn front panel control (not programmable).
Frequency response: $\pm 2 \mathrm{~dB}$ over total range.
Output impedance: 50Ω (75Ω, Option 001).
3320日 amplitude section
Amplitude range: +26.99 dBn ($1 / 2$ watt) to -69.99 dBm (-73.00 dBm under remote control) into $50 \Omega .(+26.99$ $\mathrm{dBm}=5 \mathrm{~V}$ rms into 50Ω).
Amplitude resolution: 0.01 dB .
Frequency response (10 kHz reference):

10 Hz		13 MHz
		+26.00 d8m
$\pm 0.5 \mathrm{~dB}$	$\pm 0.05 \mathrm{d8}$	
	$\pm 0.1 \mathrm{~dB}$	
	$\pm 0.25 \mathrm{dg}$	
		$-73.00 \mathrm{dBm}$

Amplitude accuracy (absolute): $=0.05 \mathrm{~dB}$ at 10 kHz and $+26.99 \mathrm{dBm}\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$.
Output impedance: 50Ω (75Ω, Option 001).

Options

75 Ohm output impedance

Option 001 (3320A/日)
Attenuation and oupput referenced to 75Ω.
Amplitude range (3320 B only): +24.99 dBm to -69.99 dBm (-75.00 dBm under remote control) into 75Ω.

Reference crystal oventh

Option 002 (3320A/B)
5 MHz crystal in temperature stabilized oven.
Long term stability: ± 1 part in $10^{8} /$ day: ± 1 part in $10^{2} / \mathrm{mo}$.
Frequency accuracy: ± 1 part in 10° of secting per mo. For feld installation order accessory kit HP 11237A.
Parallel BCD remote control*
Option 003 (3320A onis)
Allors digitai remore control of frequency only on 3320A. Digital control of outpur level is not available on 3320A. The mose significant digit of the vernier may be programmed thus giving four digits, plus 30% overrange, contsol of frequency in seven ranges (two are optional).
Frequency switching and serting time: $\pm 0.01 \%$ of range, 15 $\mathrm{ms}: \pm 0.001 \%$ of range. 60 ms .
For field installation order accessory hit HP 11238A.

Parallel BCD remote control*

Option 004 (3320B only)
Allows full digital remote control of frequency and ampli. tude. **Four digits of frequency, overrange, frequency range, Vernier In/Out, four digits of amplitude, and leveling loop response times are all controlled digitally. All front panel controls, excepr line switch, are disabled in remote.
Frequency switching and settling time: $\pm 0.01 \%$ of range, 15 $\mathrm{ms}: \pm 0.001 \%$ of range, 60 ms .
Amplitude srifehing and settling time: <1.5 s to rated ac. curacy.

ASCII remote control Option 005* (3320B only)
Allows bit-parallel word-serial digital remote control of all functions. **A 3320 B with this option will recognize an address and then accept instructions in a serial fashion. Instructions are in a 7 -bit parallel ASCII code. Due to the addressing feature, up to ten 3320B's (with this option) may be programmed from one programmer. The HP 3260A Marked Card Programmer may be used as a programmer for this option.
This option requires 8 digital input lines for full control.
**Seven of the eight are programming input lines and one is a dara command line.
Full digital isolation is standard with this option.
Logic Level Requirements for All Digital Remote Control Options.

State	Requiraments
"Low" (logical "1")	$0 \vee$ to $0.4 \mathrm{~V}(5 \mathrm{~mA}$ max.) or can- tact closure to ground through <80 ohms.
"High" (logical "O")	$+2,4 \mathrm{~V}$ ro 5 V or removal of con- tact closure to ground.

100 Hz and 10 Hz ranges*

Option 006 (3320A/B)

Adds two lower frequency ranges, 100.0 Hz and 10.00 Hz , yielding greater resolution for low frequency outpurs (see resofution section of specifications). These two ranges are fully programmable if digital remote options are installed.
For held installation order accessory kit HP 11240A.

General 3320A/B
Operating temperature: $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power requirements: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 63 Hz , $110 \mathrm{VA} \max ^{2}$ (400 Hz operation on special basis).
Welght 3320A: $45 \mathrm{lbs}(20,4 \mathrm{~kg})$. Shipping: $59 \mathrm{lbs}(26,7 \mathrm{~kg})$. 3320B: $47 \mathrm{lbs}(21,3 \mathrm{~kg})$. Shipping: $61 \mathrm{lbs}(27,5 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $293 / 8^{\prime \prime}$ deep, $57 / 32^{\prime \prime}$ high (425 $\times 491,5 \times 132,6 \mathrm{~mm}$).
Aceessories 4urnished: rack mounting kit.
Prices: 3320A, $\$ 1900$: Option 001, 75Ω output, add $\$ 25$; Op. tion 002, crystal oven, add $\$ 290$; Option 003, BCD remote concrol, add $\$ 300$; Option $006,100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges, add \$200. 3320B, $\$ 2400$: Option 00175Ω output, add $\$ 25$; Op. tion 002, crystal oven, add \$290: Option 004, BCD remote control, add $\$ 400$; Option 005, ASCII remote control, add $\$ 595$; Option $006,100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges, add $\$ 200$.
Kit for interfacing to Hewlett. Packard 2100 Series computers. HP 11232A for interfacing 3320B Option 005.

Useful accessories

HP 11048C, 50Ω feedthrough, $\$ 15$; HP 11094B, 75Ω feed. through, $\$ 15$; HP 3260 A Marked Card Programmer al. low's the 3320 B with ASCII remote to be easily programmed by a punched or marked card.

* Field instalisbie
** Except last vernier diglt and line switch.

MARKED CARD PROGRAMMER
 Reads marked \& punched cards Model 3260A

Description

The Hewlett-Packard Model 3260A is an eight channel optical mark sense card reader. The HP 3260A Marked Card Pro. grammer detects pencil marks on hand-fed cards and gives a voltage output corresponding to the presence of marks in the eight columns. Punched holes are sensed the same as pencil marks. The TTL logic level output is " 1 " state low. The 3260A has its orn internal powes supply and card drive motor for maximum versatility. Cards are stacked in the output tray from the bottom so that the original card order is always retained.

Application

The 3260 A offers a convenient and inexpensive method of programming devices or entering data into devices which accept eight-bit-parallel/word-serial instructions or data. Rapid and error free tests become easier to obtain since a 32 word card is typically read in 1.5 seconds and each test is performed exactly as the card instructs. This insures consistency for re. dundant tests by reducing operator errors. Extensive operator
training on complicated or delicate instrument controls becomes unnecessary when using the Marked Card Programmer.

General

Weight: net $6 \mathrm{lb}(13.5 \mathrm{~kg})$. Shipping $7.5 \mathrm{lb}(16,5 \mathrm{~kg})$.
Power: 120 V or $240 \mathrm{~V}+5 \%-10 \%$, 48 Hz to $440 \mathrm{~Hz},<8$ VA when idle, <9 VA when reading a card.
Dimenslons: $51 / 3^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep (134,5 x $88,9 \times 285,8 \mathrm{~mm}$).
Temperature: operating range, $0^{\circ} \cdot 55^{\circ} \mathrm{C}$.
Cable: 5 ft detachable cable supplied with 36 pin (2×18) connector. Connector is in stackable housing for parallel connection to multiple devices.

Cards

Furnished: 100 progran cards (HP Part Number 9320 2886). Dimensions are $71 / 8^{\prime \prime} \times 31 / 4^{\prime \prime}(187,2 \times 82,6 \mathrm{~mm})$.

Avallable: package of 2000, $\$ 25$; package of $10,000, \$ 60$. Ourput tray extends for use with 11 inch cards.
Price: HP 3260A, $\$ 750$.

Signal generators

Hewlett-Packard offers a complete line of easy-to-use HF, VHF, UHF, and SHF signal generators covering frequencies berween 10 kHz and 40 GHz . Each Hewlett-Packard generator incorporates the following:

1) accurate, direct-reading. frequency calibration
2) variable output, accurately calibrated and direct reading
3) constant ourput impedance, well matched
4) varied modulation capabilities
5) low RF leakage
6) low harmonic content
7) freedom from spurious or incidental modulation.

This ensures the utmost convenience and accuracy for all kinds of measurements and signal simulations, including receiver sensitivity, selectivity or rejec. tion, signal-to-noise ratio, gain bandwidth characteristics, conversion gain, antenna gain, transmission line characteristics, as well as power to drive bridges, slotted lines, filter networks, etc.

Synthesized signal generators

The 8660 Synthesized Signal Genera. tor Eamily is a new addition to the prod. uct line. These generators combine the signal stability and resolution of a fre. quency systhesizer with the modulation and ourput level calibration of a high quality signal generator. For maximum
versatility the 8660 family utilizes plug. in $R F$ sections and modulation sections.

The Synthesized Signa! Generator is a natural choice for applications zequir. ing maximum signal stability and very fine frequency resolution. For example, with the RM/FM modulation plug-in installed, the 8660 A or 8660 B is ideally suited for high stability receiver testing. The digital sweep capability of the 8660 B coupled with its 1 Hz frequency resolution and excellent spectral purity make it an excellent choice for designing and resting high. Q devices such as crystal filters.

The 8660 Synthesized Signal Generator is also completely TTL programmable, making it an ideal RF source for automatic systems.

Signal generator summary

Modet	Frequenoy range	Characteristios	Page
8660A/B Synthrsized Generator	$\begin{aligned} & 01 \text { to } 110 \mathrm{MHz} \\ & \text { ito } 1300 \mathrm{MHz} \end{aligned}$	1 Hz trequency resolution, $3 \times 10^{-8} /$ day stability. Calibrated output from +13 to -146 dBm. ComDletely TTL programmable. Plug-ins determine frequency range and AM/FM capability	270
$\begin{aligned} & 8651 \mathrm{~A} \\ & \text { Oscillator } \end{aligned}$	22 kHz -70 MHz	1 mV to 3 V into $50 \mathrm{nload} ; 70 \mathrm{~dB}$ range, 20 ppm stability, solid state, portable; weight, 13.8 lbs	272
606A/B Signal Generator	50 kHz 1065 MHz 606B also has:	output 3 V to $0.1 \mu \mathrm{~V}$, mod. BW de to 20 kHz , low drift and noise, low incidental FM, low distortion, auxiliary $8 F$ outpul, stabilized phase lock capability	274
8708A Synchronizer	50 kHz to 455 MHz	companion for 6068 or 608f permilting $2 / 10^{7}$ continuous settability \& stability, FM and phase modulation	274
8601A Generator Sweeper	100 kHz 10110 MHz	$\pm 1 \%$ of Prequency dial accuracy, cal output +20 to -110 dBm into 50 ohms, levelad to $=0.25 \mathrm{~dB}$, very low drift, residual FM and RF! leakage, 30% AM, 75 kHz dev FM, aux output, crystal cal	286
608E Signal Generator	1010480 MHz	outpun IV to $0.1 \mu \mathrm{~V}$, into 50 .ohm load: AM , pulse modulation, diract calibration, leveled power output. aux RF output	275
608 F Signal Generator	10 to 455 MHz	oulput 0.5 V to $0.1 \mu \mathrm{~V}$ into 50 ohms, amplitude, pulse modulation, direct calibration, low incidental FM and difit, leveled output, aux RF oulput, stabilized phase lock capability	275
$\begin{aligned} & \text { 3200B } \\ & \text { Oscillator } \end{aligned}$	$10-500 \mathrm{MHz}$	$1 \vee$ to $1 \mu \mathrm{~V}$ output into $50 \Omega, 120 \mathrm{~dB}$ attenuator range $.002 \%$ stability, compact, portable; weight, 15 lbs	272
8654A Signal Generator	$10-500 \mathrm{MHz}$	output 0 to - 120 dBm into 50Ω, direct calibration, leveled output, amplitude and frequency modulation. solid-state, compact, weight 16 los	273
612A Signal Generator	450 to 1230 MHz	output 0.5 V to $0.1 \mu \mathrm{~V}$ into $50-\mathrm{hm}$ load ; AM, pulse or square-wave modulation, direct calibration	277
614A Signal Generator	0.8 to 2.1 GHz	output at least 0.5 mW to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse or frequency modulation, direct calibration	279
8614A Signal Ganerator	0.8102 .4 GHz	oulput +10 to -127 dBm into 50 ohms, leveled below 0 dBm ; internal square-wave; external pulse, AM and FM; auxiliary RF output	278
86.148 Signal Source	0.8102 .4 GHz	output 15 mW ; precision attenuator 130 dB range; internal square-wave, external pulse and FM ; auxiliary \&f output	278
616B Signal Generator	1.8 to 4.2 GHz	output 1 mW to - $127 \mathrm{d8m}\{0.1 \mu \mathrm{~V})$ into $50-\mathrm{hmm}$ Soad, pulse or frequency modulation, direct calibration	279
8616A Signal Generator	1.8104 .5 GHz	oulpul +3 to -127 dBm into 50 ohms, leveled below 0 dBm ; internal square wave, external pulse, AM and FM; auxiliary RF output	278
8616B Signal Source	1.8 to 4.5 GHz	output 3 mW ; precision attendator $130 \mathrm{d8}$ range; internal square-wave, external pulse and FM: auxiliary PF oulput	278
$\begin{aligned} & \hline 618 C, 6208 \\ & \text { Signal Generators } \end{aligned}$	$\begin{aligned} & 3.8 \text { to } 7.6 \mathrm{GHz} \\ & 7 \mathrm{to} 11 \mathrm{GHz} \end{aligned}$	output ! mWt to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse, frequency or square-wave modulation, direct calibration, ext FM and pulse modulation, auxiliary RF output	280
626A, 628A Signal Cenerators	$\begin{aligned} & 10 \text { to } 15.5 \mathrm{GHz} \\ & 15 \text { to } 21 \mathrm{GHz} \end{aligned}$	output +10 dBm to -90 dBm ; pulse, frequency or square-wave modulation, direct calibration	281
938A. 940A Frequency Doublers	$\begin{aligned} & 18 \text { to } 26.5 \mathrm{GHz} \\ & 26.5 \text { to } 40 \mathrm{GHz} \end{aligned}$	driven by 9 to 13.25 GHz source, 13.25 to 20 GHz source, HP 626A, 628A. 8690 series sweepers or klystrons; 100 dB precision attenuator.	281

HF to UHF signal generators

These signal generators, HP 606A, $606 \mathrm{~B}, 608 \mathrm{E}, 608 \mathrm{~F}$, and 612 A , collectively cover frequencies from 50 kHz to 1.23 GHz and are characterized by extremely low drift and incidental erequency mod. ulation. All may be amplitude (sine, square, pulse) modulated. A feedback loop in the 606A and 606B keeps their output and percent modulation constant as frequency is varied. The 608E and 608 F also offer level pow'er output resulting in significant time saving and convenience when the generator is being used to conduct tests at several frequencies. The $606 \mathrm{~B}, 608 \mathrm{E}$, and 608 F offer an auxiliary, fixed-level, CW signal which can be applied to a counter for very accurate indication of carrier frequency.

The HP 606 B and 608 F contain voltage variable capacitors in their oscillator circuirs enabling phase-locked operation with the HP Model 8708A RF Synchro. nizer. Frequency settability and stability of 2×10^{-7} can be obtained without compromise of the modulation or attenuation characteristics. This permits continuous frequency response examination of de. vices such as highly-selective, narrowband filters, and adds phase and frequency modulation capability to the 606 B and 608 F Signal Generators.

Microcircuit rechnology at HewlettPackard has resulted in four compact, portable, signal generators and sources. The 8651 A and 3200 B Oscillators are versatile soutces from 22 kHz to 70 MHz and 10 to 500 MHz respectively. The 8601A Generator/Sweeper, 100 kHz to 110 MHz , is a new general pucpose instrument that sweeps as well as satisfies many specialized test and design applica. tions.

The newest member of the portable solid-state family is the 8654A Signal Generator, 10.500 MHz , with calibrated output and a variety of modulation capabilities at reduced size and cost.

UHF to SHF signal generators and sources

This group of instruments, covering 800 MHz to 21 GHz , features extremely simple operation. The $614 \mathrm{~A}, 616 \mathrm{~B}, 618 \mathrm{C}$, $620 \mathrm{~B}, 626 \mathrm{~A}$ and 628A Signal Generators provide large, direct-reading frequency and attenuator dials. They may be pulse, square wave, and frequency modulared. Their versatility makes them useful for measuring signalto-noise ratio, receiver sensitivity, SWR and transmission line characteristics.

Special purpose signal sources

Appllastlon	Frequency range	Madulatlon	Outut	Model	Page
Test, calibrate FM receivers	54 to 216 MHz	FM, AM	0.2 V	202H	276
Test. calibrate FM receivers	$195-270 \mathrm{MHz}$	FM, AM	0.2 V	202J	276
Down converter for 202H, 202J	100 kHz 1055 MHz	See specifications		207H	276
Telemetry tests	1430 to 1540 MHz 2150 to 2310 MHz	FM	$\begin{aligned} & -1010 \\ & -127 \mathrm{~d} 8 \mathrm{~m} \end{aligned}$	3205A	282
VOR/ILS tests	88 to 140 MKz	AM	0.2 V	211A	282
ILS/Glide Slope test's	329.3 to $335 \mathrm{MH2}$	AM	0.2 V	232A	282
DME/ATC tests	962101213 MHz	Pulse	-10 dBm	8925A	282

The HP 8614A and 8616A Signal Gen. erators are particularly easy to use. Fre. quency and attenuation are set on direct. reading, digital dials, and leveled output enables frequency response testing with. out time-consuming readjustment of the generator at each new frequency. Each unit contains a unique PIN diode modulator which permits such a wide range of amplitude modulation that remote control of output level or precise leveling with external equipment is possible.

Broadband frequency doublers, HP 938A and 940A, provide low cost signal generator capability in the 18 to 40 GHz range. Designed to be driven by signal sources in the 9 to 20 GHz range, the frequency doublers preserve the versatility and stability of the driving source. Thus, the signals may be CW, pulsed or swept. An output monitos and precision attenuator provide a metered output, even though the iopur signal is uncalibeated.

Special signal generators

Hewlett-Packard's FM signal generators offer unusual modulation linearity and stability. The 202 H GM.AM Signa! Generator operates in the 54 to 216 MHz range and is designed to serve the broad. cast FM. VHF-TV, and mobile com. munications markets. The 202] EM-AM Signal Generator is specifically designed for VHF telemetry and covers the 195 to 270 MHz frequency range. An acces. sory 207 H Univerter provides additional coverage when used with either the 202 H or 202J Signal Generators.

The 211A Signal Generator is specif. cally designed for the resting and calibration of aircraft VOR and ILS localizer receivers; an external modulator, such
as the Collins $479 . \mathrm{F} 3$, is required to provide simulated course and bearing. The 232A Glide Slope Signai Generator is specifically designed for the testing and calibration of ILS glide slope receivers. The 8925A DME/ATC Test Set is designed to provide complete facilities for the testing and calibration of aircraft DME radios and ATC transponders; suitable external modulators are required, such as the Collins 578D-1 and 578X-1, to simulate ground station operation.

Signal generator accessories

A variety of available accessories enhance the operation of Hewlett-Packard signal generators. HP 10511A Spectrum Generator and HP 10515A Frequency Doubler extend the usable frequency range of signal sources/generators up to 1 GHz. HP 11507A Output Termination provides three useful positions for matching 50Ω to other than 50Ω impedances. HP 11509 A Fuseholder protects generator output attenuators against accidental burnout during transceiver testing. HP 10514A and 10534A Balanced Mixers offer varied mixing as well as AM, pulse and square-wave modulation applications.

The HP 8730 series of PIN modulators increases the modulation capability of micronave signal sources and at the same time virtually eliminares incidental FM. HP 8403A Modulator provides complete control of the 8730 series of PIN modulators, supplying the bias wave-shapes and levels for fast rise cimes, rated onoff ratios and amplitude modulation as well as providing pulse and square wave signals for direct application to signal sources.

10511A Spectrum Generator
Extends the useful frequency range of signal generators, sources and frequency syathesizers by providing a spectrum of harmonics up to 1 GHz from sine-wave inputs between 10 and 75 MHz . A 30Ω bandpass filter can then be cascaded with the 10511A to extract the desired harmonic. The harmonic power available is at least -19 dBm for harmonics 1 thru 10 . Input requirements: 1 to 3 volts ε ens into $50 \Omega, 10$ to 75 MHz . Price: $\$ 200$; shipping weight: $1 / 2 \mathrm{lb}(0,23 \mathrm{~kg})$.

10514A, 10534A Double Balanced Mixers

Used with signal generators in a variety of mixing as well as AM, pulse and square-viave modulation applications. The careful balancing of the hor carrier diodes in the 10514 and 10534 Mixers provides excellent suppression of the local oscitlator and inpur frequencies at the output port. Frequency range of the 10514 is $0.2-500 \mathrm{MHz}$ and the 10534 is $0.5 \cdot 150 \mathrm{MHz}$. Both feature low conversion loss, low internal interference and good balance. " A " models are equipped with BNC female connectors.
Sthipping weight: $7 \mathrm{oz}(198 \mathrm{~g})$.
Price: HP 10514A, \$90; HP 10534A, $\$ 70$.

11508A Output Cable

Provides 50Ω termination and standard binding posts ar the end of a 24 .inch (610 mm) length of cable. Allows direct conaection of the signal generator to high impedance circuits.
Price: $\$ 18$; shipping weight: $1 \mathrm{lb}(0,45 \mathrm{~kg})$.

10515A Frequency Doubler

Extends the usable frequency range of sigoal generators, frequency synthesizers or other signal sources. Operating on inpur frequencies of 0.5 MHz to 500 MHz it provides a doubled output in the range of 1 MHz to I GHz . The frequency re, sponse of this 50Ω device is very fat ($< \pm 2 \mathrm{~dB}$ typically) over the entire frequency range and undesired harmonics are well suppressed.
Price: $\$ 150$; shipping weight: $1 / 2 \mathrm{lb}(0,23 \mathrm{~kg})$.

11507A Output Termination

A multi-purpose termination which enhances the usefulness of the 606 A or 606 B by providing the following:

1. A matched $50-0 h m$ termination to permit use into high impedance circuits.
2. A $20 \cdot \mathrm{~dB}$ ($10: 1$) terminated voltage driver which reduces the source impedance to 5 obms.
3. A dummy antenna having the IEEE standard characteristics for receiver measurements (driven from 10:1 divider).
Frequency range: 50 kHz to 65 MHz ons 0 to 20 dB positions, 540 kHz to 23 MHz on dummy antenna.
Price: $\$ 70$; shipping weight. 11 oz (311 g).

11509A Fusehoider
Prevents accidental burnout of attenuators in HP 606 and 608 Signal Generators during transceiver testing by introducing a fuse element between the signal generator and the transceiver. Several watts of RF power could otherwise be applied to the signal generatoraffenuator should the transceiver accidentally be switched to "Transmit." While the fusehoider provides protection, it in no way limits the usable output from the signal generators.
Accessorles furnished: 10 extra fuses.
Price: $\$ 40$; shipping weight: $13 \mathrm{oz}(370 \mathrm{~g})$.

SYNTHESIZED SIGNAL GENERATORS
Programmable, 10 kHz to 1300 MHz Models 8660A, 8660B

Features

1 Hz frequency resolution
-80 dB spurious
$3 \times 10^{-3} /$ day stability
Flug. in RF and modulation sections
Completely TTL programmable

Applications

Programmable RP source for automatic systems Precision receiver resting
L.O. in high stability communication systems

Laboratory frequency standard
Swept testing of narrowband devices
The $8660 \mathrm{~A} / \mathrm{B}$ family is a modular plug-in system. Each complete system includes: 1) an all solid-state synthesized signal generator mainframe, 2) at least one RF section plug-in, and 3) either a modulation section or the 86631 A Auxiliary Section Plugin.

Mainframes

There are two different synthesized signal generator mainframes to choose from. Both feature complete TTL programming of frequency, output level, and modulation. Both mainframes can also be operated cither from the internal 10 MHz crystal reference oscillator or an external frequency standard at $1 \mathrm{MHz}, 2 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz .

The 8660A Mainframe uses front panel thumbwheel switches to select CW output frequency with a resolution of 1 Hz . An optional version of the mainframe with 100 Hz resolution is also available. Wth the 86601 A Option 001 RF Section and 86631A Auxiliary Section plug-ins installed, the 8660 A is an ideal programmable RF source for auromatic sysrems. With the standard 86601 A RF Section and the 86632A. AM/FM Modulation Section installed, the 8660A becomes a complete Synthesized Signal Generator.

The 8660 B keyboard mainframe combines all the capability of the 8660 A with a keyboard control panel. Added capabilities of the 8660 B include digital sweep, frequency stepping, syothesized search, and a ten digit numerical LED display.

Swept testing of very narrowband devices such as crystal filters is made possible by the 86608's digital sweeping capability. The selected sweep width is divided into either 100 or 1000 discrete steps depending on the sweep speed selecred, and
the RF output is synthesized at each step. The result is a very linear swreep with extremely low residual FM.
For receiver testing and similar applications which require frequency to be changed in uniform increments, a frequency stepping capability is provided on the 8660 B . For example, if a receiver with 50 kHz channel spacing is being tested, 50 kHz can be entered on the keyboard. Then the step A or step \downarrow buttons will step the frequency to the next higher channel or lower channel respectively.
A unique synthesized search provides the dial tuning convenience of a signal generator while mainaining synthesizer signal quality. As the dial is rotated, the output frequency is tuned up or down in discrete synthesized steps which may be chosen as small as 1 Hz . When the 8660 B is used as a local oscillator in a manual communication receiver, the synthesized search dial is very helpful in quickly locating unknown signals while maintaining the full-spectral purity of the synthesizer.

The ten-digit LED readour provides a continuous display of the selected CW or center frequency, with momentary contact pushbuttons to display sweep width, frequency step size, or a partially entered new command. .*

Plug-in RF sections

Two RF sections are presently available for 8660 Main. frames. The 86601 A covers the 10 kHz to 110 MHz frequency range, and the 86602A used in conjunction with the 11661 A Frequency Extension Module covers 1 MHz to 1300 MHz . Both RF sections have 1 Hz frequency cesolution and 150 dB calibrated attenuators. In the remote mode, the output level can be programmed in 1 dB steps from +13 dBm to -146 $\mathrm{dBm}(1 \mathrm{~V}$ to $01 \mu \mathrm{~V})$.

Plug.in modulation sections

The 86632A Modulation Section provides AM and FM modulation capability. Internal modulation is provided at 400 Hz and 1 kHz . A switch selects ac or de coupling of external modulation inpurs. A modulation meter indicates AM percent or FM peak deviation. The 86632A is completely programmable through the 8660 Mainframe.
An 86631 A Auxiliary Section must be installed in the main. frame if the AM/FM modulation section is nor installed. The auxiliary section provides necessary interconnections for mainframe operation and provides external amplitude modulation capability. The 86631 A is not programmable.

8660A/B Partial Specifications

(Refer to Technical Data Sheet for complete specifications)

8660A/B Synthesized Slgnal Generator Mainframes
Frequency accuracy and stability: $C W$ frequency accuracy and long term stability are determined by reference oscillator in 8660A/B Mainframe (3 $\times 10^{-8} / 24$ hours) or by external reference if used.

Reference oscillator

internal: 10 MHz quartz oscillator. Aging rate less than ± 3 parts in 10^{8} per 24 hours after 72 -hour warmup. (± 3 parts in 10^{9} per 24 hours optional, Option 001). External: rear panel switch allows operation from any 1 $\mathrm{MHz}, 2 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz signal at a level between 0.2 V and 2.0 V ims into 170 ohms .
Reference output: rear panel BNC connector provides output of reference signal selected at a level of at least 0.5 V rms into 170 ohms.

Remote programming

Functions
8660A: all front panel frequency, output level, and modulation functions are programmable.
8660B: CW frequency, frequency stepping (STEPA, STEP ψ), output level, and modulation are programmable.
Swltching time: less than 5 ms to be within 100 Hz of any new
frequency selected. Less than 100 ms to be within 5 Hz of
any new frequency selected.
Maximum stepping rate: 1 ms per step.
Programming input
Connector type: $36 \cdot \mathrm{pin}$ Cinch Type 57 (mating connector supplied).
Logic: TTL compatible (negative true).

General

Operating temperature range: 0° to $+55^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 90$ to 60 Hz ; approx 200 W .
Size: $163 / 4^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep ($426 \times 178 \times 547 \mathrm{~mm}$).
Welght: net, $48 \mathrm{lbs}(21,6 \mathrm{~kg})$: shipping, $98 \mathrm{lbs}(26,1 \mathrm{~kg})$.
Price: Model 8660A, $\$ 4900$; Model $8660 \mathrm{~B}, \$ 6000$.

Options for 8660A and 8660B

Option 001: $\pm 3 \times 10^{-0} / 24$ hrs: internal reference oscillator; add, \$300.
Option 002: no internal reference oscillator; less, $\$ 350$.
Option 003: operation from 50 to 400 Hz line; add, $\$ 50$. Option 004: 100 Hz frequency resolution: less, $\$ 500$.
Option 009 (8660 A only): LED Display indicates selected frequency in 1-2-4-8 BCD code; price: add, $\$ 200$.

86601A RF Section

Frequency range: 0.01 to 110 MHz ; selectable in 1 Hz steps.
Output tevel: continuously calibrated from +13 to -146 dBm into 50 ohms; programmable in 1 dB steps.
Harmonics: $<-40 \mathrm{~dB}$.
Spurious: $<-80 \mathrm{~dB}$.
Amplitude modulation: (with 86631A or 86632A) 0 to 95%; maximum rate, 50 kHz at output frequencies above 4 MHz .
Frequency modulation: (with 86632 A) maximum rate, 1 MHz ; maximum deviation, 1 MHz .
Welght: net, $11 \mathrm{lbs}(5 \mathrm{~kg}$); shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg}$).
Price: Model 86601A, $\$ 1975$.

Options: Option 001: no RF output attenuator; output level adjustable from +13 to 0 dBm ; less, $\$ 600$.

Typical Phase Nolse Curves for 866014 and 86602A

86602A RF Section

Frequency range: I to 1300 MHz ; selectable in 1 Hz steps.
Output leval: continuously calibrated from +13 to -146 dBm into 50 ohms; programmable in 1 dB steps.
Harmonics: $<-25 \mathrm{~dB}$ at output levels below +10 dBm . Spurlous
Non-lline related: below $600 \mathrm{MHz}-80 \mathrm{~dB}$; above 600 MHz -80 dB within 45 MHz of carrier, $-55 \mathrm{~dB}>45 \mathrm{MHz}$ from carrier.
LIne related: -70 dB .
Amplitude modulation: (with 86631A or 86632A) 0 to 95% maximum rate, 50 kHz .
Frequency modulation: (with 86632A) maximum rate, 300 kHz ; maximum deviation, 300 kHz .
Weight: net, approx $8 \mathrm{lbs}(3.6 \mathrm{~kg})$; shipping, $12 \mathrm{lbs}(5,4 \mathrm{~kg})$.
Options: same as 86601A.
Price: Model 86602A, $\$ 2500$.

11661A Extension Module

Must be instalied in $8660 \mathrm{~A} / \mathrm{B}$ Mainframe to enable operation of 86602 A RF Scction.
Welght net, approx $4 \mathrm{lbs}(1,8 \mathrm{~kg}$); shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg}$).
Price: Model $11661 \mathrm{~A}, \$ 2000$.

86632A Moduration Section

Provides AM/FM capability as described above when used with 86601A or 86602A RF Section. Inciudes modulation meter and 400 Hz and 1 kHz internai oscillators; completely programmable.
Weight: net, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping, $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: Model 86632A, $\$ 900$.

86631A Auxiliary Section

The 86631A Auxiliary Section must be installed in an 8660 A or 8660 B Mainframe in place of the modulation section if a modulation section is not used. A jack is provided on the front panel to allow external AM through the 8663 LA as described above.
Weight: net، $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,8 \mathrm{~kg})$.
Price: Model 86631A, $\$ 90$.

HP 8651A Oscillator

The HP 8651A RF Oscillator is a low-cost, portable, solid. state signal source covering the widely used frequency range of 22 kHz to 70 MHz . Is stability, accuracy, and level flatness provide versatile performance for production, field, or labora. tory use. The output level of the 8651 A is continuously adjustable over a 70 dB range from 3 voles to 1 millivolt into a so-ohm load. Using the built-in meter, the actual output level in both dBm and rms volts can easily be determined.

Range: 22 kHz to 70 MHz in 7 bands.
Accuracy: $\pm 1.5 \%, 22 \mathrm{kHz}$ to $22 \mathrm{MHz} ; \pm 2 \%, 22 \mathrm{MHz}$ to 70 MHz .
Stability (after 2 -hr warmup) : $20 \mathrm{ppm} / \mathrm{min}, 200 \mathrm{ppm} / \mathrm{hr}$.

Output

Maximum: 3.0 V into $50 \Omega ; 6.0 \mathrm{~V}$ open circuit.
Ranges 3 mV to 3 V full scale, 7 steps; -40 dBm to +20 $\mathrm{dBm}, 10 \mathrm{~dB}$ per step; continuously adjuscable by AMPLI. TUDE control over 10 d 8 range.
Output monitor; volmeter monitors level at input of attenuator in volts or dBm .
Fhatness (at +20 dBm output): $3 \%, 22 \mathrm{kHz} 1022 \mathrm{MHz}$; $5 \% .22 \mathrm{MHz}$ to 70 MHz .
Harmonic content (at +20 dBm outpur): $3 \%, 22 \mathrm{kHz}$ to 22 $\mathrm{MHz} ; 5 \%, 22 \mathrm{MHz}$ to 70 MHz .
Impedance: 50Ω with SWR typically 1.3.
Connector: BNC femaie.

General

Operating temperature: 0° to $+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}, 15 \mathrm{~W}$.
Weight: net, $13.8 \mathrm{lbs}(6,2 \mathrm{~kg})$; shipping, $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Dlmenslons: $7.25 / 32^{\prime \prime}$ wide, $6-12 / 32^{\prime \prime}$ high, $11^{\prime \prime} \operatorname{deep}$ (190 x $166 \times 279 \mathrm{~mm}$).
Price: $\$ 765$.

HP 32008 Oscillator

The HP 3200 B VHP Oscillator is a stable, lorv-cosr portable signal source with a frequency range from 10 to 500 MHz . Usable pulse modulation can be provided by a 2.5 volt sine wave input from standard audio oscillators. The 3200 B can serve as a local oscillator for hetecodyne detector systems and as a marker source for swept systerns. Additional frequency coverage from 500 to 1000 MHz is available by using an optional accessory-the HP 13515A Frequency Doubler Probe.

Specifications, 3200B

Frequency

Range: 10 to 500 MHz (to 1 GHz with HP 13515 A Frequency Doubler Probe).
Accuracy: within $\pm 2 \%$ after $1 / 2$ hr warmup.
Calibration: increments of less than 4%.
Stability (after 4.hr warmup under 0.2 mW load) : short term (5 min) $=0.002 \%$; long term (1 hr) $\pm 0.02 \%$; line voleage (s-volt change) $+0.001 \%$.

Output

Maximum RF power (across 50-ohm external load): >200 $\mathrm{mW}(10$ to 130 MHz) ; $>150 \mathrm{~mW}(130$ to 260 MHz) ; >25 mW (260 to 500 MHz). With doubler: $>4 \mathrm{~mW}$ (. 5 to 1 GHz).
Range: 0 to $>120 \mathrm{~dB}$ attenuation from maximum output.
Load impedance: 50 ohms nominal.
Leakage: sufficiently low to permit measurements at i $\mu \mathrm{V}$. RFI: meets requirements of MIL-I-6181D.

Modulation

External AM: range, 0 to 30%; distortion, $<1 \%$ at 30% AM; external requirements, approx 20 V ims into 600Ω for 30% AM, 200 Hz to 100 kHz .
External pulse modulation requirements: -2.5 V pulse into 2000 Ω.

General
Power: 105 to 125 V or 210 to 250 V , 50 to $400 \mathrm{~Hz}, 30 \mathrm{~W}$. Dimensions: $75 / 8^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high, $131 / 8^{\prime \prime}$ deep ($194 \times 165 \times$ 333 mm).
Welght: net, $15 \mathrm{Jbs}(6,8 \mathrm{~kg}$) : shipping, $17 \mathrm{lbs}(8,6 \mathrm{~kg})$.
Price: HP 3200B, \$595; HP 13515A. \$95.

VHF SIGNAL GENERATOR Rugged solid-state generator $10-500 \mathrm{MHz}$ Model 8654A

 SIGNAL GENERATORS
Features

Calibrated oucput porrer
Automatic porver leveling
AM, FM internal and exrernal Rugged, lightweight, solid state
Compact size and shape

Applications

Receiver sensitivity, S / N ratio
Antenna and filter characteristics
Field maintenance and servicing
Production and mobile test stations
The HP 8654A Signal Generaror is a portable, low-cost, solid state generaror providing calibrated output and versatile modulation capabilities over the 10 to 500 MHz frequency range. The 8654A provides stable RF signals for testing receivers, amplifiers, antennas and filter networks.
fis compactness and small size allow the 8654 A to fir easily into production, mobile, airborne and shipboard test locations. Its rugged, lightweight construction is also suitable for feeld maintenance and service applications.
Internal oscillators provide both amplitude modulation and frequency modulation at 400 Hz and 1000 Hz or external modulation can be accomplished using standard audio oscillators. The front panel meter accutately indicates amplitude modulation percentage from 0.70% by using the AM meter mode switch.

Output powet is automatically leveled to $\pm 1 \mathrm{~dB}$ over the sntite frequency range at 0 dBm and below, and the power level is rariable over more than a 120 dB dynamic range. The 10 dB -step attenuator and 13 dB vernier allow continuous
ielection of power settings over the entire outpur range. The front panel meter displays the output power in dBm and volts and always indicates the calibrated level.
An auxiliary uncalibrated RF output is also available at the tear panel for use with a counter or other external equipment. Auxiliary output level is a minimum of -10 dBm .

The 8654A has a specified stability of 0.002% over a 5 minute operating period after a one-hour warmup. It will sypically recover specified stability within 5 minutes following a frequency band change.

Effective RF shielding and oulput range permir receiver sensitivity measurements to be made down to power levels of $1.0 \mu \mathrm{~V}$.

Its compact size and shape combined with its stability and versatility make the HP 8654A a high-value VHF signal gen. erator for economy-minded applications.

Specifications, 8654A

Frequency characteristics
Range: 10.500 MHz in 6 bands:

10.18 .8 MHz	18.5 .35 MHz	35.68 MHz
68.130 MHz	130.260 MHz	260.500 MHz

Aceuracy: $\pm 2 \%$ after 30 min warmup.
Stability: $002 \% / 5$ min after 1 he warmup and 5 min after changing frequency bands; $.002 \% / 10 \%$ change in line voltage.
Residual FM: $s \times 10^{-7}$ peak.

Output characteristics

Maximum power (Into 50Ω): $>0 \mathrm{dBm}$ from 10 to 500 MHz ; $>+5 \mathrm{dBm}$ from 50 to $350 \mathrm{MHz} ;>+10 \mathrm{dBm}$ from 75 to 250 MHz
Attenuator range: 10 dB steps and a 13 dB vemier provide continuous power settings from maximum porver output to -120 dBm . Ourput is absolutely calibrated in volts and dBm and is monitored by the front panel ourput meter.
Level accuracy: $\pm 1.5 \mathrm{~dB}$ plus attenuator accuracy.
Attenuator accuracy: 10 to $50 \mathrm{~dB}, \pm 0.5 \mathrm{~dB} ; 60$ to 120 dB $\pm 1.5 \mathrm{~dB}$.
Leval flatness: $\pm 1 \mathrm{~dB}$ from 10.500 MHz for ourpat level 0 dBm and below.
Load impedance: 50Ω nominal, VSWR: 1.2 .
RF leakage: permits receiver sensitivity measurements down to at least $1.0 \mu \mathrm{~V}$. (Conducted and radiared leakage limits are belon those specified in MIL-I-6181D.)

Modulation characteristics

(Specifications apply for carrier power level of -10 dBm and below and fot the top 10 dB of the verniet range.)

Internal AM
Frequency: 400 Hz and $1 \mathrm{kHz} \pm 10 \%$ available at front panel.
Modulation level: 0 to 80% AM continuously adjustable with the modulation "level" control.
Carrler envelope distortion: $<4 \%$ at 30% AM; $<10 \%$ at 70% AM
External AM
Frequency: dc to 10 kHz for $30 \% \mathrm{AM}$; dc to 5 kHz for 70% AM.
Input level required: nominal 1 volt peak at external AM input yields full modulation. Carrier voltage can be vatied from 0 to $\pm 90 \%$ by an external de input of 0 to $\pm 1 \mathrm{~V}$ nominal.
Carrier envelope distorion: < 1% at 30% AM; $<10 \%$ at 70% AM.
Modulation meter accuracy: $\pm 5 \%$ of full scale for 0.70% AM.
Internal FM: 400 Hz and 1000 Hz internal oscillator; 0 to $>.1 \%$ peak deviation.
External FM: 3 kHz bandwidth from 600Ω source; 15 kHz bandividth from son source; 0 to $>.1 \%$ peak deviation. Input level required: 5 volt peak for $.1 \%$ deviation.

General

Power: 115 or $230 \mathrm{~V}=10 \%, 50$ to 400 Hz . approximately 20 W.
Dimensions: $61 / 2^{\prime \prime} \times 10^{1 / 2 \prime} \times 12^{\prime \prime}$ deep ($165 \times 266 \times 321 \mathrm{~mm}$).
Weight: 16 lbs .
Price: tencatively $\$ 975$.

HF SIGNAL GENERATORS AND HF-VHF SYNCHRONIZER
 Models 606A, 606B, 8708A

The Hewlett-Packard 606B Signal Generator provides high quality operation in the 50 kHz to 65 MHz frequency range. Output signals are stable and accurarely known. Output amplitude can be preciscly established over a +23 to $\sim 120 \mathrm{dBm}$ dynamic range with versatile modulation capabilities.

Specifications, 606B

Frequency and output characteristics

Range: 50 kHz to 65 MHz in 6 bands; accuracy: $\pm 1 \%$.
Drift: (1 V output and below) less than 50 ppm (or 5 Hz , whichever is greater) per 10 min period after 2 -hr warmup; less than 10 min to restabilize after changing frequency.
Stablity when used with 8708A Synchronlzer: $5 \times 10^{-8} / \mathrm{min}$, $2 \times 10^{-5} / 10 \mathrm{~min}, 2 \times 10^{-6} /$ day: $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $55^{\circ} \mathrm{C}$: $2 \times 10^{-7} / 10 \%$ line voltage change.
ΔF contral: better than 10 ppm settability: range of ΔF control approx 0.1%.
Resetablity: berter than 0.15% after warmup.
Crystal callbrator: provides frequency checkpoints every 100 kHz and 1 MHz ; jack provided for audio frequency outpur: crystal frequency accuracy beter than 0.01% from $0^{\circ} .50^{\circ} \mathrm{C}$.
Residual FM: less than $=1 \mathrm{Ppm}$ or $\pm 20 \mathrm{~Hz}$ peak, whichever is greater.
Frequency control input: front panel input can be used with 8708A Synchronizer and external frequency control; limits: 0 to -50 V , if $\mathrm{k} \Omega$ nominal input impedance.
Output level: conrinuously adjustable from $0.1 \mu \mathrm{~V}$ to 3 V into $50-0 \mathrm{~mm}$ resistive load, calibrated in voltage and dBm .
Frequency response and output accuracy: at output below 1 V, output variation with frequency is less than $2 d B$; output accuracy is better than $\pm 1 \mathrm{~dB}$ at any frequency.
Impedance: so ohms, SWR less than 1.2 on 0.3 V attenuator range and below.
RFI: meets all conditions specified in MIL-I-6181D; permits receiver sensitivicy measurements down to at least $1.0 \mu \mathrm{~V}$.
Harmonic output: at least 30 dB below the carrier.
Spurious AM: hum and noise sidebands are 70 dB below carrier down to thermal level of 50 ohm oukput system.
Auxiliary RF output: on front panel for use with HP 8708A Synchronizer or other external equipment. Minimum ourpur: 100 mV rms into 50 ohms from 30 kHz to $19.2 \mathrm{MHz}, 200$ mV fms from 19 to 65 MHz .

Modulation characterlstics

Internal AM:
Frequency: 400 and $1000 \mathrm{~Hz}_{1} \pm 5 \%$.
Modulation level: 0 to 95% on 1 V attenuator range and below; 0 to at least 30% on 3 V range.
Ineldental FM (attenuator on 1 V range and below. 30% modulation) : less than $5 \times 10^{-6}+100 \mathrm{~Hz}$ peak.
Carrler envelope distorton: less than 1% at 30% AM, less
than 3% at 70% AM (atrenuator on 1 V range and below).
External AM:
Frequency: de to 20 kHz maximum, dependent on carrier frequency (f_{0}) and percent modulation as tabulated.
Maximum modulation frequency:
$30 \% \mathrm{Mod}: \quad 70 \%$ Mod: Squaremave Mod: $0.06 \mathrm{f}_{\mathrm{c}} \quad 0.02 \mathrm{f}_{\mathrm{c}} \quad 0.003 \mathrm{f}_{\mathrm{c}}(3 \mathrm{kHz}$ max.)
Modulation level: 0 to 95% on 1 V attenuator range and belorw, 0 to at least 30% on 3 V range.
Input required: 4.5 V peak produces 95% modulation (maximum input 50 V peak); inpur impedance 1000 ohms.
Carrier envelope distortion: same as for internal AM.
Modulation meter accuracy: $\pm 5 \%$ of full scale, 0 to 90%, for modulation frequencies to $10 \mathrm{kHz}, \pm 10 \%$ of full scale for frequencies from 10 kHz to 20 kHz .
Modulation level constancy (internal or external AM; attenua. wor on IV range and below): modulation level stays constant within $\neq 1 / 2 \mathrm{~dB}$ regardless of carrier irequency and outpur level changes.

General

Power: 11 s or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 135 \mathrm{~W}$.
Dimensions: cabinet, $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $143 / 4^{\prime \prime}$ deep, ($527 \times 318 \times 370 \mathrm{~mm}$) ; rack, $19^{\prime \prime}$ wide. $101 / 2^{\prime \prime}$ high. $145 / 8^{\prime \prime}$ deep behind panel, $(483 \times 266 \times 367)$.
Welght: cabinet, ner. $55 \mathrm{lb}(24.8 \mathrm{~kg})$; shipping $65 \mathrm{lb}(29.3 \mathrm{~kg})$: rack, net, $50 \mathrm{lb}(22,5 \mathrm{~kg})$; shipping $63 \mathrm{lb}(28,4 \mathrm{~kg})$.
Accessories avallable (See Page 269):
11507A Ourput Termination, provides 3 positions: 50 ohms, S ohms and IEEE Standard Dummy Antenna.
11509 A Fuseholder, protection for 606B transceiver tests.
10534 A Mixer, for use as a nanosecond pulse modulator.
Price: HP 606B (cabinet), $\$ 1730$; HP 606BR (rack), $\$ 1715$.

Model 606A

The Model 606A covers the same frequancy range as the 606 B but does not include an auxihary uncalibrated RE output or the frequency control feature with the 8703A. 606B specifications apply to the 606 A except: harmonic ourput is less than 3%, output power level frequency response is $\pm 1 \mathrm{~dB}$.
Price: HP 606A (cabinet), $\$ 1630$; HP 606AR (rack), $\$ 1615$.

8708A Synchronizer
The 8708A Syochronizer is a phase-lock frequency stabilizer that provides crystal-oscillator frequency stability in the 606 B (and 608 F) signal generators to 430 MHz . The outstanding AM and output level concrol capabilities of the signal generators are retained. Phase-locking eliminares microphonies and drift, resulting in a frequency stability of 2×10^{-7} per 10 minutes, an increase by a factor of 250 .

Speciflcations. 8708A

Frequency range: 50 kHz to 430 MHz ; phase.locks 606 B and 608 F signal generator, with 2×10^{-7} settability.
Welght: net, $27 \mathrm{lb}(12,2 \mathrm{~kg})$; shipping $31 \mathrm{lb}(14 \mathrm{~kg})$.
Price: Model 8708A, 51950.

VHF SIGNAL GENERATORS Versatility and value, 10.480 MHz Models 608E, 608F

Models 608E and 608 F provide high-quality, versatile performance with distinctive ease of operation. The 608 E provides an adjustable, calibrated output of $0.1 \mu \mathrm{~V}$ to 1 V rms from 10 to 480 MHz . The 608 F is calibrated from $0.1 \mu \mathrm{~V}$ to 0.5 V rms over the 10.435 MHz frequency range and can be phaselocked with the 8708A Synchronizer for greater stability. An auxiliary RF output is available with both models.

Specifications, 608E and 608F

Frequency characterlstics

Range: $608 \mathrm{E}: 10.480 \mathrm{MHz}$; $608 \mathrm{~F}: 10.45 \mathrm{~s} \mathrm{MHz}$ in S bands.
Accuracy: 608E: $\pm 0.9 \% ; 608 \mathrm{~F}: \pm 1 \%$.
Drift $608 \mathrm{E} / \mathrm{F}$: less than $50 \times 10^{-8} / 10 \mathrm{~min}$ after one hr warmup. 608F: stability when used with 8708A Synchronizer: $5 x$ $10^{-8} / \mathrm{min} ; 2 \times 10^{-7} / \mathrm{min} ; 2 \times 10^{-8} / \mathrm{day} ; 2 \times 10^{-1} /{ }^{\circ} \mathrm{C}\left(0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$) $; 2 \times 10^{-7} / 10 \%$ line voltage chaoge.
Frequency control input (608 F only): front panel input can be used with 8708A Synchronizer and external frequency control: limits 0 to - $50 \mathrm{~V}, 4 \mathrm{~K} \Omega$ nominal inpur impedance.
Resettability: better than $\pm 0.1 \%$ after initial warmup; fine-frequency-adjust provides approx 25 kHz settability at 480 MHz (608E) or 455 MHz (608 F).
Crystal calibrator: provides frequency check points every 1 MHz up to 270 MHz or every 5 MHz ; jack provided for audio frequency output; crystal frequency accuracy better than 0.01% at room temperatures.
Residual F : less than ± 5 parts in 10^{2} peak.
Harmonic output: at least 35 dB below the carrier foc hatmonic frequencies below 500 MHz .

Output characteristics

Output level: continuously adjustable from $0.1 \mu \mathrm{~V}$ to 1.0 V (608 E) and $0.1 \mu \mathrm{~V}$ to $0.5 \mathrm{~V}(608 \mathrm{~F}$) into a 50.0 hm resistive load; output calibrated in volts and dBm .
Accuracy: within $\pm 1 \mathrm{~dB}$ of attenuator dial reading at any frequency when RF output meter indicates "ATTENUA. TOR CALIBRATED."
Impedance: Son with a maximum SWR of 1.2 for attenuator setting below -7 dBm .
RFI: meets all conditions specifed in MIL-I-G181D; permits receiver sensitivity measurements down to at least $1.0 \mu \mathrm{~V}$.
Auxillary RF output: 608 E : at least 180 mV rms into 50Ω provided at front panel.
608F: front panel outpur for use with HP 8708A Synchronizer or other external equipment. Power levels into 50Ω are: 10 to $215 \mathrm{MHz},-1.8$ to $+7 \mathrm{dBm} ; 215$ to 400 MHz , +2.0 to $+6 \mathrm{dBm} ; 400$ to $430 \mathrm{MHz}+1.0$ to +5 dBm .

Modulation characteristics

Internal AM

Frequency: 100 and $1000 \mathrm{~Hz}, \pm 10 \%$.
Modulation level: 0 to 95% modulation at carrier levels 0.5 V and below (608 E) and $.224 \mathrm{~V}(1 \mathrm{~mW})$ or below' (608F).
Carrier envelape distortion: less than 2% at 30% AM, less than 5% at 70% AM.

External AM

Frequency: 20 Hz to 20 kHz .
Modulation Jevel: 0 to 95% modulation at carrier levels of 0.5 V and below (608 E) and at $.244 \mathrm{~V}(1 \mathrm{~mW})$ or below (608F); continuously adjustable with front panel MOD LEVEL controi; input required, 1.10 V rms (1000Ω inpur impedance).

Carrier envelope distortion: less than 2% at 30% AM, less than 5% at 70% AM, (modulation source distortion less than 0.5%).
Modulation meter accuracy: $\pm 5 \%$ of full scale 0 to 80%, $\pm 10 \%$ from 80% to 95% (for INT AM or 20 Hz to 20 kHz EXT AM).
Incidental FM (a\& 400 and 1000 Hz modulation): less than 1000 Hz peak at 50% AM for frequencies above 100 MHz ; below 100 MHz , less than 0.001% at $30 \% \mathrm{AM}$.
External pulse modulation
Rise and decay time: from 40 MHz to 220 MHz , combined rise and decay time less than 4 us; above 220 MHz com. bined rise and decay time less than $2.5 \mu \mathrm{~s}$.
On-off ratlo: at least 20 dB for pulsed carries levels of 0.5 V and above.
Input required: positive pulse, 10.50 V peak, input imped. ance 2000 s.

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 100 Hz ; approx 220 W .
Dimensions: cabinet: $131 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ high, $21^{\prime \prime}$ deep (337 x $416 \times 533 \mathrm{~mm}$); rack rount: $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep behind pancl ($483 \times 335 \times 467 \mathrm{~mm}$).
Weight: cabinet mount: net, 62 lbs (28 kg); shipping. 74 lbs (33.4 kg) : rack mount: net, 62 lbs (28 kg); shipping, 83 lbs ($37,4 \mathrm{~kg}$).
Accessories avallable: (see page 269).
11508A Output Cable for high impedance circuits. 11509A Fuse Holder: protection for transceiver tests. 10514A Mixer for use as nanosecond pulse modulator.
Price: Model 608E (cabinet), $\$ 1790$; Model G08ER (rack mount), $\$ 1830$; Model 608 F (cabiner), $\$ 1940$; Model 608 FR (rack mount). $\$ 1980$.

FM-AM SIGNAL GENERATORS
FM, AM, CW and pulse coverage, 54-270 MHz
Models 202H, 202J, 207H

202H, 202J

The HP 202 H FM.AM Signal Generator covers the frequency cange 54 to 216 MHz and is designed for the resting and calibration of FM receiving systems in the areas of broad. cast FM, VHP, TV, mobile and general communications.

The HP 202J FM-AM Signal Generator covers the frequency range from i9s to 270 MHz and is designed for the tescing and calibration of FM telemetering receiving systems in the 215 to 260 MHz band.

202 H

Specifications, 202H, 202J
Radio frequency characteristics
RF range: $202 \mathrm{H}, 54$ to 216 MHz ; 202 J 195.270 MHz .
RF accuracy (after 1 hr warm-up): main dial, $\pm 0.5 \%$; electronic vernier, $\pm(10 \%+1 \mathrm{kHz})$.
RF stability: $202 \mathrm{H}:<0.01 \% / \mathrm{hr} ; 202 \mathrm{~J}:<0.02 \% / \mathrm{hr}$, after 2 . hour warm.up.
RF output: range $0.1 \mu \mathrm{~V}$ to 0.2 V (across external $50-\mathrm{ohm}$ load at panel jack; ; accuracy: $\pm 10 \%, 0.1 \mu \mathrm{~V}$ to 50 mV ; $\pm 20 \%, 50 \mathrm{mV} 100.2 \mathrm{~V}$ i auto level set: holds RF monitor meter to "red line" over band; impedance: 50 ohms; VSWR: <1.2; spurious output: all spurious RF output voltages are at least $25 \mathrm{~dB}(202 \mathrm{~J})$ and $30 \mathrm{~dB}(202 \mathrm{H})$ below desired frequency.
RF leakage: sufficiently low to permit measurements at $0.1 \mu \mathrm{~V}$.

Amplitude modulation characterlstics

AM range: internal, 0 t 50%; external, 0 to 100%.
AM accuracy: $=10 \%$ of reading at 400 Hz at 30% and 50%.
AM calibration: $30.50 .100 \%$.
AM distortion: $<5 \%$ at 30%. $<8 \%$ at $50 \%,<20 \%$ at 90%.
AM fidelity: $\pm 1 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 200 kHz .

Frequency modulation characteristics

FM deviation range: internal or external, 0 to 250 kHz in 4 ranges (202 H): 0 to 300 kHz (202J).
FM deviation acouracy: $\pm 5 \%$ of full-scale (for 400 Hz sine wave).

FM distortion (202 H only): $<0.5 \%$ at 75 kHz (100 MHz), $<1 \%$ at 75 kHz (54 to 216 MHz), $<10 \%$ at 250 kHz (54 to 216 MHz) ; at 400 Hz modulation frequency.
FM non-llnearity (202J only): $<1.5 \%$ at $150 \mathrm{~Hz},<3 \%$ at 300 kHz ("least squares" departure from straight line passing through origin).
FM fidelity $202 \mathrm{H}: \pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to 200 kHz .
202J: $\pm \mathrm{L} \mathrm{dB}, 5 \mathrm{~Hz}$ to $500 \mathrm{kHz}: \pm 3 \mathrm{~dB}, 3 \mathrm{~Hz}$ to 1 MHz .

Pulse modulation characteristics

Source: external; rise time: $202 \mathrm{H} \leq 0.6 \mu$; $202 \mathrm{~J}<0.25 \mu \mathrm{~s}$; fall time: $<0.8 \mu \mathrm{~s}$.
Modulation oscillator characteristics
OSC frequency 202 H : $50 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 3000 \mathrm{~Hz}$, $7.5 \mathrm{kHz}, 10 \mathrm{kHz}, 15 \mathrm{kHz}, 67 \mathrm{kHz}: 202 \mathrm{~J}: 50 \mathrm{~Hz}, 400 \mathrm{~Hz}$. $1700 \mathrm{~Hz}, 3900 \mathrm{~Hz}, 10.5 \mathrm{kHz}, 30 \mathrm{kHz}, 70 \mathrm{kHz}, 100 \mathrm{kHz}$.
OSC accuracy: $\pm 5 \%$.
OSC distortion: $<0.5 \%$, except $<1.0 \%$ at 67 kHz for 202 H .

General

Dimenslons: $163 / 4$ " wide. $101 / 4^{\prime \prime}$ high, $183 / 9^{\prime \prime}$ decp ($425 \times 260 \mathrm{x}$ 467 mm).
Weight: net, $47 \mathrm{lbs}(20.3 \mathrm{~kg}$) ; shipping. $66 \mathrm{lbs}(29.7 \mathrm{~kg}$) for 202H.
Power: 105 to 125 or 210 to 250 V , 50 to 400 Hz .100 W .
Accessory furnished: 00502B parching cable.
Price: HP 202H, \$1595; HP 202J, \$1729: Option 001 Aux. RF output $>50 \mathrm{mV}$, add $\$ 150$. (202J only.)

207H

The HP 207 H Univerter is a frequency converter with unity gain designed for use with the HP 202 H and 202J Signal Generators to provide additional frequency coverage from 100 kHz to 55 MHz . The 207 H duplicates $A M$ \& FM of the 202 H and 202 J with no appreciable distortion for input levels less than 50 mV .

Major Specifications, 207H
(When used with 202H and 202J Signal Gencrators.)
RF range: 100 kHz to 55 MHz (with 190.9 to 145 MHz input from $202 \mathrm{H} ; 200.1$ co 255 MHz input from 202).
RF output: $1 \mu \mathrm{~V}$ to 0.1 V and $0.01 \mu \mathrm{~V}$ to 1 mV across external 50.0 hm load at panel jack; $>1 \mathrm{~V}$ with 0.1 V input and 300 ohm output load.
Power: 205 to 125 V or 210 to 250 V , 5010400 Hz , 50 W .
Price: 207H. $\$ 595$.

UHF SIGNAL GENERATOR All-purpose UHF signal generator, 450 to 1230 MHz Model 612A

SIGNAL GENERATORS

Here is an all-purpose, precision signal generator particularly designed for utmost convenience and applicability throughout the important UHF-TV frequency band. It is ideally suited for measurements in UHF-television broadcasting, studiotransmitter links, citizen's radio and public service communications systems. The HP 612A also covers the important fre quencies used in aircraft navigation aids such as DME, TACAN and airborne transponders. Accessory modulators, available from many of the manufacturers of these navigational aids, enable the 612A to provide the complex modulation patterns required for testing and aligning these systems. In the laboratory, the 612 A is a convenient power source for driving bridges, slotted lines, antennas and filter networks. In addition, the HP 8731 PIN Modulators can be used with the 612A to obtain RF pulses with 30 ns rise time and $0.1 \mu \mathrm{~s}$ minimum duration-with on off ratios approaching 80 dB .

MOPA circuit

The master osciliator-power amplifier circuit in the HP 612 A provides 0.5 volt into 50 ohms over the full frequency range of 450 to 1230 MHz . There is very low incidental FM (less than 0.002% at $30 \% \mathrm{AM}$) and excellent amplitude modulation capabilities by all frequencies from 20 Hz to $s \mathrm{MHz}$ The degree of modulation is easily read from the large percent modulation meter. The instrument can be amplirude-modulated (either internally of externally), and provision is made for external pulse modulation as well. Pulse modulation can be applied to the amplifier or directly to the oscillator when high on-off signal ratios ate required (signal may be completely cut off between puises). Modulation can be up or down from a preset level to simulate TV modulation characteristics ac. curately.

Advanced design

The oscillator-amplifer circuit in the 612A employs highfrequency pencil triodes in a cavity-tuned circuit for precise
tracking over the entire band. Noncontacting cavity plungers are die-cast to precise tolerances, then injection-molded with a plastic filler for optimum Q. The frequency drive is a direct screw-operated mechanism, free from backlash. A waveguide-beyond-curoff piston attenuator and crystal monitor circuit are used to ensure accurate, reliable output down to $0.1 \mu \mathrm{~V}$. The artenuator is calibrated over a cange of 131 dB and has been carefully designed to provide a constant impedance-versusfrequency characteristic. The SWR of the 50 ohm output system is less than 1.2 over the complete frequency sange.

Specifications

Frequency range: 450 to 1230 MHz in one band; stale length approximately 15 " (381 mm)
Calibration accuracy: within $\pm 1 \%$; resettability better than 5 MHz at high frequencies.
Output voltage: $0.1 \mu \mathrm{~V}$ to 0.5 V into 50.0 hm load; calibrated in V and $d B m(0 \mathrm{dBm}=1 \mathrm{~mW})$
Output accuracy: $\pm 1 \mathrm{~dB}, 0$ to -127 dBm over entire fre. quency range.
Internal impedance: 50 ohms; maximum reflection coefficient. 0.091 ($1.2 \mathrm{SW} \mathrm{R}, 20.8 \mathrm{~dB}$ return loss) for attenuator sertings of 0 dBm and below.
Amplitude modulation: above $470 \mathrm{MHz}, 0$ to 90% at audio frequencies, indicated by panel meter; accuracy $\pm 10 \%$ of full scale, 30 to 90% modulation.
Incidental FM: less than 0.002% for 30% AM.
Internal modulation: 400 and $1000 \mathrm{~Hz} \pm 10 \%$; envelope disrortion less than 3% at 30% modulation.
External modulation: 20 Hz to 5 MHz ; above $470 \mathrm{MHz}, 2 \mathrm{~V}$ rms produces 85% AM at modulating frequencies up to 500 $\mathbf{k H z}$, at least $40 \% \mathrm{AM}$ at $\$ \mathrm{MHz}$; modulation may be up or donn from the carrier level or symmetrical abour the carrier level; posirive or negative pulses may be applied to increase or decrease RF output from the carrier level.

Pulse modulation

Pulse 1 (pulse applied to amplifier): positive or negative pulses, 4 to 40 V peak produce an RF on-off ratio of ar least 20 dB ; minimum RF output puise length, $1.0 \mu \mathrm{~s}$.
Putse 2 (pulse applied to oscillator): positive or negarive pulses, 4 to -10 V peak; no RF outpur during of time: minimum RF ourput pulse length, $1.0 \mu \mathrm{~s}$.
RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D; permits receiver sensitivity measurements down to $1 \mu \mathrm{~V}$.
Power: 115 or 230 volts $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 215$ watts.
Dimensions: cabinet: $131 / 2^{\prime \prime}$ wide, $161 / 2^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep ($333 \times 419 \times 546 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $13 \cdot 31 / 32^{\prime \prime}$ high, $201 / 4^{\prime \prime}$ deep behind panel ($483 \times 355 \times 51 \mathrm{fmm}$).
Weight: net, $56 \mathrm{lbs}(25,2 \mathrm{~kg})$: slupping, $68 \mathrm{lbs}(30,6 \mathrm{~kg})$ (cabinet) ; net, 56 lbs ($25,2 \mathrm{~kg}$) ; slipping, 77 lbs ($34,6 \mathrm{~kg}$) (rack mount).
Accessories avaliable: 11500A RF Cable Assembly; 10503A Video Cable Assembly; 360 Low-Pass Filter (may be used where harmonic outpur must be reduced to a minimum, as in slotted line measurements).
Price: HP 6i2A, $\$ 1850$ (cabinet); HP 612AR, $\$ 1890$ (rack mount).

HP 8614A, 8616A Signal Generators
The HP 86i4A and 8616A Signal Generators provide stable, accurate signals from 800 to 2400 MHz (8614) and from 1800 to 4500 MHz (8616A). Both frequency and attenuation are set on direct reading digital dials, while selectable functions include CW, leveled output, square-wave modulation, and external AM. PM and pulse modulation. Modulation can be accomplished simultaneously with or withour leveling.
Two RF power outputs are simultaneously available from separate front-panel connectors. One provides at least 10 mW (2 mW above 3000 MHz) or a leveled output from $010-127$ dBm . The other is at least 0.5 mW across the band and is independent of attenuator setting. This signal can be used for phase-locking the signal generators for extreme stability, or it can be monitored with a frequency counter for extreme frequency resolution withour adversely affecting the primary outpur.

A unique PIN diode modulator permits amplitude modula. tion from de to 1 MHz or furnishes RF pulses with a $2 \mu \mathrm{~s}$ rise time. This broad modulation bandwidth permits remore control of output level or precise leveling using external equip. ment. The internal leveling is also obtained by using a PIN modulator.

HP 8614B, 8616B Signal Sources

The HP 8614 B and 86168 retain the convenience of the " A " models. Although the signal sources do not have power monitors or internal PIN diode modulation, relative power measure. ments can be made, using the precision atrenuator. Modulation capabilicies include internal square-wave modulation, plus external pulse and frequency modulation. A friction clutch arrangement permits setting the attenuator dial to any suitable reference while outpur power is held constant. Thus, the attenuator can be calibrated directly in dBm or insertion loss.

Specifications

Frequency range: $861-1 \mathrm{~A}$ and $861 \mathrm{HB}, 800$ to $2400 \mathrm{MHz} ; 8616 \mathrm{~A}$ and $8616 \mathrm{~B}, 1800$ to 4500 MHz .

Leveled output: constant within $\pm 0.75 \mathrm{~dB}(8614 \mathrm{~A})$ and ± 1.0 dB (8616A) across entire frequency range at any attenuator setting below 0 dB . Not available with 8614 B and 8616 B .
Frequency callbration accuracy: $8614 \mathrm{~A}, \pm 5 \mathrm{MHz} ; 8614 \mathrm{~B}, \pm 5$ MHz or $\pm 0.5 \%$, whichever is greater; $8616 \mathrm{~A}, \pm 10 \mathrm{MHz}$; $8616 \mathrm{~B}, \pm 10 \mathrm{MHz}$ or $\pm 0.5 \%$, whichever is greater.
Vernier: $\triangle \mathrm{F}$ control has a minimum fange of 1.5 MHz for fine tuning (1.0 MHz for $8614 \mathrm{~B}, 8616 \mathrm{~B}$).
Frequency stability
WIth temperature: approximately $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient remperature.
With line voltage: less than 0.003% change for line voltage variation of $\pm 10 \%$.
Residual FM: 8614A and 8616A, less than 2500 Hz peak; 8614 B , less than 0.0003% peak; $86!6 \mathrm{~B}$, less than 6 kHz peak.
RF output power
8614A: $+10 \mathrm{dBm}(10 \mathrm{~mW})$ to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into a 50 -ohm load: output attenuator dial dicectly calibrated in dBm from 0 to -127 dBm .
8614B: at least 15 mW max, controlled by attenuator.
8616A: +10 dBm to -127 dBm into a 50.0 hm load, 1800 to $3000 \mathrm{MHz} ;+3 \mathrm{dBm}$ to -127 dBm into a 50.0 hm load, 3000 to 4500 MHz ; output attenuator directly calibrated in dBm from 0 to -127 dBm .
B616B: at least 15 mW maximum, 1800 to 3000 MrHz ; at least 3 mW maximum, 3000 to 4500 MHz ; controlled by attenuator.
Internal impedance: 50 ohms nominal.
Reflection coefficient
8614A, 8616A: less than 0.33 .
8614B: less than 0.2 .
8516B: less than 0.26 .

Modulation

Internal square wave: 950 to 1050 Hz , can be synchronized with a +1 to +10 volt input signal.
External AM (8634A, 8616A only): dc to 1 MHz .
Incldental FM 8614A, 8616A only): negligible for power levels below - 10 dBm .
External pulse
8614A and 8616A: so Hz to $50 \mathrm{kHz}, 2 \mu \mathrm{~s}$ rise time, +20 $10+100$ volts input.
8614B, 8616 B (below 4000 MHz): 50 Hz to 500 kHz ; +25 to +50 volts peak input; minimum RF pulse width, 300 os; KF rise time, typically 200 ns.
External FM: (a) front-panel connector capacitively coupled to klystron repeiler; input impedance, $220 \mathrm{k} \Omega$ shunted by approx 300 pF : (b) rear-panel connector is de-coupled to the klystron repeller.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz , approx 125 watts.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / /^{\prime \prime}$ deep ($26 \times 141 \times$ 567 mm) : hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel (483 x $133 \times 416 \mathrm{~mm}$)
Weight: 8614 A and 8616 A : net, $44 \mathrm{lbs}(19,8 \mathrm{~kg}$) ; shipping, 48 lbs ($22,0 \mathrm{~kg}$), $861 \mathrm{fB}, 8616 \mathrm{~B}: \mathrm{nef}, 38 \mathrm{lbs}(17,1 \mathrm{~kg})$; shipping, 4f los ($19,4 \mathrm{~kg}$).
Price: HP 8614A or $8616 \mathrm{~A}, \$ 2490$; HP 8614B or $8616 \mathrm{~B}, \$ 1900$.
Option 001: external modulation input connectors on rear panel in parallel with front-panel connectors: RF connectors on rear panel only, add $\$ 2 s$.

UHF SIGNAL GENERATORS
 Direct-reading, direct control, 800 to 4200 MHz
 Models 614A, 616B

Ease of operation, direct-reading one dial frequency control, high stability and accuracy and broad frequency coverage are all advantages of these widely used signal generators.

The 614A covers frequencies from 800 to 2100 MHz , has constant internal impedance with less than 1.6 SWR, and output accuracy of $\pm 1.5 \mathrm{~dB}$ over the range of -10 dBm to -127 dBm . The 616 B gives complete coverage of frequencies from 1.8 to 4.2 GHz , has constant internal imped. ance with less than 1.8 SWR, and output accuracy of ± 1.5 dB from -7 dBm to -127 dBm .

On both instruments, operation is extremely simple. Carrier frequency is set and read directly on the large tuning dial. No voltage adjustments are necessary during operation because of the coupling device which causes oscillator repeller voltage to track frequency changes automatically. Oscillator output is set and read directly on a simplified dial. Output may be continuous or pulsed, or frequencymodulated at power line frequency. Pulse modulation may be provided externally or internally. Internal pulsing may be synchronized with either positive or negative external pulses, or sine waves.

The oscillator portion of both the 614A and 616B consists of a reflex klystron in an external coaxial resonator. Frequency of oscillation is determined by a movable plunges which varies the resonant frequency of the resonator. Oscillator output is monitored by a temperature-compensated thermistor bridge circuit which is virtually unaffected by ambient temperature conditions. Voltage output is read directly. A logging scale on the frequency dial provides a resettability of 0.1%.

Specifications

Frequency range: $614 \mathrm{~A}, 800$ to $2100 \mathrm{MHz} ; 616 \mathrm{~B}, 1.8$ to 4.2 GHz.
Frequency accuracy: $\pm 1 \%$.
Frequency stabillty: $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature; line voltage changes of $\pm 10 \%$ cause 0.01% frequency change.
Output power range (into 50 -ohm load): $614 \mathrm{~A}, 0.5 \mathrm{~mW}$ or 0.158 V to $0.1 \mu \mathrm{~V}(-3$ to $-127 \mathrm{dBm})$ from 800 to $900 \mathrm{MHz}, 1 \mathrm{~mW}$ or 0.224 V to $0.1 \mu \mathrm{~V}$ (0 to -127 dBm) from 900 to $2100 \mathrm{MHz} ; 616 \mathrm{~B}, 1 \mathrm{~mW}$ or 0.224 V to $0.1 \mu \mathrm{~V}$ (0 to -127 dBm).
Power accuracy (at the end of $6-\mathrm{ft}$ output cable, terminated in 50 ohm load): 614 A , within $\pm 1.5 \mathrm{~dB}$ from -10 to $-127 \mathrm{dBm} ; 616 \mathrm{~B}$, within $\pm 1.5 \mathrm{~dB}$ from -7 to -127 dBm .
Internal impedance: 614A, 50 ohms, reflection coefficient less than 0.23 (1.6 SWR, 12.7 dB return loss); 6168 , 50 ohms, refection coefficient less than 0.285 (1.8 SWR , 10.9 dB return loss).

Modulation: internal or external pulse or FM.
Internal pulse modulation: phase repetition rate variable from 40 to 4000 per sec; pulse length variable from 1 to 10

$\mu \mathrm{s}$; delay variable from 3 to 300μ setween synchroniz. ing signal and RF pulse.
External pulse modulation: ext $-:-40$ to $-70 \mathrm{~V}, 1$ to $2500 \mu \mathrm{~s}$ wide ext $+:+40$ to +70 V , t to $400 \mu \mathrm{~s}$ wide, square wave: ± 40 to $\pm 70 \mathrm{~V}$ P-p, 40 to 4000 Hz .
Trigger pulses out: (1) simultaneous with RF pulse; (2) in advance of RF pulse, variable from 3 to 300μ s (both approximately 1μ s rise time, amplitude +10 to +50 volts).
External synchronization: pulses, ± 10 to $\pm 50 \mathrm{~V}, 1$ to 20 $\mu \mathrm{s}$ wide; may also be synchronized with sine waves.
Fyequency modulation: oscillator sweeps at power line frequency; deviation and phase adjustable; maximum deviation approx 3 MHz p-p.
RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approx 160 W .
Dimensions: cabinet: 171/4" wide, $135 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep ($438 \times 346 \times 343 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, 13 . 31/32" high, $121 / 8^{\prime \prime}$ deep behind panel ($483 \times 355 \mathrm{x}$ 308 mm).
Welght: net, $58 \mathrm{lbs}(26,4 \mathrm{~kg}$); shipping, $66 \mathrm{lbs}(30,0 \mathrm{~kg})$.
Accessory furnished: 11500 A RF Cable Assembly
Accessories available: 614A: 360C Low Pass Filter, $f_{c}=$ 2200 MHz ; 10503 A Video Cable Assembly; 616B: S281A Waveguide-to-Coax Adapter, 2.6 to 3.95 GHz ; G281 A Waveguide-to-Coax Adapter, 3.95 to $5.85 \mathrm{GHz}_{3} 360 \mathrm{D}$ Low-Pass Filter. $f_{c}=4.1 \mathrm{GHz}$.
Price: HP 614A of HP 6I 6B, $\$ 2600$ (cabinet) ; HP 614AR or $616 \mathrm{BR}, \$ 2640$ (rack mount).

The Models 618C and 620B SHF Signal Generators pro. vide versatility, accuracy, and stability in the range from 3.8 to 11 GHz . Frequency is set on a large, direct-reading

dial. A $\triangle \mathrm{F}$ vernier control provides ultra-fine tuning capability. There is also a provision for remote fine tuning.

A calibrated output from 0 to -127 dBm (0.224 volts to 0.1 microvolt) is also set on a large, direct-reading dial. The dial is calibrated in both dBm and volts. An auxiliary output of at least 0.3 milliwatt is available and is independent of attenuator setting. Thus, it can be used for phaselocking the signal generator when crystal-oscillator stability is required, or it can be monitored with a frequency counter for extreme frequency resolution.

The 618C and 620B Generators both feature oscillators of the reflex klystron type, with external resonant cavity. Oscillator frequency is determined by a movable plunger which varies the length of the cavity. Oscillator output is monitored by a temperature-compensated detector circuit. This circuit operates virtually unaffected by ambient tem. perature conditions.

Modulation includes internal pulse, square wave, and frequency modulation plus external pulse and frequency modulation.

Specifications

Output
Frequency range: $618 \mathrm{C}: 3,800$ to $7,600 \mathrm{MHz}$ covered in a single band; 620B: 7 to 11 GHz covered in a single band; repeller voltage automatically tracked and proper mode automatically selected.
Callbration: direct reading; frequency calibration accuracy better than $\pm 1 \%$.
Frequency stabllity: with temperature: less than $0.006 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature; with line voltage less than 0.02% change for line voltage variation of $\pm 10 \%$; residual FM: $<15 \mathrm{kHz}$ peak.
Output range: 1 milliwatt or 0.224 volt to 0.1 microvolt (0 dBm to -127 dBm) into 50 ohms; directly calibrated in microvolts and $d B$; coaxial type N connector.
Output accuracy: within $\pm 2 \mathrm{~dB}$ from -7 to -127 dBm , within $\pm 3 \mathrm{~dB}$ from 0 to -7 dBm , terminated in 50 -ohm lond.
Source impedance: 50 ohms nominal; reflection coefficient less than 0.33 .

Modulation

Modulation: internal or external pulse, FM, and square wave. Internal pulse modulation: repetition rare variable from 40 to $4,000 \mathrm{Pps}$, pulse width variable $1 / 2$ to 10 microseconds.
Sync out slgnals: simultaneous with RF pulse, positive; in advance of RE pulse, positive, variable 3 to 300 microseconds (better than 1 microsecond rise time and 25 to 100 volts amplitude into 1,000 -ohm load).
External synchronization: sine wave: 40 to $4,000 \mathrm{~Hz}, 5$ to 50 V rms; pulse: 40 to $4,000 \mathrm{Pps}, 20$ to 70 V peak, positive or negative, 0.5 to 5μ s wide, 0.1 to 1μ s rise time.

Internal square-wave modulation: variable 40 to $4,000 \mathrm{~Hz}$, Internal FM: sawtooth sweep rate adjustable 40 to $4,000 \mathrm{~Hz}$; frequency deviation to 5 MHz peak-to-peak over most of the frequency range.
External pulse modulation: pulse requirements: amplitude from 20 to 70 volts positive or negative, width 0.5 to 2,500 microseconds.
External FM: frequency deviation approximately 5 MHz peak-to-peak over most of the band; sensitivity approximately $20 \mathrm{~V} / \mathrm{MHz}$ at front-panel connector, approximately $10 \mathrm{~V} / \mathrm{MHz}$ at rear-panel connector (inating connector supplied); front-panel connector is capacitively coupled to klystron repeller; rear-panel connector is decoupled to klystron repeljer and is suitable for phase-lock control input.

General

RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D.
Power source: 115 or 230 volts $\pm 10 \%$, 50 to 60 Hz 230 W.
Dimenslons: cabinet, $171 / 2^{\prime \prime}$ wide, $137 / 8^{\prime \prime}$ high, $203 / 8^{\prime \prime}$ deep behind panel ($445 \times 353 \times 518 \mathrm{~mm}$) ; rack mount, $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ deep behind panel ($483 \times$ $355 \times 483 \mathrm{~mm}$).
Weight: net, $67 \mathrm{lbs}(30,4 \mathrm{~kg}$); shipping, $75 \mathrm{lbs}(34, \mathrm{Ikg})$.
Accessory furnished: 11500 A Cable Assembly, 6 feet (1830 mm) of RG.214A/U 50 -ohm coax, terminated on each end by type N male connectors.
Price: Model 618 C or 620 B (cabiner mount) $\$ 2600$. Model 618 CR or 620 BR (rack mount), $\$ 2640$.

SHF GENERATORS/DOUBLERS Generate stable signals, 10 to 40 GHz Models 626A, 628A, 938A, 940A

SIGNAL GENERATORS

626A, 628A
The 626 A covers frequencies 10 to 15.5 GHz , and the 628 A covers frequencies is to 21 GHz . In design and operation, the instruments are similar to Hewlett-Packard generators for lower frequency ranges. Cartier frequency is ser and read directly on the large tuning dial. No voltage adjustment is necessacy during tuning because repeller volcage is rracked with frequency changes automacically. Oscillator output also is set and read directly, and no frequency correction is necessary throughout operating range. A frequency logging scale permits frequency to be reser within 0.1%.

Both the 626A and 628A offer internal and external pulse, square-wave and frequency modulation. The pulse generators may be synchronized with an external sine wave and positive or negative pulse signals.
The high power output of these signal generators makes them ideally suited for driving HP 938A and 940A Frequency Doubler sets. These doubler sets retain the modulation and stability of the driving source and have accurate power monitors and attenuators.

Specifications, 626A, 628A

Frequency range: 626 A , 10 to $15.3 \mathrm{GHz} ; 628 \mathrm{~A}$, 15 to 21 GHz .
Frequency calibratlon: dial direct-reading in GHz, accuracy better than $亡 1 \%$.
Output range: 10 mW to $\mathrm{t} \mathrm{pW}(+10 \mathrm{dBm}$ to $-90 \mathrm{dBm} .0 \mathrm{dBm}=$ 1 mW) ; attenuator dial calibrated in output dBm.
Source impedance: 30 ahms nominal; reflection coefficient: 626A. less than $0.43 \mathrm{at}+10 \mathrm{dBm} .0 .15$ at 0 dBm and below. 628A. less chan 0.43 at +10 dBm .0 .091 at 0 dBm and beloer.
Output monltor accuracy: beter than $\pm 1 \mathrm{~dB}$; :emperalure-compensated thermistor bridge circuit monitors RF oscillator power level.
Output connector: G26A: 0.850×0.475 inch waveguide, WR7s. flat cover flange; $628 \mathrm{~A}: 0.590 \times 0335$ inch waveguide, W/RS1. fat cover fange.
Output attenuator accuracy: better than ± 29 of atenuation in dB introduced by output anenuator.
Modulation: intermal or external pulsc, FM, or squarenare.
Internal pulse modulation: repetition rate raciable from 40 to 4000 pps ; pulse width rariable 0.5 to $10 \mu \mathrm{~s}$.
Internal square-wave modulationa "ariable to to 4000 Hz controlled by "pulse rate" control.
Internal frequency modulation: power line feequenç, deviation up to $10 \mathrm{MHz} \mathrm{p}-\mathrm{p}$.
External pulse modulation: pulse requirements: amplitude 13 to 70 volts peak positive or negative; width i to $2500 \mu \mathrm{~s}$.
External frequency modulation: provided by capacitive coupling to the klystron repeller; maximum deviation apprex $10 \mathrm{~N} / \mathrm{H}_{2} \mathrm{p} \cdot \mathrm{p}$.
Sync out signals: positive 20 to so V peak into 1000 ohm load; better than 1μ s rise time; 1) simultancous with RF pulse, posi(ive: 2) in advance of RF pulse, positive, variable 3 to $300 \mu \mathrm{~s}$,
External synchronization: 1) sine wave, 40 to 4000 Hz , ampli. tude 31050 V ims; 2) pulse signals 0 to $4000 \mathrm{pps}, 5$ to 50 V amplitude, positive or negative; puise width 0.5 to $\$ \mu 5$; rise time 0.1 to 1 us .

Power: 115 or 230 voles $\pm 10 \%$, s0 to 60 Hz , approx 200 watts. Dimensions: cabinet: $17^{\prime \prime}$ kide, $^{\circ} 14^{\prime \prime}$ high, $15^{\prime \prime}$ deep (432 x $356 \times 381 \mathrm{~mm}$): rack mount. $19^{\prime \prime}$ wide. $14^{\prime \prime}$ high, 12.13/16" deep behind panel ($483 \times 356 \times 313 \mathrm{~mm}$)
Welght; $626 \mathrm{~A}, \mathrm{AR}:$ net, $59 \mathrm{lbs}(26.8 \mathrm{~kg}$): shipping. $68 \mathrm{dbs}(31.3$ kg) : 628A, AR: nct. $56 \mathrm{lbs}(23,4 \mathrm{~kg})$; shipping $65 \mathrm{lbs}(29,5 \mathrm{~kg})$.
Accessories furnished: 626A, MX 292B and MP 292B Wareguide Adapters: 628A, NP 292A and NK 292A w'aseguide Adapters.
Accessories avallable: 10503A Video Cable Assembly for 626A M362A low pass filter.

Price: HP 626A or 628A, $\$ 4400$ (cobinct); HP 626AR or 628AR, \$4440 (rack mount).

Frequency doubler sets

Model 938A supplies power from 18 to 26.3 GHz and Model 940A from 26.3 to 40 GHz when driven by 9 to 13.25 GHz and 13.25 to 20 GHz sources respectively. For a sneept output, use a swept•frequency source such as Model 8690 B or Model 8620A/B series with appropriate RF units.

Specifications, 938A, 940A

Frequency range: $938 \mathrm{~A}, 1$ s to $26.5 \mathrm{GHz} ; 940 \mathrm{~A}, 26.5$ to 10 GHz Conversion loss: less than 18 dB at 10 mW input.
Output power: approximarely $0.5-1 \mathrm{~mW}$ when used wish typical 626A, 628A signal generators; input power: $100 \mathrm{~m} \mathrm{~V}^{\prime}$ maximum.
Output attenuator: accurucy, $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{~dB}$, which. ever is greater; range, 100 dB .
Output reflaction coefficient: approx 0.33 at full output; less than 0.2 with artenuator set to 10 dB or greater.
Input flange: 938A, M-band lat cover flange for W'R.75 wive. guide; 940A, N-band flat cover flange for WR-51 wareguide.
Output flange: 938A K.band flat cover flange for WR-42 ware. guide, 940 A R-band fas bange for WR-2s waveguide.
Dimensions: $101 \%^{" *}$ wide, $53 / \mathrm{g}^{\prime \prime}$ high, $18^{\prime \prime}$ deep ($489 \times 137 \times 197$ mm).
Weight: rer, $20 \mathrm{lbs}(9 \mathrm{~kg})$; shupping, $26 \mathrm{lbs}(11.8 \mathrm{~kg})$
Price: HP 93SA or HP 940A, $\$ 2800$.

SPECIAL SIGNAL GENERATORS

Avionics and telemetry test equipment
Models 3205A, 211A, 232A, 8925A

Telemetry Test Equipment

Avionics Test Equipment

8925A

HP 3205A
The Model 3205A FM Signal Generator is a self-contained, completely solid-state instrument designed for use in the mea. surement and calibration of FM telemetry receivers in the 1435 to 1540 MHz and 2200 to 2300 MHz frequency bands. The generator has its own deviation meter calibration system that does not tequire external instrumentation. Calibrated RF output level, adjustable from -10 dBm to -127 dBm is also included. An internal modulation oscillator permits selection of channels 1 through 21 of the standard IRIG (Inter-fange Instrumentation Group) subcarrier frequencies used for telemerry systems.
Frequency range: band 1,1430 to 1540 MHz ; band 2, 2150 to 2310 MHz .
Price: $\$ 5750$.
Option 001: all front panel connectors moved to rear panel, add $\$ 50$.

HP 232A

The FAA Instrument Landing System for aircraft includes a glide slope receiver for indicating the proper cate of descent. The HP 232A Glide Slope Signal Generator was designed for use in testing and calibrating these glide-stope receivers.
Frequency range: $\mathrm{RF}, 329.3$ to 335 MHz in increments of 0.3
MHz ; IF, 20.7 MHz ; other frequencies between 15 and 30
MHz available on special order.
Price: HP 232A, $\$ 3200$.

HP 8925A

The HP 8925A DME/ATC Test Set is specifically designed for resting and calibrating DME (Distance Measuring Equipment) and ATC (Air Traffic Control) transponder aircraft equipment. When used with suitable modulators, the test set will also simulate some TACAN and IFF signals. Completely self-contained (except for video modulators), the system consists of a continuously tuneable signal generator (HP 8614A Option H01), direct-reading frequency counter (HP 5245L), solid-state modulator (HP 8403A Option H01), frequency converter (HP 5254A), wavemeter (HP 8905A), peak poner measuring system (HP 8900B), and all necessary circuitry for interconnection to the radio set under test (HP 13505A).
Frequency range: 962 to 1213 MHz .
Price: HP 8925A, $\$ 13,925$.
Options; (specify by option number).
001: less 5245L/S254A Counter, \$10,350.
002: less cabinet, $\$ 13,125$.
003: dual power range (10 to $200 / 100$ to 2000 W), add $\$ 130$.
004: HP 524GL Counter instead of HP 5245L, \$13,250.

HP 211A

The HP 211A Crystal-Monitored Signal Generator is specif. cally designed for the testing and calibrating of aircraft VOR and ILS localizer radio receiving equipment operating within the frequency range from 88 to 140 MHz . It also may be used for laboratory and development work where a precision type amplitude-modulated RF signal source is required.
Frequency range: master oscillator: 88 to 140 MHz in one range; crystal oscillator: 110.1 and 114.9 MHz . Price: HP 211A, 211 AP1 Power Supply, $\$ 2900$.

8730 PIN Modulators

With HP 8730 series PfN Modulators, signal sources, including klystrons, can be pulse-modulated, leveled or amplitudemodulated with sinusoidal and complex waveforms. Fast risetimes, low incidental FM and a nearly constant impedance match to source and load are rypical of these absorption-rype modularors.

8403A Modulator

The Mode! 8403A provides complete control of the PIN modulators, supplying the appropriate modulation wave shapes and bias levels for fast rise times, rated on/off ratios and amplitude modulation. An intenal squarewave and pulse modulator with PRE of 50 Hz to 50 kHz and adjusiable pulse width and delay also provides square wave and pulses for general pulse applications. For applications requiring an ab-sorption-type modulator plus controls in a single unit, a PIN modulator can be installed in the Model 8403A.

Specifications, 8403A

Output characteristics (available separately at front panel) For driving 8730 PIN Modulators: AM and pulse output specially shaped for aptimum RE rise and decay times.
For general pulse applications: positive decoupled pulse 25 to

30 volts in amplitude, approximately symmetrical abouc 0 volt; no AM signal.

Modulation

Internal square wave
Frequency: vaciable from 50 Hz to 50 kHz .
Symmetry: better than $45 / 55 \%$.
Internal pulse
Repetition rate: variable from 50 Hz to 50 kHz .
Delay: variable from $0.1 \mu s$ to $100 \mu \mathrm{~s}$, between sync out pulse and RF ourput pulse.
Width: rariable from $0.1 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$.
External sync
Signal: 5 to 20 volts peak, + or - , pulse or sine wave.
Input impedance: approx 2000 ohms, dccoupled.
Trigger out
Syne out: simultaneous with or 0.1 to $100 \mu \mathrm{~s} \mathrm{~m}$ adrance of RF pulse, as set by delay control.
Delayed sync out: simultaneous with ouppur pulse.
Amplitude: approximately -2 volts.
Source impedance: approximately 330 ohris.
External pulse input
Amplitude and polarity: 5 voles to 20 volts peak, + or - .
Repetlition rate: maximum average PRF, 500 kHz .
Input impedance: approximately 2000 ohms, dc-coupled.
Width: minimum $0.1 \mu \mathrm{~s}$; maximum $\frac{1}{\text { PRF }}-0.4 \mu \mathrm{~s}$.
Continuous amplitude modulation (with 8730 series)
Fraquency response: de to approximately 10 MHz (3 dB).
Sensitivity: approx 10 dB /volt with HP 8730A series: approx $20 \mathrm{~dB} /$ volt with HP 8730 B series.
Input impedance: approximately 100 ohms.

General

Power: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz , approx 10 watts. Dimensions: $163 / 4^{\prime \prime}$ wide, $33 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times 96 \times$ 467 mm) : hardware furnished for rack mount $19^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, $163 / \mathbf{g}^{\prime \prime}$ deep behind panel ($483 \times 89 \times 416 \mathrm{~mm}$).
Weight: net, $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping $20 \mathrm{lbs}(9,5 \mathrm{~kg})$.
Price: HP $8403 \mathrm{~A}, \$ 900$.
Options: PIN Modulators installed
001 HP 5731A. add $5525 \quad 002$ HP 8731B, add $\$ 775$
003 HP 8732 A , add $\$ \$ 25004 \mathrm{HP} 8732 \mathrm{~B}$, add $\$ 775$
005 HP 8733 A , add $\$ 5250006 \mathrm{HP} 8733 \mathrm{~B}$, add 5775
007 HP 8734 A . add $\$ 525008 \mathrm{HP} 8734 \mathrm{~B}$, add $\$ 775$
009 input and outpur connectors on rear panel, add $\$ 2 s$.

Specifications, 8730 Series

HP Modo)	87314	87318	8782A	1738	67384	0713 B	8784号	87848	B735A	8788 B	H10-E218 ${ }^{1}$
Frequency range (CHz) Dynamic range (dB)	$\begin{gathered} 0.8 .2 .4 \\ 25 \end{gathered}$	$\begin{gathered} 0.8-2.4 \\ 80 \end{gathered}$	$\begin{gathered} 1.8 \cdot 4.5 \\ 35 \end{gathered}$	$\begin{gathered} 1.8 .4 .5 \\ 80 \end{gathered}$	$\begin{gathered} 3.7-8.3 \\ 35 \end{gathered}$	$\begin{gathered} 3.7 .8 .3 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 7.0-12.4 \\ 35 \end{gathered}$	$\begin{gathered} 7.0-12.4 \\ 80 \end{gathered}$	$\begin{gathered} 8.2-12.4 \\ 35 \end{gathered}$	$\begin{aligned} & 8.2 \cdot 12.4 \\ & 80 \end{aligned}$	$\begin{gathered} 0.4-0.9 \\ 35 \end{gathered}$
Max. esidualatker, (dB):	<1.5	<20	≤ 20	$<3.5{ }^{2}$	<2.0	<3.0	<4.0	<5.0	<4.0	<5.0	<2.0
Typical rise time (ns)'	40	30	40	30	30	30	30	10	30	30	40
Tupical decay t\|me (ns) ${ }^{3}$	30	20	30	20	20	20	20	20	20	20	30
SWR. min. altenuation	1.5	10	1.5	1.64	1.8	20	18	2.0	1.7	2.0	$1.25{ }^{1}$
SWR, max. attenuation	1.8	2.0	1.8	2.0	2.0	2.2	2.0	22	2.0	2.2	1.5
Forinard biss input resislance (ohms)	300	100	300	100	300	100	300	100	300	100	300
fF connector lyot	N	N	N	N	N	N	N	N	W/6 ${ }^{1}$	W/G ${ }^{1}$	N
Weight, ret lo (kg)	3(1,4)	$6(2.7)$	3 (1,4)	$6(2,7)$	3 (1, ¢)	3(1,4)	3(1,4)	3(1.4)	3(1,4)	3(1,4)	6 (2.7)
Shipping it (kg)	4(1.8)	9(4.1)	4 (1.8)	9 (4.1)	$4(1,8)$	5 (2.3)	$4(1,8)$	$5(2.3)$	4(1.8)	$5(2,3)$	\% (4.1)
Dimensions Lenglh, in (mm)	111/8 (283)	113/8(289)	111/4 (283)	11桨 (289)	83/8(213)	124 (311)	$87 / 2$ (21.3)	12K(311)	61/4 (171)	101/2 (267)	11\% 21889
Width, in (mm)	$31 / 2$ (83)	43/4, 124)	31/4 (83)	4/1/ (124)	31/4 (83)	$3 y_{4}(83)$	31/2 (83)	$31 / 2(83)$	31/4 (83)	$31 / 2$ (83)	43/8 (124)
Height. in (mm)	21/4 (57)	21/4 (57)	2Y/ (57)	24, (57)	24í (51)	21/4 (57)	21/4 (57)	21/2 (57)	21/4 (97)	21/4 (57)	21/2 (\$)
Price	\$450	\$700	1450	\$700	\$450	\$700	\$450	\$700	\$450	\$700	\$700

Maximum ratings: maximum lnput power, peak or CW: 1 W; bias limits: 20 V , - 10 V .

Blas polarlty: negative voltage Increases attencation.
RFI: radiated leaxage imits are below those speclified in Mil-I-6I81D at input low to obtain rated ateruation mput levels radiated interference is sulficlently

SWEEP OSCILLATORS

Swept measurament

Swept frequency measurement is a method of characterizing magnitude and phase parameters as a function of frequency for an unknown device, compo. nent or system. A complete swept frequency measurement system has three basic elements: 1) a sweeper which is the signal source, 2) the unknown to be characterized and 3) the detector and display with which ro interpret measurement results. Swept frequency measurements evolved as a fast, convenient and accurate method of phase and mag. nitude characterization replacing the laborious point by point measurement techriques.
The sweeper or signal source in a swept frequency system is a controlled oscillator which is made to vary in frequency between two limits in a prescribed manner, usually linear frequency change with time. The output power of the sweeper should be constant over the range of frequencies swept. Leveled porver enables detection and displays to be presented accurately and directly without need for correction due to generator level change during sweep. Accurate frequency identifications depends on the sweeper's frequency accuracy, sweep width accuracy, sweep linearity and frequency stability with changes in temperature, load and line. Prequency accuracy is of prime importance in making narrow band measurements accurately and quickly using swept fre. quency techniques. Dynamic displays per. mit on-line adjustment and rapid testing of devices.
The output from the unknown must be detected and displayed in a manner which facilicates easy and accurate identification of sweep frequencies as well as magnitude and phase information. Sevcral types of detectors-displays are available depending on application requirements. For fast, inexpensive magnitudeonly measurement, a crystal detector and scope, or crystal detector and SWR meter (115 E) with scope or $\mathrm{X} . \mathrm{Y}$ recorder can be used. A bolometer or thermistor detector can also be used with an X.Y recorder for amplitude only measurement. When a wider dynamic zange. more accuracy and phase information are needed, the more sophisticated track. ing detector or network analyzer is used with CRT displays. Hewlett-Packard

CRT displays are available in two configurations: polar or magnitude-phase.

Sweep osclliators

The sweeper is a multipurpose test instrument used in the design, manufacture and maintenance of devices, components and systems. Hewlett-Packard sweepers cover the entire RF frequency spectrum from dc to 40 GHz in four broad instru. ment lines. These instruments feature solid state components to 18 GHz and plug-in versatility for a choice of band. Herrlett-Packard solid state and backward wave oscillator sweepers have superior frequency stability, high power output, external or internal modulation, analog and digital programming capability and systems compatibility.

Sweep oscillator features

Sweep range selection

The sweep frequency limits of the instrument may be set by selecting one of several different sweep modes. Start. Stop, Marker, Video, or Full sweep modes begin sweeping at one indepen. dently adjustable calibrated frequency and stop sweeping at a second independentiy adjustable ca!ibrated frequency. With symmeterical or ΔF sweep, the center of the sweep range is frst independently selected and then the calibrated sweep width is chosen. Manual sweep alions the sweeper to function with operator front panel control, a real convenience for calibration of display de. vices such as $\mathrm{X}-\mathrm{Y}$ recorders.

Another valuable fearure of roday's solid state oscillators is self-contained, multiband capability in one compact in. surumenr. This is the ability to select swept coverage from over six octave ranges. (i.e., from 100 MHz to 6.5 GHz) by simply pressing one band select lever, without expensive extraneous equipment.

Power output and leveling

Porver out is adjustable at the front panel. To obtain constant power output and a good source match at microwave frequencies, an automatic leveling loop is employed. The basic external leveling configuration is shown in Figure 1 (internal leveling available as an option, if not standard, on all Hewlett-Packzed sweep oscillators).

Figure 1. Basic closed.loop leveling system.
Zeveling has two advantages:) 1 leveled power output allows simplified detection and display and 2) the source match at the leveled outpur is markedly improved.

Modulation

Modulation capabilities further extend the sweepers usefulness both as a sweeper and as a signal generator for signal simulations. AM modulation is available both internally or externally on all Hew. lett-Packard sweepers. AM modulation is useful for testing communication equipment and making microwave measurements (1 kHz modulation is required to drive the $415 E$ SWR Meter). FM modulation allows remore analog programming of frequency (for example, for production testing) along with excellent FM signal simulation (for example, in communications).

Sweep control

Variable sweep rates are available from 0.01 to 100 seconds to match characteristic detector-display responses. Sweep may be initiated with automatic trigger, external trigger or manual trigger. Frequency changes linearily with sweep time until reaching the end sweep frequency. Blanking and pen lift signals are available at rear output connectors during fyback time when the RF is off.

Markers

Hewlett-Packard sfieepers are suff. ciently accurate to be used without markers but frequency identifications can be further improved with the use of markers or a counter with the sweeper in manual control.

Available outputs

The fexibility of a swepl frequency instrument system depends on the sweeper being compatible and easily interfaced with other instruments or systems. Herr-lett-Packard sweepers have all necessary outputs available for interconnection with Hewlett-Packard instrumentation systems.

Sweeper applications

Swept frequency systems are used to characterize an unknown's phase and magnitude characteristics as a function of frequency. Two basic types of measurements are made: transmission characteristics and refection characteristics. For many ransmission type measurements, it is only necessary to know am. plitude response and establish that the phase response is linear, thereby causing no phase distortion. Refiection measurements are used to oprimize device for impedance matching in order to obtain maximum power transfer. Swept frequency techniques can give complete sys-
tem characterization with S-parameter techoiques for transistors, devices, components or systems.

For high power applications such as RFI-susceptibility test and high artenuation measurements, Hewlett-Packard offers TWT amplifers which will provide better than 750 mW from 1-12.4 GHz. By phase-locking Hewlett-Pack. ard's sweep oscillators, excellent microwave signal purity can be achieved for application such as microwave spectroscopy and high-Q sarept frequency cavity measurements.

For achieving broadband sweep capa. bility (more than one octave), HewlettPackard offers the HP 8707A RF Unit Holder and 8706A Control Unit. The 8706A Control Unir is placed in the sweeper and the RF plug-ins placed in the 8707A RF Unit Holder. Control of up to seven RF plug-ins is possible. With Hewlett-Packard's new solid state micro. wave sweepers, the 8620 series, this multiband capability is built-in and thus can operate as a value packed stand-alone instrument.

Complete amplitude and phase description of microwave devices is a pori. erful tool for component and systems design and test. Hewlett-Packard sweep. er/network analyzer systems provide metered or CRT type (polar or magnitude and phase) real time display of this information. Active microwave components in a vasiety of packages, including can and stripline, can be accurately characterized and tested to 12.4 GHz.

Several Hewlett-Packard application notes such as the following describe numerous swept frequency measurements:

AN65, "Swept Frequency Techniques"
AN95, "S-Parameters . . . Circuit Analysis and Design"
ANul7-1 "Microwave Network Analysis Applications"
AN117-2 "Stripline Component Mea. surements", etc.
All of these notes and others are avail. able from your local Hewlett-Packard sales office.

Hewlett-Packard Sweep Oscillator-Summary Chart

Covering 100 KHz to 110 MHz , the Model 8601 A Generator/Sweeper combines the high linearity and flatness of a precision sweeper with a signal generator's frequency accuracy and wide range of calibrated power levels. Though it's small and lightweight, it does the work of two instruments easily and conveniently.

Specifications, 8601A

Frequency range: low range: 0.1 .11 MHz ; high range, 1-110 MHz .
Frequency accuracy: approximately $\pm 1 \%$ of frequency.
Power output: +20 to $\mathbf{- 1 1 0 ~ d B m ; ~} 10-\mathrm{dB}$ steps and $13-\mathrm{dB}$
vernier provide continuous settings over entire range. Meter monitors ourput in dBm and rms volts into 50 .
Power accuracy: $\pm 1 \mathrm{~dB}$ accuracy for any output level from +13 dBm to -110 dBr .
Flatness: $\pm 0.25 \mathrm{~dB}$ over full range, $\pm 0.1 \mathrm{~dB}$ over any 10 MHz portion (+10 dBm step or below).
impedance: $50 n$, $S W R<1.2$ on 0 dBm step and below.
Harmonics and spurious signals: (CW above 250 kHz , output levels below +10 dBm) harmonics at least 40 dB below carrier.
Residual FM : roise in a 10 kHz bandwidth including line related components (dominant component of residual FM is noise)
CW : less than 50 Hz rms, low range; 50 Hz rms high range.
SyM D , sweep: less than 100 Hz rms , low range; 1 kHz rims, high range.
Resldual AM: AM noise modulation index (rms, 10 kHz bandwidth is $<-50 \mathrm{~dB}$; (typically -60 dB at $25^{\circ} \mathrm{C}$).
Crystal calibrator: internal $5 \cdot \mathrm{MHz}$ crystal allows frequency calibration to $\pm 10 \%$ at any multiple of 5 MHz
Sweep modes: full, video, and symmetrical.
Internal AM: fixed $30 \% \pm 5 \%$ at 1 kHz .
External AM: 0 to 50%, dc to $400 \mathrm{~Hz} ; 0$ to 30%, up to 1 kHz .
Internal FM: 1 kHz rate, fixed $75 \mathrm{kHz} \pm 5 \mathrm{ct}$ deviation, high range; $7.5 \mathrm{kHz} \pm 5 \%$ deviation, low range.
External FM: sensitivity, 5 MHz per volt $\pm 5 \%$, high range; 0.5 MHz per volt $\pm 5 \%$, low range; negative polarity; FM rates to 10 kHz .
Weight: net, 21 lb ($9,5 \mathrm{~kg}$); shipping $27 \mathrm{lb}(12,3 \mathrm{~kg})$.
Dimensions: 7 25/32" wide, $63 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($190 \times 155 \times 416 \mathrm{~mm}$).
Price: Model 8601A, \$2250.

8600A

The Model 8600A Digital Marker provides five independent, continuously variable frequency markers over the range $0.1-110 \mathrm{MHz}$ when used with the HP 8601 A or 8690B/8698B Generator/Sweeper.

The high resolution controls and 6 -digit readout permit 0.05% frequency settability. The frequency of any marker may be read while sweeping, simply by pushing a button within the marker control. The marker selected is brighter than the others and points in the opposite direction, ensuring positive marker identification.

Specifications, 8600A

Marker accuracy: any marker may be placed at a desired frequency $\pm(0.05 \%$ of sweep width +8601 A sweeper stability).
Weight: net, $13 \mathrm{lbs}(9,9 \mathrm{~kg})$; shipping, $18 \mathrm{lbs}(8,2 \mathrm{~kg})$.
Dirnensions: $37 / 8^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ long (99×413 $\times 337 \mathrm{~mm}$)
Price: Model 8600A, $\$ 1100$.
Option 003: includes modif. kit for $8690 \mathrm{~B} / 8698 \mathrm{~B}$; no additional charge.

VALUE FAMILY OF SWEEP OSCILLATORS

SWEEPERS

A Solld State Sweepar System with Outstanding Pertormance, Extreme Flexlblity of Conflguratlons, and Attractive Economies... All Made Possible by Modular Construction and Development of Superlor Mlcroelectronic Components.

The Mainframes:

The RF Plug-ins:

The 8620 family of sweep oscillators offers a choice of two solid state mainframes. Both are completely compatible with all RF plug-ins and offer as a standard feature multiband capability. The two mainframes differ in the number of operating modes and price.

Frequency band is selected by pressing a lever that rotates the frequency dial. This fegture ls standard on the 8620B as well as the 8620A mairframe.

One Simple Control allows setting of a CW frequency or Start-Stop sweep or $\triangle F$ sweep. This simplicity ln the 8620 B malnframe provides a high value sweeper at an extraordinarily low price.

The 8620 B is the more economical of the two manf rames but has all the features normally needed for swept-frequency measurements. It has highly linear sweeps, wide and narrow, and a stable CW. Yet it is priced much lower than any' similar sweeper on the market.

Dimensions: $51 / 4^{\prime \prime}$ (133 mm) high, $131 / 4^{\prime \prime}$ (337 mm)
deep, $163 / 4^{\prime \prime}$ (425 mm) wide.
Weight: net, $24 \mathrm{lbs}(11,1 \mathrm{~kg})$; shipping, $30 \mathrm{Jbs}(13,4 \mathrm{~kg})$.
Price: $\$ 975$.
ΔF Control sels a continuously callbrated sweep centered about the CW control set. ting. The expand switch allows frequency calibration from elther 0 to 10% or 1% of full frequency band.
 sweeping in the start-stop mode.

CW Vernier gives better fraquency resolution than would be available on a 20 -inch dial scale. This allows precise settings of CW frequencies or $\triangle F$ centar frequencies.

The 8620 A offers all that the 8620 B offers, and in addition has many other features that are highly useful in more stringent applicarions. Push-butcon convenience provides great latitude of control along with exceptional frequency resolution and settability. This mainframe can also be a complecely programmable source (Option 001). Yet this mainframe is priced surprisingly low,
Dimensions: $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ high, $131 / 4^{\prime \prime}(337 \mathrm{~mm})$ deep, $163 / 4^{\prime \prime}$ (425 mm) wide.
Welght: net, $24 \mathrm{lbs}(11,1 \mathrm{~kg}$); shipping, $30 \mathrm{lbs}(13,4 \mathrm{~kg}$).
Price; \$1450.
Option 001: add $\$ 500$.

SINGLE BAND Plug-ins

- High Performance - Low Cost

86200 Series RF Plug-ins

The 86200 series single-band plug-ins make extensive use of microelectronics for superior performance and high reliability at an extremely low price. Fundamental oscillators are either YIG-tuned transistor or bulk-effect circuits. YIG tuning results in exceptional tuning linearity and assures low noise and low spurious content. YIG tuning also provides low distortion frequency modulation capability at several MHz deviations and several MHz rates. Microcircuit PIN modulators in the plug-ins provide RF level control and amplinude modulation with virtually no frequency pulling.

The 86200 series plug-ins are completely compatible with either the 8620 A of 8620 B mainframe. Standard plug-ins are listed below. Special frequency bands and higher power outpurs are available on request.

86200 Series Options

Option 010 or 020 must be ordered to specify proper dial scale. Option 010 includes 8620 A dial scale, no charge.
Option 020 includes 8620 B dial scale, no charge.
Option 001 internal leveling, add approximately $\$ 350$.
Option 004 rear RF output, add $\$ 75$.

Frequenoy Ranje (GHz)	Maxlmum Levelad Pwr (dBm) ${ }^{1}$	Harmonto/ Spuriou: (-dB)	Residual FM (kHz peak)	Prica	Model Number
0.01-1.3	10	30/40	<5	1,775	86220A
0.1-4.0	$\begin{aligned} & (1-2)+13 \\ & (2-4)+10 \end{aligned}$	$\begin{aligned} & 30 / 30 \\ & 20 / 80 \end{aligned}$	<10	3,750	86225A
2.0-4.0	7	16/60	<7	1,500	86230A
1.8-4.2	10	20/60	<7	1,900	86230 B
1.7-4.3	9	20/60	<7	2,150	86231A
3.2-6.5	1	16/60	<7	1,500	86241A
3.2-5.5	10	20/60	<7	1,950	88241 B
5.9-9.0	4	25/60	<15	1,975	86242A
5.9-9.0	10	30/60	<15	2,100	862428
8.0-12.4	4	30/60	<10	1,675	86250A
8.0-12.4	10	30/60	<10	2,100	86250 B
10.7-11.7	10	30/60	<10	1,700	86251A
8.5-10.5	13	30/60	<10	2,100	86252A
12,4-18.0	6	30/60	<30	2,850	86260A

Dimensions: $5^{\prime \prime}$ (127 mm) high, $115 / 8^{\prime \prime}$ (295 mm) deep, $6^{\prime \prime}$ (152 mm) wide.

Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}\}$.

Frequaney Rangs (OHz)	Maximum Leveled PWr (dBm)	Harmanio/ Spurbus (-dB)	Resldual FM (kHz peak)	Price	Model Number
$0.1-2^{*}$	+13	$30 / 30$	<10	$\$ 1,750$	86320 A
$1.8-4.2$	+10	$20 / 50$	<7	1,850	86330 A
$1.7-4.3$	+9	$20 / 60$	<7	2,100	86331 A
$3.2-6.5$	+8	$20 / 60$	<7	1,650	86341 A
$3.2-6.5$	+10	$20 / 60$	<7	1,800	86341 B
$5.9-9.0$	+7	$30 / 60$	<15	1,950	863428
$8.0-12.4$	+7	$30 / 60$	<10	1,950	86350 A
$10.7-11.7$	+10	$30 / 60$	<10	1,650	86351 A
$8.5-10.5$	+10	$30 / 60$	<10	1,850	86352 A

*Order also 86330A or 86331A. 86320A cannot be used alone.
8621A RF Drawer price: $\$ 300$.
Option 100-Multiband capability, add $\$ 400$.
Option 010-70 dB attenuator, add $\$ 650$.
Option 004-Rear RF output, add $\$ 75$.
Dimensions: $5^{\prime \prime}(127 \mathrm{~mm})$ high, $115 / \mathrm{g}^{\prime \prime}(295 \mathrm{~mm})$ deep, $6^{\prime \prime}$ (152 mm) wide.
Weight: net, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping, $5 \mathrm{lbs}(2.5 \mathrm{~kg})$.

86300 Series Options

Option 010, 020 or 030 must be ordered to specify' proper dial scale.
Option 010 includes 8620 A dial scale, no charge.
Option 020 includes 8620 B dial scale, no charge.
Option 030 includes 8690 B dial scale, no charge.
Option 001 internal leveling, add approximately $\$ 250$.
Dimensions: $4^{\prime \prime}(103 \mathrm{~mm})$ high, $33 / 4^{\prime \prime}(95 \mathrm{~mm})$ deep, $34 / 8^{\prime \prime}$ $(92 \mathrm{~mm})$ wide.
W'eight: net, 3 lbs ($1,4 \mathrm{~kg}$); shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.

With a multiband plug-in, changing frequency bands is as simple as pressing a front panel lever. Modular construc. tion of a multiband plug-in allows a choice of any two fundamental RF modules and a heterodyne module. For example, 0.1 to 6.5 GHz can be covered in one self.contained plug-in. All switching necessary to multiplex the desired frequency band to a single output port is included in the plug-in.
The multiband plug-ins consist of two basic parts: the 86300 series RF Modules and the 8621A RF Deawer.

The 86300 series RF Modules contain all of the microelectronic components that determine frequency range and power output. These microcircuits, in addition to giving the high performance and reliability that is normally expected of solid state components, are small enough so that a complete source module occupies only about four inch cube. These same modules can be used in conjunction with the 8700A RF Drawer to provide solid state plug-ins for the 8690A and 8690B mainframes.

The 8621 A RF Drawer houses the 86300 series RF Modules. The standard drawer will accept one fundamental osciliator module. However, with the 1.8 to 4.2 GHz funda. mental oscillator module, the standard drawer also accepts the 0.1 to 2 GHz heterodyne module to give 0.1 to 4.2 GHz corerage. The 8621 A Option 100 will accept two fundamental oscillaror modules and the heterodyne module. An optional 70 dB attenuator is also available along with a choice of either front or rear RF output.

SOLID STATE RF MODULES

...FOR 8690 SWEEPER SERIES

 solid state modules as used in 8620 family of Sweep Oscillators.

8700A RF Drawer
Dlmensions: $41 / 2^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $171 / 2^{\prime \prime}$ deep ($115 \mathrm{~mm} \times 185 \mathrm{~mm} \times$ 445 mm).
Weight: net, 9 lbs ($4,1 \mathrm{~kg}$): shidping, 12 lbs ($5,5 \mathrm{~kg}$).
Price: $\$ 425$.

The familiar 8690 BWO Sweeper product line now has reliable solid state plug-ins up to 12.4 GHz . The 8700 A R Drawer in conjunction with any one of the 86300 series RF modules makes a complete RF plug-in for the 8690A or 86908 mainframe. Expensive and annoying BWO replace. ments are no longer necessary. In fact, the low price of these solid state plug-ins makes it more economical in the long run to buy and 8700A plus an RF module rather than replacing ал expired 8WO.

A complete solid state plug-in is specified by ordering an 8700A and one of the RF modules listed on page 291.

The 86908 Sweep Oscillator offers exceptional value in performance, operation and versatility. The 8690B mainframe provides complete flexibility with start/stop, ΔF, and marker sweep along with CW operation and AM and FM capability. The complete family of solid state and BWO plug. ins shown below, accent thls value with coverage from 400 kHz to 40 GHz .
Dlmensions: $83 / 4^{\prime \prime}$ (222 mm) high, $183 / 8^{" ~(467 ~ m m) ~ d e e p, ~}$
$163 / 4^{\prime \prime}$ (425 mm) wide.
Welght: net, $49 \mathrm{lbs}(22,2 \mathrm{~kg})$; shipping, $59 \mathrm{Jbs}(26,8 \mathrm{~kg})$.
Price: $\$ 1700$.

86998 RF Plug-in

PIN Leveled Solld State RF Plug-ins
Long life and high rellability are key features of sll solid state oscillators. Through the extensive use of mieroelectronic circuitry such as absorptive PIN modulators, excellant performance is achieved in the areas of wide frequency coverage, low frequency pulling, low residual FM and good source match impodance.

Froquenay Range (aHz)	Maximum Leveled Power	Marmonlas/ Spurious (-dB)	Residuat FM (kHz paak)	Prioe	Model Number
400 kHz 10	$>20 \mathrm{~mW}$	$20 / 40$	$<.5$	$\$ 1,625$	8698 B
110 MHz					
$0.1-4,0$	$>6 \mathrm{~mW}$	$20 / 40$	<3	3,750	86998
$2.0-4.0$	$>10 \mathrm{~mW}$	$20 / 40$	<3	2,075	8692 C

Grid Leveled BWO RF Plug-ins

Grid leveled BWO's achieve power and leveling control by changing bias on the grid of the BWO. Grid leveling provides the highest RF power plug.ins since no additional components such as PIN modulators are necessary for power control.

Frequerioy Range (OH:)	Maximum Leveled Power	Harmonios/ Spurkus (-dB)	Resldual FM (kHy peak)	Proes	Modal Number
1.0-2.0	$>100 \mathrm{~mW}$	20/40	<30	\$2.125	8691A
1.4-2.5	$>100 \mathrm{~mW}$	20/40	<30	2,375	$\begin{aligned} & 8691 \mathrm{~A} / \\ & 0 \mathrm{pt} .200 \end{aligned}$
2.0-4.0	$>70 \mathrm{~mW}$	20/40	<30	1,950	8692A
3.5-6.75	$>40 \mathrm{~mW}$	20/40	<50	2,475	$\begin{aligned} & 8693 \mathrm{~A} \\ & \text { Opt. } 200 \end{aligned}$
4.0-8.0	$>25 \mathrm{~mW}$	20/40	<50	1,850	8693A
7.0-11.0	$>25 \mathrm{~mW}$	20/40	<60	1,900	$\begin{aligned} & 8694 \mathrm{~A} \\ & 0 \mathrm{pt.} 200 \end{aligned}$
7.0-12.4	$>25 \mathrm{~mW}$	20/40	<60	2,150	$\begin{aligned} & 8694 \mathrm{~A} / \\ & 0 \mathrm{pt} .100 \end{aligned}$
8.0-12.4	$>50 \mathrm{~mW}$	20/40	<60	1,850	8694A
10.0-15.5	$>25 \mathrm{~mW}$	20/40	<150	2,975	$\begin{aligned} & 8695 A / \\ & 0 \text { pt. } 100 \end{aligned}$
12.4-18	$>40 \mathrm{~mW}$	20/40	<150	1,875	8695A
18.26 .5	$>10 \mathrm{~mW}$	20/40	<200	2,750	8696A
26.5-40	$>5 \mathrm{~mW}$	20/40	<350	4,500	8697A
Ootion 001 internal leveling, add approximately $\$ 450$.					

PIN Leveled BWO RF Plug-ins

PIN leveled BWO's achieve power and leveling control with a PIN modulator placed berween the BWO and the front panel RF output. With constant bias and load impedance, the BWO provides a signal with low residual FM and frequency pulling with changes in power levels or load.

Frequenay Range (QHz)	Max\|mum Levajed Powar	Harmonlos/ Spurlous (-dB)	Residual FM (kHz pask)	Proo	Model Number
1.0-2,0	$>70 \mathrm{~mW}$	20/40	<10	\$2,475	86918
1.7-4.2	$>15 \mathrm{~mW}$	20/40	<20	2,625	$\begin{aligned} & 8692 \mathrm{~B} / \\ & \text { Opt. } 100 \end{aligned}$
2.0-4,0	$>40 \mathrm{~mW}$	20/40	<15	2,275	86928
3.7-8.3	$>5 \mathrm{~mW}$	20/40	<20	2,550	$\begin{aligned} & 86938 / \\ & 0 \text { pt. } 100 \end{aligned}$
4.0-8.0	$>15 \mathrm{~mW}$	20/40	<15	2,225	86938
$7.0-11.0$	$>15 \mathrm{~mW}$	20/40	<20	2,300	$8694 \mathrm{~B} /$ Opt. 200
7.0-12.4	$>15 \mathrm{~mW}$	20/40	<20	2,550	8694B/ Opt. 100
8.0-12.4	$>30 \mathrm{~mW}$	20/40	<15	2,250	8694B
12.4-18	$>15 \mathrm{~mW}$	20/40	<25	2,375	8695B
Option 001 internal leveling, add approximately $\$ 450$.					

86908 with 8706A Control Unit

8707A RF Unit Holder with 86908 RF Units

8705A Signal Multiplexer

Multiband systems
Broadband sweep capability, 400 kHz to 40 GHz , with pushbutton control of frequency range is available with the 8706A Control Unit and the 8707A RF Unit Holder. The 8706A Control Linit plugs into the 8690B in place of the normal 8690B RF plug in and the 8707A RF Unit Holder accepts the 8690 B RF plug-ins which are to be controlled. It is possible to have pushbutton control of from two to seven 8690B RF plug-ins with an 8706A Control Unit and from one to three 8707A Unit Holders.

The 8705A Signal Multiplexer switches RF signals up to 12.4 GHz from three 8690 B -series RF units to either of two RF ports. To provide leveled power at the 8705A RF ourput ports, a detector operating from a wideband coupler in the 8705A provides an ALC signal for the 8690B Sweep Oscillator leveling circuits.

Specifications, 8705A

Frequency range: de to 12.4 GHz . Outpur port reflection coefficient ≤ 0.25 (VSWR ≤ 1.67). Input port reflection coefficient ≤ 0.15 (VSWR ≤ 1.35).
insertion loss: 3 dB .
Welght: ner, $17 \mathrm{lbs}(7,8 \mathrm{~kg})$; shipping, $22 \mathrm{lbs}(10 \mathrm{~kg})$.
Price: Model 8705A, $\$ 2075$.
Specifications, 8706A
Compatibility: the 8706A controls up to three 8707A RF Unit Holders; Option H26 for remote band switching of 8699B.
Weight: net, $16 \mathrm{lbs}(7,3 \mathrm{~kg}$); shipping, 25 lbs ($11,4 \mathrm{~kg}$).
Price: Model 8706A, $\$ 650$.
Specifications, 8707A
Capability: accepts up to three 8690 B RF units.
Frequency range: 400 kHz to 40 GHz .
Sweep functions
Normal: permits all 8690B sweep functions.
Preset: provides start-stop sweep determined by preset adjustments on the 8707 A . Sweep end points can be set independently for each RF unit,
Weight: net, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$); shipping, $37 \mathrm{lbs}(16,8 \mathrm{~kg}$). Price: Model 8707A, S1525.

8701A Sequential Sweep Control
The 8701A Sequential Sweep Control makes possible widcband sweeping by sequentially triggering and controlling two, three, or four $8690 \mathrm{~A} / \mathrm{B}$ or $690 \mathrm{C} / \mathrm{D}$ Sweeper Mainframes.

When the sweepers are connected to the 8701 A , they maintain all of their sweep functions (i.e., START/STOP, $\triangle F$, and MARKER SWEEP) and capabilities (sweep time and band tuning). Thus, a set of sweeper mainframes can operate in the START/STOP function to provide wideband sweeping, or one or more sweepers can operate in $\triangle F$ or MARKER SWEEP function to provide narrowband sweeping. Switching from wideband to narrowband sweeping is accomplished with the ease of pushing a button. Furthermore, by setting band ends for each sweeper mainframe independentiy, one can sweep any special band of interest such as communications and ECM bands which are not normally available in one RF plugein oscillator.

Specifications, 8701A

Frequency coverage: 1-12.4 GHz; 1-18 GHz (8702 A Option 001).
Leveling: $< \pm 1.5 \mathrm{~dB}(1-2 \mathrm{GHz}) ;< \pm 1.25 \mathrm{~dB}(2-12.4$ $\mathrm{GHz}) ;< \pm 2 \mathrm{~dB}(12.4-18 \mathrm{GHz})$.
Weight: net, $16 \mathrm{lbs}(7,3 \mathrm{~kg}$); shipping, $20 \mathrm{lbs}(9,1 \mathrm{~kg})$.
Dimensions: 163/4" wide, 3-25/32" high, 183/8" deep (425 x $96 \times 467 \mathrm{~mm}$).
Price: 8701 A, $\$ 3850$; Option 001, add $\$ 200$.

8404A Power Meter Leveling Amplifier

The 8404A Leveling Amplifier is used to level the 86908 Sweeper when a power meter is used as the RF detector. When the recorder output of the power meter ($431 \mathrm{~B} / \mathrm{C}$ or $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$) is connected to the 8404 A Leveling Ampli. fer and the ourput of the 8404 A connected to the external AM input of the $8690 \mathrm{~B}, \pm 0.05 \mathrm{~dB}$ or less variation in leveled output can be expected.
Price: Model 8404A, \$395.

Leveled High-Power Sweep Oscillators
The $8322 \mathrm{~A} / \mathrm{B}$ Series leveled high-power sweep oscillator systems provide 750 mW broadband or 1 watt narrow band in four bands from 1 GHz to 12.4 GHz . Flatness is ± 0.3 dB from 1.0 to 8.0 GHz and $\pm 1.0 \mathrm{~dB}$ from 8.0 to 12.4 GHz . These systems are complete with solid state or BWO sweeper, Hewlett-Packard traveling wave amplifier, bandpass filter (8430A Series), directional detector (780 Series) and needed cables.

8320A, 8321A, and 8324A Stabilized Sweep Oscillator Systems

Stabilized Sweep Oscillator Systems are phase-locked systems which increase the frequency stability of the microwave sweeper for more sophisticated microwave applications such as narrow-band receiver or filter tests, parametric amplifies pumps or Doppler system sources. Other applications include reflectometers, microwave spectroscopy and radio astronomy. CW stabilized systems are available from . 1 to 40 GHz .

Complete specifications or data on these systems is available on request from Hewlett-Packard. Stabilized swept sys. tems are available on special order.

Selected Specifications

Stabilized mode: CW only.
Frequency range: $0.5-12.4 \mathrm{GHz}$ (8320A); $12.4 \cdot 40 \mathrm{GHz}$
Waveguide (8321 A); $0.5 \cdot 4 \mathrm{GHz}$ (8324A).
Stability: $\leq 5 \times 10^{-7} / \mathrm{sec}, \leq 1 \times 10^{-5} / \mathrm{hr}$.
Residual $F M$: $\leq 5 \times 10^{-7}$ rms.
Dimensions: $15^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $18^{\prime \prime}$ deep (approximately).
Price: $\$ 7,500$ to $\$ 16,000$ depending on band.

The Model 11531A Test Unit facilitates 8690B Sweep Oscillator calibration. The unit plugs into the 8690 B like an RF unit. Calibration voltages for sweep range amplitude and end points (all sweep modes) as well as marker calibration, BWO calibration, Blanking and Pen lift are sampled and made available at the Model 11531A front panel output for fast, accurate calibration.
Prlce: Model 11531A, \$350.

8457A Microwave Synthesizer, 8-40 GHz
The 8457A Programmable Microwave Synthesizer System offers today's user the utmost in frequency stability, operating simplicity and systems compatibility. Typical areas of application include automatic rest systems, CW/Doppler radar, telecommunications, secure communications, narrowband filter and receiver testing, anechoic chamber evaluations, radio and radar astronomy, MRR and EPR analytical spectroscopy. Complete specifications and options available on request.
Price: Model 8457A, $\$ 21,000$ to $\$ 26,000$ depending on frequency range and options ordered.

8709A Synchronizer

The 8709A Synchronizer features automatic synchronization and side-band cancellation; the lock points are spaced by the reference oscillator frequency ($240-400 \mathrm{MHz}$). This eliminates ambiguities in achieving phase-lock and identifying harmonic lock numbers.

Specifications, 8709A

lnput frequency: 20 MHz .
Sensitivity: -65 dBm .
Minimum output voltage
High level: +12.0 to -12.0 V dc .
Low level: +0.8 to -0.8 V dc .
Weight: net, 12 lbs ($5,4 \mathrm{~kg}$); shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg}$).
Price: HP 8709A, 5995.

Pulse and square wave generators are most often used with an oscilloscope as the measuring device. Waveform shapes as seen by the oscilloscope, either at the output or at pertinent points within a system under test provide both qualita. tive and quantitative evaluations of sysrem or device performance.

Square waves or pulses

The fundamental difference between pulse and square wave generators concerns the signal dury cycle. Square wave generators have equal "on" and "off" periods, this equality being retained as the repetition rate is varied. The duration of a pulse generator "on" period, on the other hand, is independent of pulse repetition rate. The duty cycle of a pulse generator can be made quite low so that these instruments are generally able to supply more porver during the "on" pesiod than square wave generarors. The HP Model 214A, for instance, supplies up to 200 watts in its output pulse.
Short pulses reduce power dissipation in the component or system under test. For example, measurements of transistor gain are made with pulses shoct enough to prevent junction heating and the consequent effect of heat on transistor gain.

Square wave generators are used where the low-frequency characteristics of a system are important, such as in the testing of audio systems. Square wraves also are preferable to short pulses if the transient response of a system requires some time to settle down.

Pulse generators

In the selection of a pulse generator, the quality of the ourput pulse is of primary importance. High-quality test pulses insure that degradation of the displayed pulse may be attributed to the test circuit alone.

Figure 1. Carofully controlled pulse shades insure accurate measurements.

The pertinent chacacteristics of a test pulse, shown in Figure 2, are controlled and specified accurately in Hewlett-Pack. ard pulse generators. Rise and fall times should be significantly faster than the circuits or systems to be cested. Variable rise time and fall time, available in HP 1900 pulse system. HP Models 8002A, $8007 \mathrm{~A}, 8012 \mathrm{~A}$, and 8005 A , are useful for testing over a wide range of operating conditions.
Any overshoot, ringing, and sag in the test pulse should be known, so as not to be confused with similar phenomena caused by the test circuit.
The range of pulse width control should be broad enough to fuliy explore the range of operation of a circuit. Narrow pulse widths are useful in determining the minimum trigger energy required by some circuits.

Maximum pulse amplitude is of prime concern if appreciable input power is required by the tested circuit, such as a magnetic core memory. At the same time, the attenuation range should be broad enough to prevent overdriving the test circuits, as well as to simulate actual circuit operating conditions.
The range of pulse repetition rates is of concern if the tested circuits can operate only within a certain range of pulse rates, or if a variation in the rate is needed.

Triggering

The rigger requirements for synchronizing a pulse generator should be evaluated in light of the triggers available in anticipated measurement set-ups. Most Hewlett-Packard pulse generators have versatile trigger circuits similar to oscitloscopes. These circuits synchronize on most x aveforms of more than l V am. plitude.

Hewlett-Packard pulse generators also supply fast rise outpur triggers for opera. tion of external equipment. The ourput rriggers may be timed to occur either before or after the main output pulse.

Source impedance

Generator source impedance is an important consideration in fast pulse sys. tems. This is because a generator which has a source impedance matched to the connecting cable will absorb reflections resulting from impedance mismatches in the external system. Without this match, reflections would be re-reflected by the generator, resulting in spurious pulses or perturbations on the main pulse.

DC coupling of the output circuit is necessary when retention of de bias levels in the test circuit is desired in spite of variations in pulse width, pulse ampli. tude, or repetition rate.

Applications of pulse and square wave generators

Pulse generators with fast risetimes are widely used in the development of digital circuits. Teamed with a fast oscil. loscope, these generators enable evalua. tion of transistor and diode switching times. Very fast rise time pulse genera. tors used with fast oscilloscopes also can measure the stray inductances and capacitance of components.
Variable rise and fall time pulses are invaluable for testing devices whose output changes with rise and fall times, such as magnetic memories. Variable rcansition time pulses are useful in check. ing logic circuits where the input signal characteristics musr be carefully specified.
Pulse generators are used as modulators for klystrons and other rf sources to obtain high peak power while maintain. ing low average power.

Pulse generators also are used for im. pulse testing. A very short pulse is rich in harmonic frequency components, so that impulse testing amounts to simul. taneous frequency response testing of components or systems.

Figure 2. Test pulse description in terms of primary characteristics.
Test of linear systems with pulse or square wave generators and oscilloscopes are dynamic tests which quickly analyze system performance.
Hewlett-Packard designs pulse genera. tors with fast rise times (fixed or variable), matched source impedance, flexible
pulse width and amplitude control, and versatile triggering capabilities required by a wide range of measurements. Par. ticular attention has been paid to the quality of the output pulse, with all aspects of pulse shape carefully controlled and specified in detail.

Plug-in pulse generator

The 1900 systern provides the optimum in performance at minimum cost by allowing you to select a pulse generator that will control oniy the pulse parameters required for a particular application. The complecely specifed highquality rest pulses provide accurate, dependable tests of circuits and componenis, Anothes fearure is built-in shielding that reduces electro-magnetic radia. tion and conduction.

Flexibility and compatibility are achieved by having all pulse generator module circuits contained in a plug-in. Mainframes only contain the power supplies and, if desired, optional programming wiring. Plug-in desiga also provides the equivalent of two or more pulse generators, in laboratory applications, by simply changing plug-ins in a mainframe. In system applications, plug.ins can be selecred to fit the exact test requirements and in the event of a malfunction, system downtime is reduced by changing plug. ins instead of the complete pulse genecator. This Aexibility is illustrated by the block diagram in figure 3 .

Optional programming

All major functions in the 1000 system are designed for remote analog or digital

Figure 3. 1900 System Block Diagrem.
programming, Analog programming pro. vides semi-automatic testing of components or equipment that require several different repeatable pulse waveforms. Digital programming is provided by the 69365 multiprogrammer which allows control of a large number of pulse parameters with a single, 16 bit parallel computer word. This provides complete control of pulse parameters in a fully automatic rest system at minimum cost.

Dedicated pulse generators

The versatile 8000 series pulse generators provide a wide selection of pulse parameter control and repetition rates to meer your testing requirements at the lowest possible cost. These pulse genera. tors offer fixed or variable transition times, maximum rep rates of $10,50,100$, and 200 MHz . fixed and variable delays, and many other feasures.

For digital applications, the 8006 A word generator provides two 16 -bit words or a single 32-bit word. With this versatility in outpur formats, digital
equipment can be fully exercised during design or checkout.

The range of repetition rates in the variable rise-and-fall-time models enable testing of circuits and components under actual operating conditions rather than conditions limited by the pulse generator. Also, rise and fall times can be adjusted to simulate a function generator, providing triangular, sawtooth, and erapezoidal shapes as well as pulses and square waves.

Fixed transition time pulsers are also available for checking fast switching speeds. Long pulse durations (some to 3 seconds) in these pulse generators make them ideal for checking analog devices such as wideband amplifiers, filters, and other linear devices.

For complex waveforms, the 8010A dual-channel pulse generator provides two separate pulse trains with independent control of all pulse parameters ex. cept rep rate. The two channels may aiso be combined without loss of amplitude to form pulses of a lmost any shape.

Models $8007 \mathrm{~A}(100 \mathrm{MHz}$) and 8008 A (200 MHz) will fill a design engineer's requirements in developing and resting high-speed digital circuits for computers, communications, telemetry, and many other applications. To further increase the usefulness of these pulse generators, they can be operated as a pulse shaper for RZ or NRZ formats which will make them compatible with technology for years to come.

Pulse Generator Selection Chart

TYPE	gQuare wave		PULSESENERATOFS												dioital	
Modes No.	2118	2214	214A	0602A	8088A	109A	J0asa	10074	8008A	abios	80124	EOM 8 A	1806**	1900**	B0ABA	1800*
Max. Rap Rate (MHz)	10/1	10	1	10	10	10	10	100	200	10	50	50	25	125	10	50
Gated Output			-	-	-	-	-	-	-	-	-	-	-	-		
xt Tripger			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Delay	Fixed		Var	fixed	fixed	Var	Vor		Var							
Oulput Vinto 50n	-5/-30	+5	± 100	${ }^{4} 5$	5	± 5	5	± 5	4	5	هo 5	5	* 50	- 5	5	
Simullaneous Outpur	-5				+5		+5		+. -	+, -		+. -				
Rise Time (ns)	5/70	10	15	$10-25$	5	1	$\begin{aligned} & 10{ }_{2}^{5} \\ & 10 \\ & 58 \end{aligned}$	$\begin{aligned} & 2.5 t^{2} \\ & 250{ }_{\mu} \mathrm{S} \end{aligned}$	<1	$\begin{gathered} 10 \text { to } \\ 15 \end{gathered}$	$\begin{gathered} 5 \mathrm{ko} \\ 0.55 \end{gathered}$	3.5	$\begin{aligned} & 7 \text { to } \\ & 1 \mathrm{~ms} \end{aligned}$	<2	10	
Double Pulse			-			-	-	-	-	-			-	-		
Offset (V into $50 \times 3)$						- 2	± 2	± 2.5	± 2	± 2	$=2.5$	$\begin{array}{r} -5,+1 \\ +5 .-1 \end{array}$	± 3	± 5		
Oleital Formatting															$\begin{aligned} & \text { iwo } 16 . \\ & \text { ol one } \\ & 32-\text { bit } \\ & \text { word } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 16. bil } \\ & \text { word } \\ & \text { HAGen } \end{aligned}$
82/NR2 Formats (externa dnput, word, PaBS, or bit efror detection)								-	-		-	\bullet	\bullet	\bullet	-	-
Price	\$450	5225	\$975	\$730	\$490	\$825	51100	\$1600	on reg.	\$1925	\$875	\$625	*	-	\$1200	*

[^43]
SIGNAL SOURCES

WORD GENERATOR
Two channel binary waveform generator Model 8006A

The 8006 A generates serial digital words of variable length at clock rates up to 10 MHz . An easy selection of two 16 bit words is available. A single action puts the two 16 bit words in series to provide a 32 bit word at each output. Selectable operating modes include positive return-to-zero (RZ) format, positive and negative non-return-to-zero (NRZ) format, manual or automatic word cycling, complementary output signals, and remote programming of the data content. The remote programming feature allows conversion of parallel words to serial words. Two outputs provide trigger pulses coincident with the first and the last bit.

Additionally, a pseudo-random binary sequence variable from 7 to 65535 bits can be obtained from channel A output, with the inverted sequence available at channel \mathbf{B}.

Specifications

Word generation: one 4 to 32 bit word (only even number of bits) or two 2 to 16 bit words.
Word content: independently ser for both words by front panel switches or remote programming (parallel data input). Complement of each word selecrable by front panel switches, WORD A. WORD A, WORD B. WORD E.
Word cycling: continuous or by cycle command (external trigger or manual).
Bit rate: internal, 10 Hz to 10 MHz , four ranges, continuous ad. justment within ranges. Manual or external clock 0 to 10 MHz .
Reset: manual reset of word outputs to bit 1 in AUTO CYCLE mode and to word pause in SINGLE CYCLE mode.
Word format: + RZ/ +NRZ/-NRZ selectable for each word outpur. Positive oupputs have current sink capability to drive integrated circuits (TTL/DTL).

Synch outputs: trigger pulses corresponding to the first bit (leading edge) and last bit (trailing edge).
Pseudo-random sequence generation PRN: provides a linear shift register sequence at channel 1 output and the inverted sequence at channel B output. Maximum bit rate is 9 MHz .
Sequence length: variable from 7 to 65535 bits.
Trigger pulse: selectable for each bit in sequence.

Interface:

Clock input:
Repetition rate: 0 to 10 MHz . Amplitude: $> \pm 2 \mathrm{~V},< \pm 10$ V.

Width: >15 ns at ± 1 V. Input impedance: $>500 \Omega$.
Cycle command input:
Minimum period: word length plus 100 ns . Amplitude $>+2$ $\mathrm{V},<+10 \mathrm{~V}$.
Width: $>15 \mathrm{~ns}$, at $\perp \mathrm{V}$. Input impedance: $>500 \Omega$.
External data inputs; no storage capability for programmed dara. Low state: contact closure, saturated DTL or voltage source (TTL) $>0 \mathrm{~V},<+0.8 \mathrm{~V}$.
High state: open, of DTL or voltage source (TTL) $>+2.4$ $\mathrm{V},<+5 \mathrm{~V}$.
Synch outputs:
Amplitude: $>+2 \mathrm{~V}$ across 50Ω.
Width: approx. 40 ns. Output impedance: 50Ω.
Word outputs:
Positlue NRZ, RZ: high: +2.5 V across 50Ω, source impedance s0ת. Low: $\geq-0.3 \mathrm{~V}, \leq+0.3 \mathrm{~V}$, source impedance approx. on. Current sink capability 80 mA maximum.
RZ pulse width: approx. is ns.
Negative NRZ: high: 0 V . low: -5 V across 50 R , source impedance 50Ω.
Transition times: <10 ns.

General

Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V}+10 \% /-15 \%$, 48 Hz to $440 \mathrm{~Hz}, 59 \mathrm{~W}$ Weight: net, $131 / 4 \mathrm{lbs}$ (6 kg).
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $1314^{\prime \prime}$ deep ($425,5 \times$ $88,2 \times 337 \mathrm{~mm}$).
Price: Model 8006A, $\$ 1200$
Option 001: rear panel clock output. Amplinde approx. 2 V across 50Ω. Source impedance approx. $50 n$. Pulse width approx. 30 ns. Price: add $\$ 30$.

PULSE GENERATORS
 Maximum repetition rate 10 MHz Modeis 8002A, 8003A, 8004A

SIGNAL SOURCES

The Hewlett-Packard 8002A generates pulses with variable transition times. All pulse parameters are variable over extremely wide ranges. Indeed, the 8002 A is a function generator capable of delivering triangular, sawtooth and trapezoidal shapes as well as pulses and square waves.

Either positive or negative ourput signals can be selected, the source impedance is a constant 50Ω. Output amplitude is continuously adjustable from 0.02 to 5 volts and can be doubled by switching off the internal 50 n load. The output is protected against damage from a short circuit,

The generator can be triggered externally with sine waves or pulses of either polarity. A trigger output signal is also available.

The 8003 A is a highly flexible dual output general-purpose pulse generator, with fixed transition times of 5 ns ; its characteristics are similar to those of the 8002 A .

Remote programming of repetition rate, pulse widht, and amplitude is offered as an option for the 8003A, making it suitable for use in automatic and semi-automatic test systems.

Specifications

Source impedance: 8002 A : $50 \Omega \pm 10 \%$. 8003 A : $50 \Omega ~=3 \%$ shunted by typ. 20 pF .
Puise characteristics (50Ω source and load impedance):
Transition times:
8002A: 10 ns to $2 \mathrm{~s}, 6$ ranges, ranges are common for both transition times, two verniers allow independent control of leading and trailing edge.
8003A: <5 ns
Preshoot, overshoot, ringing: $<5 \%$ of pulse amplitude
Linearity: 8002 A : for transition times $>20 \mathrm{~ns}$, maximum amplitude deviation from a straight line between the 10 and 90% points is less than 4% of pulse amplitade

Amplitude: 5 V max. (10 V across an open circuit). Output circuit protected, cannot be damaged by shorting. Seven-step attenuator reduces output voltage to 0.05 V (positive and negative output independent on 8003 A).
Polarity: $8002 \mathrm{~A}:+$ or - selectable. $8003 \mathrm{~A}:+$ and - simultaneously within Sns
Pulse width: 30 ns to 3 s in 5 ranges
Maximum duty cycle: $>90 \%$ from $0.3 \mathrm{~Hz}-1 \mathrm{MHz} .>50 \%$ from $1 \mathrm{MHz} \cdot 10 \mathrm{MHz}$
Delay: 8002A: 180 ns or 35 ns fixed delay between trigger and pulse. 8003A: 15 ns or 10 ns delay between Trigger Output and both Pulse Outpurs.
Repetition rate and trigger:
Free running: 0.3 Hz to $10 \mathrm{MHz}, 5$ ranges.
Manual: pushbutton for single pulse.
Trigger input: sine waves 2 VP-p or pulses of either polarity, $>1 \mathrm{~V}$ up to 10 MHz .
Input impedance: approximately $1 \mathrm{~K} \Omega$, de coupled.
External trigger delay: approximately 35 ns berween leading edge of external input pulse and the lending edge of trigger nuspat pulse.
Trigger output pulse (suitable for triggering another Model 8002A or 8003A): $>+2 \mathrm{~V}$ across 50Ω, width $15 \mathrm{~ns} \pm 5 \mathrm{~ns}$
Synchronous gating: gating signal turns genetaror "on". last pulse is completed even if gate ends during the pulse
Gate input: -2 V to -20 V enabling.
Input impedance: approximately $1 \mathrm{k} \Omega$, dc coupled.

General

Power: 115 or $230 \mathrm{~V}+10 \%,-15 \%, 50 \mathrm{~Hz} .400 \mathrm{~Hz}, 40 \mathrm{~W}$ (8002A), 30 W (8003A).
Dimensions: $6.17 / 32^{\prime \prime}$ high, $7.25 / 32^{\prime \prime}$ wide, $11^{\prime \prime}$ deep (166×190 $\times 279 \mathrm{~mm}$).
Weight: net, 9 tbs (4 kg) ; shipping, $11 \mathrm{lbs}(5 \mathrm{~kg}$).
Price: Model 8002A: \$730. Model 8003A: \$490.
Option 001 (8003 A only): remote pregramming. Ranges: rep. rate, width by contact closure to ground. All verniers: by vaiue of external resistor. Add 570.

SIGNAL SOURCES rantmped

Pulse Generators

Models 8004A, 8010A

8004A pulse generator
The 8004 A generates pulses with extremely fast transition times. Pulse width is variable over a wide range. The variable pulse delay can be reduced to zera. A double pulse mode provides convenient test signals for logic and memory circuits. DC offset permits the pulse baseline level to be set up to $\pm 2 \mathrm{~V}$ of ground independenr of the setting of the pulse amplitude controls.

Specifications

Pulse characteristics (50n source and load impedance): Transition times: <1.5 ns.

Preshoot, overshoot, ringing: < 3% of pulse amplitudc.
Amplitude: s V max. seven-step attenuator reduces output to 0.05 V : continuous adjustment between steps reduces oupput to $<0.02 \mathrm{~V}$. Cheput shortcircuit prool.
Polarity: + or - selectable.
Source impedance: son shunted by typ. 10 pF .
DC offset: $\pm 2 \mathrm{~V}$ across 50Ω load; independent of actevator and vernier settings; can be switched off.
Pulse whth: 0 to 1 ms in six ranges, Vemier provides conkinuous adjustratent within ranges.
Maximum duty cycle: $>30 \%$ from 100 Hz to $1 \mathrm{MHz} \gg 25 \%$ from 1 to 10 MHz .
Width jitter: $<0.1 \%$ on any widu sciting, plus 50 ps .
Pulse delay (with respect to trigger output): 0 to 1 ms in 5 ranges; continuous adjustment wiohin ranges.
Delay jitter: $<0.2 \%$ on any delay setting.
Repetition rate and trigger: same as 8005A except:
Free running: repetition rate: 100 Hz to 10 MHz , five ranges. Vemier provides continuous adjustment.
External triggering: dilay, approx. 125 ns benveen erigger input and trigger outpur. May be reduced to approx. 35 as (slide switch on board).
Trigger output width: $15 \mathrm{~ns} \pm 10 \mathrm{~ns}$.
Gating: same as 8005A except no A / B gate.

General

Power: 115 or $230 \mathrm{~V} .+10 \%,-15 \%, 50$ to $400 \mathrm{~Hz}, 35 \mathrm{~W}$.
Welght; net 7 ib (3,5 kg); shipping 9 lb ($4,5 \mathrm{~kg}$).
Dimensions: $7 / 4^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($19 \hat{\jmath} \times 165 \times 279$).
Price: \$825.

8010A

PULSE GENERATORS Two channels for complex waveforms Models 8010A, 8005A

 SIGNAL SOURCES
8010A pulse generator

The Model 8010A Pulse Generator offers all the advantages of the 8005 A plus additional fearures. The 8010 A comprises two completely separate channels with only the repetition rate common to both. Pulse delay, width, transition times, amplitude, and DC-offset controls are indepen-
dent for each channel. Most front panel controls are calibrated.

The polarity of each output can be selected individually, Complex wave shapes, of the order shown in Figure 1 are generated by Channels A and B together with the 8010A's combining capabilities. Both channels can also be operated in a square wave mode.

Flgure 1. A selection of waveforms showing single and combined oulputs.
Specifications

Pulse characteristles (with 50 r load impedance):
Transltion tlmes: sep. outputs: <10 ns to 1 s , eight ranges; ranges are common for leading and trailing edge. Independent verniers provide separate control of leading and trailing edge within each range up to a max. ratio of $1: 10$.
Common outputs: <12 as to 1 s .
Accuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale $\pm 4 \mathrm{~ns}$.
Linearity: for transition time $>30 \mathrm{~ns}$ maximum amplitude deviation from a straight line between the 10% and 90% points is less than 4% of pulse amplitudes.
Overshoot and ringing: $<5 \%$ of pulse amplitude.
Pulse width (A and B): $<20 \mathrm{~ns}$ to 1 s eight ranges, continuous adjustment within ranges.
Accuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale ± 4 ns.
Maximum duty cycle: $>90 \%$ for repetition rates from 1 Hz to $1 \mathrm{MHz} .>50 \%$ from 1 to 10 MHz .
Width ilter: <0.1\% on any width setting.
Maximum output: 5 V sep. Combined outputs: 10 V chan. nel B (channel A no output).
Attenuator: seven-step atrenuator reduces output to 0.05 V , continuous adjustment between steps reduces minimum output to 0.02 V .
Pulse polarity: A and B independently sclectable.
Source impedance: $50 \Omega \pm 10 \%$ shunted by typ. 20 pF .
DC-offset: $\pm 2 \mathrm{~V}$ across $50 n$ load. Independent of attenuator and vernier setting; can be switched off.
Pulse delay: (A and B) 50 ns to I s delay with respect to trigger output. Eight ranges; continuous adjustment within ranges.
Accuracy: $\pm 15 \%$ of setting.
Delay Jitter: $<0.1 \%$ on any delay setting.

Repetitlon rate and trigger:
Free running: $1 \mathrm{~Hz}-10 \mathrm{MHz}$, seven ranges, continuous adjustment within canges.
Aceuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale.
Perlod jitter: < 0.1%.
Square wave: $1 \mathrm{~Hz}-10 \mathrm{MHz}$ output symmetrical to ground.
Double pulse: channel A and B independently selectable.

External triggering:

Rep. rate: 0 to 10 MHz . (For square wave output frequency divided by a factor of 2).
Trigger input: sine whaves 1 V p-p. Pulses $0.5 \mathrm{~V},>20 \mathrm{n}$. Input impedance: $1.0 \mathrm{k} \Omega$.
Delay: approximately 30 ns between trigger input and trigger output.
Manual: pushbutton for single pulse.
Sep. triggering for both channels: $+2 \mathrm{~V},>50 \mathrm{~ns}$. Input impedance 50Ω (inputs on rear panel).
Trigger output:
Amplitude: $>+2 \mathrm{~V}$ across 50 . $15 \mathrm{~ns} \pm 10 \mathrm{~ns}$.
Impedance: 50 .
Synchronous gating: gating signal turns rate generator "on".
Asynchronous gating: gating signal turns the output pulse "on". Trigger output always available.
Gate inputs: -2 V to -10 V enabling.

General

Power: 115 or $230 \mathrm{~V}+10 \%,-15 \%$, 50 to 400 Hz 200 W . Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425 x $184 \times 466 \mathrm{~mm}$).
Price: $\$ 1925$

PULSE GENERATORS
Two channels for complex waveforms
Models 8010A, 8005A

8005A

8005A pulse generator

With adjustable rise and fall times, variable width and delay features, simultaneous positive and negative outputs that can be combined into a single complex signal, the Model 8005A gives complete control of the output waveform. Both output amplitudes are separately adjustable and dc-offset controls allow independent setting of the baseline. Versatile gating possibilities further enhance the utility of the 8005 A . Signals of great complexity can be generated using the A / B delay mode, as illustrated in Figure 1.

Specifications

Pulse characteristlcs (50n source and losd impedance):
Transitlon times: separare outputs: <10 ns to 2 s , six ranges (common for both transifion times), independent verniers for leading and trailing edge.
Common oufputs: $<12 \mathrm{~ns}$ to 2 s .
Llneaxity: for transition times >30 ns, maximum amplitude deviation from a straight line between 10 and 90% points is $\leq 4 \%$ of pulse amplirude.
Preshoot, overshoat, ringing: < 5% of pulse amplirude.
Pulse width: 30 ns 103 s in 6 ke ranges; continuous adjustment within ranges.

Figure 1. Separate and combined non-simultaneous outputs.

Maximum duty cycle: $>90 \%$ for repetition rates from 0.3 Hz to $1 \mathrm{MHz}:>S 0 \%$ from 1 to 10 MHz .
Width jitter: $<0.1 \%$ on any width setting.
Amplitude: 5 V maximum (10 V across an open circuit); sevenstep attenuzior reduces outpue to 0.05 V ; continuous adjustment; minimum outpur 0.02 V .
Output mode: Sep: + and - pulses available simultaneously or delayed with respect to each other. Delay is variable.
Source impedance: s $0 \Omega \pm 10 \%$ shunted by 20 pF .
DC-offset: $\pm 2 \mathrm{~V}$ across sos load; can be switched off.
Pulse delay: 100 ns to 3 with respect to trigger ourput; five ranges; continuous adjusement within ranges. Delay fitter: $<0.1 \%$ on any setting.

Repetition rate and trigger:

Free running: 0.3 Hz to 10 MHz , five ranges; continuous ad. justment within ranges. Period iitter: $<0.1 \%$.
Double pulse: increases max. rate 1020 MHz .
External triggerlng: 0 to 10 MHz .
Sensitivity: sine waves 2 V p-p; pulses 1 V peak, $>15 \mathrm{~ns}$; maximum input $\pm 10 \mathrm{~V}$. Delay: approx. 35 ns between trig. ger input and trigger output. Inpul impedance: approx. I $k \Omega$, dc-coupled.
Manual: pushbutton for single pulse.
Trigger output: amplitude $>+2 \mathrm{~V}$ across $50 \Omega, 15 \mathrm{~ns} \pm 5$ ns wide.
Gating:
Synchronous gating: gating signal turns generator "on". Last pulse is completed even if gate ends during pulse.
Asynchronous gating: gating signal rurns ourpur pulse "on". Trigger output always available; last pulse ends rith gate.
Gate A / B : independent gating signal for each output.
Gate input: -2 V to -20 V enabling.
input impedance: approx. $1 \mathrm{k} \Omega$, dc-coupled.

General

Power: 115 or $230 \mathrm{~V},+10 \%,-15 \%$, 50 to $400 \mathrm{~Hz}, 68 \mathrm{~W}$.
Weight: net $16 \mathrm{lb}(7 \mathrm{~kg})$; shipping $20 \mathrm{lb}(9 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 \times 140 \times$ $336 \mathrm{~mm})$.
Price: $\$ 1100$.

PULSE GENERATOR Repetition rate up to 100 MHz
 Model 8007A

SIGNAL SOURCES

8007A

The 8007 A is a versatile pulse generator with very fast variable transition times of 2.5 ns min.

The output can be set to positive or negative polarity, complement or symmetrical to ground, square waves can be simulated by adjusting pulse width and transition time. Variable $D C$-offset of $\pm 2.5 \mathrm{~V}$ is also available.

In "External Width" mode drive input and output pulse have equal width. Transition times and amplitude of the output pulse can be set by the front panel controls. This
mode is useful for shaping NRZ signals, as the width information is passed on to the output pulse unchanged.
The "Width Trigger" mode is suitable for shaping RZ signals. Delay, width, transition times and amplitude are determined by the front panel controls.

External triggering and synchronous gating are provided. The trigger level is adjustable for all externally controlled modes with the slope polarity selectable. This is very useful to avoid mulfunction caused by noise and ringing on the external trigger signal.

Specifications

Pulse characteristics (50, source and load impedance):
Transition times: $<2.5 \mathrm{~ns}$ to $250 \mu \mathrm{~s}$, three ranges (common for both rransition tirmes). Independent verniers for adjusting leading and trailing edge within each range up to maximum ratios of 1:50 or 50:1.
Linearity: for transition times $>20 \mathrm{~ns}$; maximum amplitude deriation from a straight line between 10% and 90% points $\leq 5 \%$ of pulse ampititude.
Preshoot, overshoot, ringing: < 5% of pulse amplitude.
Pulse width: <5 ns to 50 ms in five ranges. Vemier provides continuous adjustment within ranges.
Width jitter: $<0.1 \%$ on any wideh setting.
Maximum duty cycle: normal $>50 \%$; complementary approx. 100%.
Amplitude: 5 V max. (10 V across an open circuit); four-step attenuator reduces output voltage to 0.5 V . Vernier provides continuous ddjusiment berween steps and reduces output to 0.2 V. Pulse can be switched off for offset adjustment.

Pulse output: + or - polarity selectable: normal, complement. or symmetrical to ground.
Source impedance: son $\pm 4 \Omega$ shunted by typ. 10 pF .
DC-offset: $\pm 2.5 \mathrm{~V}$ across son load. Independent of amplitude setting, can be switched off.
Pulse delay: <30 ns to 50 ms with respeci to trigger output. Fire ranges, with continuous adjusument within ranges.
Delay jitter: < 0.1% on any delay setting.
Repetition rate and trigger: 10 Hz to 100 MHz in five ranges.
Continuous adjustment within ranges.

Period jitter: < 0.1%.
Double pulse: arailable only up to pulse rate setring of 50 MHz . representing an ouput pulse rate of 100 MHz .
Trigger output: $>+1 \mathrm{~V}$ across $50 \Omega .4 \mathrm{~ns} \pm 2$ ns wide.
External triggering: 0 to 100 MHz .
Delay: approximately is ns between trigger input and trigger output.
Maneal: front panel pushburion for single pulse,
External width and Width trigger:
External width: oulput pulse width deiermined by width of drive input.
Width trigger: external drive input switched to the width generator. Pulse widith determined by front panel width setting.
Rate generator provides trigger pulses independent of drive input.
Synchronous gating: gating signal turns generator "on". Last pulse is completed even if gate ends during pulse.
External input: impedance: $50 n, \mathrm{DC}$-coupled. Max. input: $\pm 5 \mathrm{~V}$. Level: adjustable from +1 V to -1 V . Polarity: + or - .
Sensitivity: sine waves I V ; pulses $\pm 0.5 \mathrm{~V}$.

General

Operating temperature range: $0^{\circ} \mathrm{C}$ co $+59^{\circ} \mathrm{C}$.
Power requirements: 115 or $230 \mathrm{~V}+10 \%,-15 \%, 48$ to 440 Hz , 100 VA (maximurn)
Weight: net $17.6 \mathrm{lb}(8 \mathrm{~kg})$, shipping $19.8 \mathrm{lb}(9 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 \times 140 \times 344$ mm).
Price: $\$ 1600$.

8012A

The 8012A and the 8013A are extremely fexible pulse generators with repetition rate, delay, width, amplitude and DC offser vaciable over very wide ranges.

The 8012A has one output and offers independently variable transition times, ranging from 5 ns to 0.5 s .

The 8013A has two outputs, providing simultaneous pulses of opposite polarity. Transition times are fixed at 3.5 ns.

Both instruments feature external triggering, synchronous gating, square wave mode and pulse shaping capability for RZ and NRZ signals.

Specifications

Pulse characterlstics (50 source and load impedance):
Transition times: 8012A: 5 ns -0.5 s in four ranges. Ranges common for both transition times, verniers provide separate control of leading and railing edge within each range up to maximum ratios of $100: 1$ or $1: 100.8013 \mathrm{~A}: 3.5$ ns fixed.
Linearlty: (8012 A) for transition limes >30 ns maximum devia. tion from a straight line between the 10% and 90% points is s\% of pulse amplitude.
Preshoot, overshoot, ringing: $<5 \%$ of pulse amplitude.
Pulse width: <10 ns to 1 s in four ranges. Vernier provides continuous adjusement within ranges.
Width jitter: $<0.1 \%$ - 50 ps on any width serting.
Maximum duty cycle: $>75 \%$ from 1 Hz to 10 MHz , decreasing to $>40 \%$ at 50 MHz .
Maximum output: 5 V across 50Ω. (10 V across open circuit). Outpui circuit protected, cannor be damaged by shorting. 8013A: internal 50Ω load may be disconnected, providing 10 V across 50 2 .
Attenuator: Four-step attenuator reduces output voltage to 0.5 V . Vernier provides continuous adjustment between steps. Minimum output 0.2 V .
Polarity: 8012 A : positive or negative selectable, 8013A: two outputs, fositive and negarive.
Source impedance: 8012 A : $50 \Omega \pm 10 \%$ shunted by typ. 20 pF . 8013A: $50 \Omega \pm 3 \%$ shunted by t'p. 20 pF .
DC offset: (across 50Ω load) $8012 \mathrm{~A}: \pm 2.5 \mathrm{~V} .8013 \mathrm{~A}$: positive output: $\div 1 \mathrm{~V}$ to -5 V , negative outpul: -1 V to -5 V . Independent of amplitude control settings, may' be switched off.
Pulse delay: $<35 \mathrm{~ns}$ to 1 s (with respect 10 trigger output), foter ranges; continuous adiustment within ranges.
Delay jitter: $<0.1 \%+50 \mathrm{ps}$ on any delay setting.
Repetition rate and trigger: 1 Hz to 50 MHz in four ranges, continuous adjustment within ranges.
Period jitter: $<0.1 \%+50 \mathrm{ps}$ on any rate setcing.
Square wave: 0.5 Hz to 25 MHz in four ranges. Duty cycle 50% $\pm 5 \%$ up to $I \mathrm{MHz}$, tolerance increases $10 \pm 15 \%$ at 25 MrHz .
Trigger output: $>+1 \mathrm{~V}$ dcross $50 \mathrm{n}, 16 \mathrm{~ns} \pm 10 \mathrm{~ns}$ wide. Suit. able for triggering another 8012 A .

External triggering: 0 to 50 MHz . For square ware output, frequency divided by factor 2.
Trigger Input: sine waves 1.5 Vp -p (aboui zero), pulses 0.8 V , either polarity, $>7 \mathrm{~ns}$. Maximum inpui $\pm 7 \mathrm{~V}$. Impedance: sos $\pm 10 \%$ de coupled.
Delay: $25 \mathrm{~ns} \pm 8$ ns between leading edge of trigger input and trigger output signals.
Marnual: pushbution for single pulse.
Gating:
Synchronous gating: gating signal turns generator "on". Last pulse is completed even if the gate ends during pulse.
Gate input: dc-coupled; voltage at open connector approx. +1.8 V. Shorting currene $\leq 12 \mathrm{~mA}$. Input impedance approx. 160 .

Gate input slgnal: voltage $>+1.5 \mathrm{~V}$ or resistor $>300 \Omega$ to ground enables rep. rate generator. Voltage $<\div 0.8 \mathrm{~V}$ or resis. tor $<150 \Omega$ disables rep, rate generator. Gate input TTL comparible.
Maximum input signal: $=5 \mathrm{~V}$
External width and RZ:
External width: output pulse width determined by width of drive inpui signal. Amplitude, transition times seleciable.
RZ mode: external drive input switched to delay generator. Period determined by period of drise input signal. Delay, amplitude width, transition times selectable.
Rep. rate generator: provides trigger output independent of excernal width input signal.
Input signal: $>+1 V_{1}>7$ ns wide. Maximum $\pm 5 \mathrm{~V}$. Imped. ance 50Ω, do coupled.

General

Operating temperature range: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V}+10 \%,-15 \%, 48$ to $440 \mathrm{~Hz}, 70$ VA max. Weight: net, $9 \mathrm{lbs}(4 \mathrm{~kg})$: shipping, $14.6 \mathrm{lbs}(6,5 \mathrm{~kg})$.
Dimensions: $7.9^{\prime \prime}$ wide, $5.6^{\prime \prime}$ high, $13^{\prime \prime} \operatorname{detp}(200 \times 142 \times 30 \mathrm{~mm})$.
Price: 8012A $\$ 875$.
8013A \$625.

PULSE GENERATOR Repetition rate up to 200 MHz , two outputs Model 8008A

SIGNAL SOURCES

The Model 8008 A is an extremely fast pulse generator with repetition rate variable from 10 Hz to 200 MHz and fixed transition times <1 ns.
The two outputs make pulse and complement available simultaneously, with selectable polariry. The maximum output amplinude of 4 V , together with the DC -offset of $\pm 2 \mathrm{~V}$ ensures compatibility with the fastest logic integrated circuits available.
This model can also be operated as pulse shaper in the same way as the 8007A pulse generator. External gating and triggering are possible; the trigger level for any external input signal can be adjusted between +1 V and -1 V .

Specifications

Puise characteristics (50Ω source and load impedance):
Transition times: <1 ns fixed.
Preshoot, overshoot, ringing: < 5% of pulse amplitude.
Pulse outputs: norma? and complement simultaneously, polarity common for both outputs, + or - selectable.
Source Impedance: $50 \Omega \pm 5 \%$ shunted by typ. 10 pF .
Amplitude: 4 V max, four-step attenuator reduces output to 0.5 V separately for each channel. Vernier common for both outputs: continuous adjustment bet ween steps, minimum output less than 0.2 V .
DC-offset: $\pm 2.0 \mathrm{~V}$ across 50Ω load. Separately adjustable for each channel. Independent of amplitude setting; can be switched off.
Pulse delay: <25 ns to 0.5 ms with respect to trigger output. Six ranges, continuous adjustment within ranges.
Delay fitter: < 0.1% on any delay setting.
Pulse width: 2.5 ns to 0.5 ms , six ranges, continuous ad. justment within ranges.
Width ilter: $<0.1 \%$ on any width setting.

Maximum duty cycle: $>50 \%$.
Repetition rate and trigger: 10 Hz to 200 MHz , six ranges, continuous adjustment within ranges.
Double pulse: to 100 MHz (simulates 200 MHz).
Perlod jither: $<0.1 \%$ on any period setting.
Trigger output: $>+1 \mathrm{~V}$ across $50 \mathrm{n}, 3 \mathrm{~ns} \pm \mathrm{I}$ ns wide.
External triggering: 0 to 200 MHz , sine waves $1 \mathrm{Vp}-\mathrm{p}$, pulses $0.5 \mathrm{~V},>2.5$ ns wide, either polarity.
Delay: approximarely 10 ns between trigger input and trigger output.
Manual: pushbutton for single pulse.
Width trigger and external width
Width trigger: external drive input switched to delay gen. erator.
External width: output pulse width determined by drive input.
Rate generator: provides trigger pulses independent of drive input.
Synehrorous gating: gating signal turns generator "on". Last pulse is completed even if gate ends during the pulse.
External input: impedance: 50Ω, de coupled. Maximum input: $\pm 10 \mathrm{~V}$.
Trigger level: adjustable from +1 V to -1 V . Slope polarity + or - selectable.
Sensitivity: at least 0.5 V .

General

Power: 115 V or $230 \mathrm{~V}+10 \%-15 \%$. Maximum 70 VA . Weight: net, $17 \mathrm{lbs}(8 \mathrm{~kg})$; shipping, $20 \mathrm{lbs}(9 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 \times$ $140 \times 336 \mathrm{~mm}$).

PLUG-IN PULSE GENERATOR
 Pulse generation with digital formatting
 Model 1900 system

1901A Malntrame

Introduction, 1900 Series

The 1900 series provides you with the optimum in performance at minimum cost by allowing you to select a pulse generator that will contzol only the pulse parameters you are interested in. The completely specified high-quality rest pulses from the 1900 series provide accurate, dependable tests of your circuits. Another feature is built-in shielding to reduce electromagnetic eadiation and conduction, which reduces interference with other instrumentation.

Model 1900 series plug-in/mainframe compatibility not only lets you select a pulse generator to fit a specific requicement but also allows you to assemble a standard or a programmable pulse system for complex pulse-digital testing or circuit design work. This fexibility and compatibility is achieved by having all pulse generator module circuits contained in the plug-in. Mainframes only contain the power supplies and, if desired, optional programming wiriog. This plug-in texibility allows easy updating or expansion at a later date if your requirements change.

1900 Puise/Digital System Plug-in Selection Chart

	Rata		Delay		Diflidj Formatting					Output Pulse Shaping				
	1905A	1006A	1908A	1910A	1925A	1927A	1928A	1930A	3934A	3915A	1917A	1920A	1921A	1922A
Max Rep Rate (MHz)	25	125	25	125	50	125	125	40	25	25	25	25	125	125
Gated Output	-	-												
Ext Trigger Input	\bullet	-												
Delay Control			Var	$\begin{gathered} 5 \mathrm{~ns} \\ \text { steps } \end{gathered}$					-					
Advance/Double Pulse			\bullet											
Oulput V into 50 S					>2	>2	>2	>2	>2	± 50	± 10	± 5	+5	-5
Risetime	5 ns	3 ns	5 ns	3 ns	4 ns	$\begin{aligned} & 7 \mathrm{~ns}- \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 7 \mathrm{~ns}- \\ & 500 \mu \mathrm{~s} \end{aligned}$	$<350 \mathrm{ps}$	$<2 \mathrm{~ns}$	$<2 \mathrm{~ns}$				
Width	10 ns	5 ns	10 ns	5 ns	R2/NR2	NR2	NRZ	RZ/NRZ	R2/NR2	$\begin{aligned} & 15 \mathrm{~ms}- \\ & 40 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~ns}- \\ & 40 \mathrm{~ms} \end{aligned}$	$\begin{gathered} 0- \\ 10 \mu \mathrm{~s} \end{gathered}$	$\begin{aligned} & 4 \mathrm{~ns}- \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~ns}- \\ & 1 \mathrm{~ms} \end{aligned}$
Constant Risetime with Amplitude Changes										-	-	-	-	\bullet
OHset (V into 50 ohnms)										± 1.5	± 2.5	± 2	± 5	± 5
Digital Formatting					$\begin{array}{\|c\|} \hline 2-16 \\ \text { Bit word } \end{array}$	$\begin{gathered} 1-8 \\ \operatorname{Fan}-\ln \end{gathered}$	$\begin{array}{c\|} \hline 1-8 \\ \text { Fan-Out } \end{array}$	PRES/Bit Error Detection	$\begin{gathered} 2-4 \\ \text { Phase } \end{gathered}$					
RZ/NRZ					-	NRZ	NRZ	-	-	RZ/NRZ	RZ/NRZ	RZ	RZ/NRZ	R2/NR2
Programmable**	0pt.	Opt.	Opt	No	Std.	No	No	Std.	Sid.	Opt.	Opt.	Opt.	Opt.	Opt.
Price	\$200	\$275	$\$ 200$	\$200	\$850	\$150	\$225	\$1200	\$775	\$1700	\$575	\$1925	\$950	\$950

[^44]
RATE GENERATORS
 25 MHz and 125 MHz rep rates
 Models 1900A, 1901A, 1905A, 1906A

Mainframe Specifications, 1900A and 1901A

Plug-in compatibility
Mechanical: mainframe compartments accept up to four quartersize plug-ins, two half-size plug-ins, or combinations of quarter. and half-size plug-ins. Blank plug-ins are required to fill unused plug-in compartments for proper plug-in cooling and reduce RFI.
Electrical: provides power for quarter- and half-size plugsins in many combinations with the following limitations.
1900A: number of plug-ins not to exceed one, 1915A: one, 1920A, two, 1921A: two, 1922A; one each 1921A and 1922A; two, 1925A; two, 1930A; or one each 1925A and 1930A.
1901A: number of plug-ins not to exceed three 1921A, three 1922A, or combinations of 1921A and 1922A not to exceed three. Model 1915A will not operate in a 1901A mainframe.
Internal interconnection of plug. Ins: mainframe contains cables 10 provide connections between plug-ins. Cable connections may be changed for any combination of plug-in interconnection. In ternal or external plug-io interconnection is selected by switches in plug-ins.

General

Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $213 / \mathrm{s}^{\prime \prime}$ deep over-all (425 x $133 \times 543 \mathrm{~mm}$): $193 / \mathrm{s}^{\prime \prime}$ (492 mm) behind rack mount.
Weight: 1900A, net $35 \mathrm{lbs}(16 \mathrm{~kg}$); shipping, $46 \mathrm{lbs}(21 \mathrm{~kg}$); 1901 A , net $28 \mathrm{lbs}(12,7 \mathrm{~kg})$; shipping, $39 \mathrm{lbs}(17,6 \mathrm{~kg})$.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $66 \mathrm{~Hz}, 300$ watts max. in 1900 A and 250 watts max. in 1901 A (varies with plug-ins).
Accessories furnished: rack mounting tabs and power cord.

Price

1900A: high powes mainframe
1901A: general purpose mainframe

Options

001: provides internal cabling and connectors from plug-ins to rear panel for digical or analog programming. Price, add \$17s.
002: non-pi-ating chassis slides writh adjustable length of 20 to 22 inches. Price, add $\$ 90$.
Accessories
Analog programming kit: provides field installation of Option 001. Price, analog programming kit (HP P/N 01900-69502), $\$ 175$.
Chassis slide kit: allows installation of non-pivoting slides with an adjustable length of 20 to 22 inches. Price, chassis slide kis (HP P/N 01900-69501), \$90.
Blank plug.lns: blank plug-ins fill unused plug.in compartments to provide proper plag-in cooling and reduce RFI. Price: Model 10481 A, quarer-size blank plug-in, $\$ 25$; Model 10482A. half-size blank plug-in, 330 .
Plug-In extender: provides access to components when servicing and calibrating an operating plug-in. Extender accommodates both quarter- and haif-size plug.ins. Price: Model 10484A plug. in extender, \$135.

Specifications, 1905A and 1906A
(Except as noted, specifications apply to both rate generators.)

Frequency
Internal: 1905A, 25 Hz to 25 MHz in 6 ranges; 1906A, 10 Hz to 125 MHz in 8 ranges. 10:1 vernier allows continuous adjust. ment over selected range.
External: 1905A, 0 to $25 \mathrm{MHz} ; 1906 \mathrm{~A}, 0$ to 125 MHz .
Period ןitter: < 0.1% of selected period.
External trigger
Amplltude: 1905 A, 0.5 V p-p min., 5 V p-p max.; 1906A, 0 to $50 \mathrm{MHz}, 0.5 \mathrm{~V}$ p-p min; 50 to 125 MHz 1.5 V p.p min. Maximum inpur, s V p-p.
Slope: positive or negative (selectable).
Trigger ievel: selectable on input waveform from 0 to $=3 \mathrm{~V}$.
Dalay: 1005A, approx 27 ns berveen extemal input and rate output: 1906A, approx 12 ns between external input and rate output.
Input Impedance: approx 50 ohms, de-coupled.

Synchronous gating

Amplitude: 1905A, -2 V gates generator on, -5 V max; 1906A, +1 V gates generator on, +5 V max.
Input impedance: approx 50 ohms, dcccoupled.

Output pulse

Impedance: approx 50 obms, dc-coupled

Amplltude: $>1.5 \mathrm{~V}$ into 50 ohms (drives :wo 1900 series plug. ins).
Rise time: 1905A, <s ns; 1906A, <3 ns.
Width: 1905A. <10 ns; 1906A, < 5 ns.

General

Weight; net, $11 / 4 \mathrm{lbs}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price
1905A: 25 MHz Rate Generator . $\$ 200$
1906A: 125 MHz Rate Generator $\$ 275$

Options

001: analog programming. Provides connector and circuit card for control of Rate Source (INT, EXT, +, 一) and puise Rate. A programming kit (HP P/N 01905-69501) is also available for field installation of Option 001. Kir price is $\$ 100$. Price: 1905A or 1906A Option 001, add $\$ 100$.
005: (1905A only) digital programming. Provides digital control of Rate Source and Pulse Rate. Refer to 6936S/6937S description or contact your Hewlett-Packard Field Enginear for more information. Price: 1905A Option 005, add $\$ 300$.

1905A

1906A

1908A

- Oto 125 MHz Rep Rate
- 5 ns to 100 ns Delay
- Delay Longer than a Pulse Period
- <10 ns Jitter

Option 001, add $\$ 100$.
005: digital programming. Provides digital control of Drive Output (Delay, Double Pulse) and Time Interval. Refer to 69365/6937S description or contact your Hewlett-Packard Field Engineer for more information. Price: 1908A Option 005, add $\$ 500$.

Accessories

Programming kit; provides field installation of Option 001.
Price: HP Part No. 01908-69501, $\$ 100$.

Specificalions, 1910A

Time interval (from Trigger Output to Drive Output)
Range: 5 ns to 100 ns in s ns increments.
Jitter: <10 ps.

Rate input

Repetition rate: 0 to 125 MHz .
Amplitude: 0 to 25 MHz : 1 V peak min., 5 V peak max. 25 MHz to 125 MHz : 1.5 V peak min, 5 V peak max.
Maximum delay after rate input (with delay control set to min.).
Trigger output: approx 5 ns .
Drive output: approx 10 ns .
Input impedance: approx 50 ohms dc-coupled.
Trigger and drive outputs
Output impedance: approx 50 ohms
Amplitude: $>1.5 \mathrm{~V}$ into 25 ohms.
Rlsetime: <3 ns.
Width: <s ns.

General

Weight: net, $21 / 2 \mathrm{lbs}(1,13 \mathrm{~kg}$); shipping, $43 / 4 \mathrm{lbs}(2,2 \mathrm{~kg}$)
Price: Model 1910A, Delay Generator, $\$ 200$.

Specifications, 1915A

Output pulse
Source impedance: 50 ohm or high impedance; self.contained 50 ohm termination may be connected or disconnected.
High Impedance output: approx 4 k ohms shunted by $<45 \mathrm{pF}$. 50 ohm output: approx 50 ohms shunted by $\angle 45 \mathrm{pF}$.
Amplitude (Short Circuit Current): 50 mA to 1 A in 4 ranges: 2.5:1 vernier allows rontinuous adjustment over each range. Vollage into external 50 ohms is $\pm 2.5 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$ with high Z source: $\pm 1.25 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ with 50 ohm source. Maximum amplirude (including offser) is $\pm 50 \mathrm{~V}$.

Pulse shape

Pulse top variations: 50 ohm source and 50 ohm load. $\pm 5 \%$ for transition times 7 ns to $20 \mathrm{~ns}, \pm 2 \%$ for transition times $>20 \mathrm{~ns}$: high impedance source and 50 ohm load, $\pm 5 \%$ for all transition times.
Transition times: 7 ns (10 as with high Z source) to 1 ms in 11 ranges ($1,2,5$ sequence); two $100: 1$ verniers provide inde. pendent control of rise- and fall-times. Transition time varia. tions over entire amplitude range (± 0.2 to ± 25 volis); $\pm 15 \%, \geq 100 \mathrm{~ns} ; \pm 40 \%, 710100 \mathrm{~ns}$.
Polarity: plus or minus. selectable.
Baseline offset: $\pm 60 \mathrm{~mA}$, maximum offset into external 50 ohms
is $\pm 1.5 \mathrm{~V}$ with 50 ohm source: $\pm 3 \mathrm{~V}$ with high Z source.

Width

Internat: ranges, 10 ns to 40 ms in 7 decade ranges (except for first range which is 10 to 40 ns); $10: 1$ vernier provides continuous adjustment over each range; width jitter, $<0.5 \%$ of selected pulse wideh.
External: provides pulse amplifier operation: output pulse width determined by width of drive input.
Duty cycle: 0 to $>90 \%$, internal width mode; 0 to 100%, external width mode.

Overload

Overload lamp lights to indicate when power detector protection circuits are turning of the outpul current to limit output power and prevent outpur transistor damage. The power delector is energized for single pulse or $<0.2 \%$ duty cycle operation for pulse widths >1 us. If single pulse or low duty cycle operation is desired, Option H1s may be ordered.

Drive Input

Repetition rate: 0 to 25 MHz .
Amplitude: 1 V peak min., I V peax max.
input Impedance: 50 ohms, dc-zoupled.
Maximum delay: (after drive input) <45 ns.

General

Weight: net, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Price: Model 1915 A Variable Transition Time Ourpur, $\$ 1700$.

Options
O01: analog programming. Proxides connecior and circuits to control width, transition time, amplitude, polariry, and offset. Price: Option 001, add $\$ 275$.
002: positive output. Provides positive-only pulse output and positive only offsec. Price: Option 002, deduct $\$ 225$.
003: negative outpue. Provides negative only pulse output and negative-only offser. Price: Option 003, deduct $\$ 225$.
004: voltage calibration. Calibration of pulse amplitude in vole. age. Price: Option 004, add $\$ 25$.

Accessories

Programming kit: provides field installation of Option 001.
Prlce: HP Part No. 01915 -69501, add 8275.

Specifications, 1920A
 Output pulse

Source resistance: 50 ohms $=5 \%$.
Amplitude: 0.5 to 5 V inco 50 ohms in three ranges; $1,2,5$ se. quence. 2.5:1 vernier provides continuous adjustment over each range. Ourput circuir cannot be damaged by shorting.
Puise shape (measured at 5 V into 50 ohms
Leading edge: risetime, <350 ps; preshoot, <1\%; overshoot and ringing, $<10 \%$ p-p: time to settle to within 3% of fat top, < 5 ns; rounding, $<5 \%$.
Trailling edge: fallime, <400 ps; preshoor, < 1% for pulse width $>5 \mathrm{~ns}$; overshoot and ringing. $<10 \% \mathrm{p} \cdot \mathrm{p}$; time to settle to within 3% of baseline, $<S$ ns except for perturbation 10.20 ns after trailing edge $< \pm 4 \%$: rounding, $<5 \%$.
Polarity: plus or minus, selectable.
Baseline offsat: plus, minus, or off; selectable, 0.2 V into 50 ohms.
Width: 0 to $10 \mu \mathrm{~s}$ in four ranges. $10: 1$ vernier provides con. tinuous adjusumens between ranges.
Width jitter: <20 ps or 0.1% whichever is greater.
Duty cycle: 0 to $>25 \%$ (0 to 20 MHz rep rate); 0 to 10% ($>20 \mathrm{MHz}$ rep rate).

Drive Input
Repetition rate: 0 to 25 MHz .
Amplitude: 1 V peak min., $\mathrm{S} V$ peak max.
Maximum delay after rate Input: approx 60 ns.
Input Impedance: 50 ohms, de-coupled.

General

Weight: net, 4 lb ($1,8 \mathrm{~kg}$); shipping, $10 \mathrm{lb}(4,5 \mathrm{~kg}$).
Price: Model 1920A, 350 ps Rise Time Output, $\$ 192 \mathrm{~s}$.

Options

001: analog programming. Provides connector and circuits to contsol width range and vernier, offet range and vernier, and amplitude vernier. Price: Option 001 , add $\$ 150$.

Specifications, 1917A

Output pulse

Source Impedance: $\mathbf{5 0}$ ohms or high \mathbf{Z}; selected with internal switch. High impedance output, approx 3 k ohms shunted by 45 pF ; 50 ohm oulpur, approx 50 ohms shunted by 45 pF .
Amplitude: (volts into 50 ohms) 0.2 to 10 V with 50 ohms source: 0 to 14 V (8 to 400 mA) with 3000 ohm source; 2.5:1 vernier proyides continuous adjustment over each range.

Pulsa shape
Pulse top variations: $\pm 9 \%$ for teansition times >7 ns,
Transition times: 7 ns to $500 \mu \mathrm{~s}$ in 5 ranges: two $50: 1$ verniers provide independent control of rise- and fall-times. Transition time vatiations over entire amplitude range (± 0.2 to +10 volts) : $\pm 15 \%, \geq 100 \mathrm{~ns} ; \pm 40 \%, 7$ to 100 ns.
Polarity: plus or minus, selectable.
Baseline offset: $\pm 2.5 \mathrm{~V}$ into extemal 50 ohms with 50 ohm source: $\pm 100 \mathrm{~mA}$ with 3000 ohm source.
Width
Internal: ranges, 10 ns to 40 ms in 7 ranges; 10:1 vernier provides continuous adjustment over each range: width jitter, $<0.25 \%$ of selected pulse width.
External: provides pulse amplifier operation; output pulse width determined by width of drive inpur.
Duty cycle: internal width mode, 65% except for 15 to 40 ns width range. 50% on is to 50 os width range; external width mode, up to 100%; limited by output pulse transition times.
Drive input
Repetition rate: 0 to 25 MHzz .
Input impedance: 50 ohms, de-coupled.
Amplitude: 1 V peak min., I V peak max.
Maximum delay after drive input: approx 35 ns .

General

Weight: net, $21 / 2 \mathrm{lbs}(1,13 \mathrm{~kg}$) ; shipping, $61 / 4 \mathrm{lbs}(2,8 \mathrm{~kg})$.
Price: Model 1917A, Variable Tinsition Time Oupur, 5575.

Options

001: analog programming. Provides connector and circuits to control Width, Transition Time, Amplitude, Polarity, and Off. set. Price: Option 001, add $\$ 275$.
005: digital programming. Provides digital control of Width, Transition Time, amplitude, Polarity, and Offset. Reíer to 6936S/6937S description or contact your Hewlett-Packard Field Engineer for more information.
Price: 1917A Option 00s, add $\$ 2000$.

Accessories

Programming kit: provides field installation of Option 001. Price: HP Part No. 01917-69501, 5275.

Specifications, 1921A/1922A

Output pulse

Source impedance: approx 50 ohms shunted by 9 pF . Reflection coefficient is typically <0.15 for incident pulses with rise times >1.5 ns.
Pulse amplltude: (volts into 50 ohms) 0.5 to 5 V: 2.5:1 vernier provides continuous adjustment over each range.
Polarty: 1921 A, positive; 1922A, negative. Opposite pulses can be obtained from each unit by adjusting offset, amplitude, and complement controls.
Duty cycle: $>50 \%$ in internal; up to 100% with complement; external width mode, up to 100%,
Feedthru mode: allows output pulses to be added on a 50 ohm transmission line for bipolar applications.
Complement: selects normal pulse or its logic complement. Transition time shift: normal to complement, cypically $< \pm 1$ ns.

Pulse shape

Pulse top variations: $< \pm 5 \%$ for amplirudes from 1 to 5 V and $< \pm 7 \%$ for amplicudes of $<1 \mathrm{~V}$.
Base line offset: 0 to $\pm 5 \mathrm{~V}$ into 50 ohms.
Transition times: <2 ns.
Width
Internal: ranges, 4 ns to 1 ms in 6 ranges ($10: 1$ vernier provides continuous adjustment over each range); jitter, <25 ps $+0.1 \%$ of pulse width; time intersyombol interference, width change with rep rate $<1.5 \mathrm{~ns}+2 \%$ of pulse width.
External: provides pulse amplifier operation; output pulse width is determined by width of drive input. Pulse widch tracking is within approx ± 1 ns with input pulse width measured at 0.6 V . Time intersymbol interference: transition shift with rep rate, <1 ns.
Drive input
Repetition rate: 0 to 125 MHz .
Input impedance: 50 ohms, dc-coupled.
Pulse shape: amplitude, $>1.5 \mathrm{~V}$; width, >3 ns; slope, $>0.25 \mathrm{~V} / \mathrm{ns}$ in incemal width, $>0.15 \mathrm{~V} / \mathrm{ns}$ in external width (smaller slopes may cause degradation of performance).
Maximum input: $\pm 5 \mathrm{~V}$.
Propagation delay; internal width mode, approx 18 ns; external width mode, approx 15 ns ; feedthru mode, approx 4 ns.

Genera!

Welght: net, 3 lbs ($1,4 \mathrm{~kg}$); shipping. $6 \mathrm{lbs}(2,7 \mathrm{~kg}$).
Price:
Model 1921A Positue Output $\$ 950$
Model 1922A Negative Output.
$\$ 950$
Options (order by Option number)
001: analog progeamming. Provides connector and circuits to control width, amplitude, complemenc, and ofset.
Price: Option 001 for 1921A or 1922A, add $\$ 150$.

Description, 1930A

Model 1930A is a quarter-size, digital formatting plug.in that provides bit error detection, random signal simulation, and coding and decoding functions for the 1900 pulse system. This versatite plug-in will operate in RZ or NRZ formats at rep rates up to 40 MHz . Models 1905A or 1906 A rate generator plug.ins provide clock rates of either 25 or $>50 \mathrm{MHz}$ rates and the output pulses can be shaped by any of the 1900 system output stages. Model 1917A provides control of TTL levels. ECL and bipolar pulses can be generated with Model 1921A and 1922A output stages.

Bit error detection

Onc of the main reasons for testing digital processing equipment is to determine how accurarely the transmitted signal is received and to find the effect of noise in the transmission system. The measure of a digital system's quality is Bit Error Rate (BER). The 1930A can detect these errors and they can be counted on a counter to display the bit error rate.
Bit error detection in digital transmission systems is simplified by the ability of 1930 A to rapidly synclironize to a data stream (either words or pseudorandom sequences) and do a bit by bit comparison of the incoming data. For example: one 1930A generates a signal that is transmitted over a digital communications link and a second 1930A would then synchronize to the incoming signal from the digital link. Each time the received signal is different from the stored replica an error pulse is produced at the error output, which can be counted with a counter to provide a hic error rate measurement.

Random slgnal simulation

The primary signal requirement for design and rest of digital equipment is a known repeatable digital pattern-a word which can be provided by a 1925A word generator plug-in. However, if the equipment is processing digital signals, a more thorough rest is required that covers all possible words in a random order. The 1930A provides these pseudo-random binary sequences that cover all possible combinations of an a-bit word, with the exception of the all-zeros state.
Random signal simulation allows a device that processes digital information to be completely exercised while providing the stationary characteristics of a repetitive signal. Jo pattern
sensitive devices, pseudorandom binary sequences provide a fast, easy, complete method to generare all possible combinations of up to 20 birs during design and checkout.

Cryptography

Coding in digital applications is accomplished by dividing the incoming data stream by the characteristic equation of the generator. The pseudorandom binary sequence complecely scrambles the original data in both time and frequency domains. Eleven different scrambling patterns can be selected with a front panel registes length switch and feedback taps inside the plug.in allow over 73.000 different pseudorandom patterns. Scrambling patterns may also be set by remote, electronic program signals through the rear panel of an Option 001 mainframe. To decode the information, another 1930A set to the same sequence multiples the scrambled signal by the same equation to regain the original data.

Specifications, 1930A

Clock Input
Repetition rate: 0 to 40 MHz (typically to 50 MHz in most sequences).
Input R: so ohms, dc-coupled.
Amplitude: +1 V min.
Width: >4 ns and <15 ns.
Propagation delay: 40 ns max. (Clock input to transition of our. put data).
Maximum Input: $=5 \mathrm{~V}$.
Data input
Repetitlon rate: 0 to 40 MHz (rypically io 50 MHz).
Input R: 50 ohms, decoupled.
Amplitude
One leval: +1 V min.
Zero level: 0 V .
Maximum input: $\pm 5 \mathrm{~V}$.
Trigger output
Amplitude: 1 V (open circuis).
Width: approx 1 clock period.
Source R: 50 ohms.

Error output

Amplitude: $45 \pm 5 \mathrm{~mA}$ current source or $>2 \mathrm{~V}$ inte 50 ohms.
Width: $>10 \mathrm{~ns},<50 \%$ of period in RZ mode.
Source R: unterminated cutrent source.
Self generated error rate: $<1 \times 10^{-13}$.

PR8S output

Amplitude: $45 \pm 5 \mathrm{~mA}$ or $>2 \mathrm{~V}$ inco 50 ohms.
Rise and fall times: <f ns.
Width:
RZ: >9 ns. $<50 \%$ of period.
Source R: unterminated current source.
Programming inputs (Requires Option 001 1900A or 1901A Mainframes)
False: contact closure to $<0.6 \mathrm{~V}$.
True: open or $>3.0 \mathrm{~V}$.
Response: $<300 \mathrm{~ns}$.
Threshold: approx 2.2 V or 5.5 k ohms.

Genera!

Weight: ner, $21 / 4 \mathrm{lb}(1,02 \mathrm{~kg}$): shipping. $41 / 2 \mathrm{lb}(2,04 \mathrm{~kg})$.
Price: Model 1930A, PR Binary Sequence Generator $\$ 1200$

- 0 to 50 MHz Clock
- 2 to 16 Bit Words
- RZ/NRZ Formats
- Word/Word Complement

Specifications, 1925A
Clock input
Repetition rate: 0 to $50 \mathrm{MHz}\left(15\right.$ to $35^{\circ} \mathrm{C}$), 0 to 45 MHz (0 to $50^{\circ} \mathrm{C}$).
Input impedance: 50 ohms, dc-coupled.
Amplitude: $\div 1 \mathrm{~V}$ min, +5 V max.
Width: $>4 \mathrm{~ns},<18 \mathrm{~ns}$ at +0.6 V .
Propagation delay: 35 ns max., Ieading edge of transition of outrut data.
Transition time jitter: (between clock or END and WJORD. OLT) 100 ps .
Start input
Period: $>$ (word length plus 30 ns).
Input impedance: so ohms, dc-coupled.
Amplitude: +1 V min, +5 V max.
Width: >5 ns.
Programming inputs (requires 1900A Option 001 or 1901 A Op. tion 001 mainframe).
True: contact closure, samurated DTL, or voltage source (TTL) $<+0.2 \mathrm{~V}$.
False: open, off DTL, or coltage source (TTL) $>2.5 \mathrm{~V},<4.0 \mathrm{~V}$.
Noise immunity: $>0.7 \mathrm{~V}$ p-p. When rue $<0.2 \mathrm{~V}$, when false $>3.5 \mathrm{~V}$.
Nolse bandwidth: $<15 \mathrm{MHz}$.
Word and End output
True: $45=5 \mathrm{~mA}$ current source or $>1 \mathrm{~V}$ into 25 ohms.
False: $<1 \mathrm{~mA}$.
Risetime and fallime: <4 ns.
Perturbations: $<15 \%$.
Source impedance: unterminated curcent source.
Word length: 2 to 16 bits, set by incernal switches.
Word content: set by front panel switches or programmed.

General

Weight: ret, $21 / \mathrm{L}$ lbs ($1,02 \mathrm{~kg}$) ; shipping, $41 / 2 \mathrm{lbs}(2.04 \mathrm{~kg}$).
Price: Model 1925A, Word Generaror

- Selectable Phase Pattern
- 2 Phase, 25 MH 2
- 4 Phase, 12.5 MHz
- RZ/NRZ Formats

Specifications, 1934A
Clack Input
Repetition rate: de to $>50 \mathrm{MHz}$.
Width: >4 as and $<1 / 2$ clock period.
Input R: 50 ohms, dc-coupled.
Amplitude: $\geq+1$ V or $<+3 \mathrm{~V}$.
Maximum input: $\pm 5 \mathrm{~V}$.
Data clock output
Repetition rate: rwo phase, $1 / 2$ input rate; four phase, $1 / 4$ input rate.
Width: <15 ns.
Transition times: <f ns.
Source impedance: emitter follower voltage source.
Amplitude: $>2 \mathrm{~V}$ into 50 ohms .
Position with respect to matrix bit: >15 ns adrance.
Phase outputs
Amplitude: $45 \mathrm{~mA} \pm 5 \mathrm{~mA}$ or $>2 \mathrm{~V}$ into 50 ohms.
Repetition rate: swo phase, de to $>25 \mathrm{MlHz}$; four phase, de to $>12.5 \mathrm{MHz}$.
Width: NRZ, one inpur clock period; RZ, $<10 \mathrm{~ns}$.
Source impedance: unterminated current source.
Transition time: <4 ns.
alt delay
Range 1: 7 :0 35 ns.
Range 2: 35 to 500 ns .
Vernier: provides variable delay betreen trailing edge of preced. ing bit and leading edge of selected bit and must not exceed $1 / 2$ inpur clock period delay time.
Programming inputs (requires 1900A Option 001 or 1901A Option 001 mainfrage).
Functions
False: contact closure to $<0.6 \mathrm{~V}$.
True: open or $>3 \mathrm{Y}$,
Settling time: <300 ns.
Threshold: approx 2.1 V or 5700 ohms.
Vernier
Sustaining voltage: -4.7 V .
Current: -0.7 mA to -10 mA .

General

Weight: net, $21 / 4 \mathrm{lbs}(1.02 \mathrm{~kg})$; shipping, $41 / 2 \mathrm{lbs}(2,04 \mathrm{~kg})$.
Price: Model 1934A. Multiphase Clock Generator $\$ 775$

Description, 1900/6936S

The 1900/6936S is a digitally programmable pulse generator system that provides complete, computer control of pulse parameters for fast, accurare test signals in a fully automated system. Consisting of the plug-in 1900 pulse system and a 6936 S Multiprogrammer, it allows seliable, efficient control of a large number of pulse parameters through a minicomputer using a single, 16 -bit parallel computer word.
If the output function requirements expand, up to fifteen 69375 Extenders may be added to provide up to 240 separate, individually addressable output channels from only one computer $1 / 0$ slot. This allows a system to be expanded with no changes in computer hardwase. Also, with the appropriate computer interface cards, the 6936S can be utilized for programming devices other than the 1900 Pulse System.
The plugein pulse generator concept allows you to select
only the plug in functions required for a particular test system. And the fexibility of this plug-in system allows future expan. sion or modification at minimum cost. Programming capability is designed into the 1900 series which allow's you to order only the programming capability required for a test application. Also, if the test requirements change at a later date, the programming option can be added without modification to plug-ins or Multiprogrammer or Extender mainframes.

Software and interface engineering are built into each Option 005 plug-in, which eliminates expensive inscallation or programming costs. The flexibility and expandability of this digital pulse system makes it ideal for use in automatic checkout systems.

For complete information about the programmable pulse generator system, contact your HP Field Engineer.

Specifications, 1927A/1928A
(Except as noted, specifications apply to both fan-in and fan-out amplifers.)
Input
Threshold: continuously variable from +0.5 V to +3 V . In 1927A, one adjustment sets all eight inputs to the same level.
Repetition rate: 0 to 125 MHz .
Amplitude: 1 V min., 4 V max.
Wldth: >4 ns.
Propagation delay: 1927A, <8 ns; 1928A, <10 ns.
Input impedance: so ohms, dc-coupled.
Output
Source impedance: unterminared current source.
Logic one: is mA, $\pm 5 \mathrm{~mA}$ current source; $>2 \mathrm{~V}$ into 50 ohms.
Transition times: $<3 \mathrm{~ns}$.
Pulse stretching: increase in pulse width is <3 ns.
1928A Differential delay between output ports: <3 ns.

General

Welght: net $11 / 4 \mathrm{lb}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lb}(2,7 \mathrm{~kg})$. Price

1927A Fan-In Amplifier $\$ 150$.
1928A Fan Out Amplifier 225

PULSE GENERATORS

200 watt pulses/general purpose testing
Models 214A, 211B, 221A

Description, 214A

The high 200 watts of pulse power (2 amp peak ± 100 volts into 50 ohms) and fast risetime of 15 ns are particularly suited for testing current-driven devices such as magnetic cores, as well as high-power modulators. Source impedance is 50 ohms on all but the highest (100 -volt) range, to minimize errors caused by re-reflections when operating into unmatched loads. At lower output levels, the risetime is less than 13 ns (typically less than 10 ns). Carefully controlled pulse shape, pulse rate and width, and minimum pulse jitter insure accurate and dependable test results. All characteristics of the pulse waveform including overshoot, preshoot, pulse droop, and pulse top variations, are completely specified, and pulse irregularities are kept to a minimum.

Specifications, 214A

Output pulse

Source resistance: 50 ohms on 50 V and lower ranges; approx 1500 ohms on the 100 V range.
Rise and fall time: <13 ns on 20 V and lower ranges and the -50 V range, <15 ns on the +50 V range; typically $<10 \mathrm{~ns}$ with the vernier set for maximum attenuation and typically is ns on 100 V range.
Pulse amplitude: 100 V into 50 ohms. Attenuator provides 0.2 to 100 V in $1,2,5,10$ sequence (9 ranges); vernier reduces output of 0.2 V setting to 80 mV and provides continuous adjustment berween ranges.
Polarity: positive or negative.
Overshook: <5\%, both leading and trailing edges (measured on a 50 MHz oscilloscope).
Puise top variation: $<5 \%$.
Droap: < 6%.
Preshoot: <2\% .
Pulse widths: 50 ns to 10 ns in 5 decade ranges; continuously adjustable vernier.
Width jitter: $<0.05 \%$ of pulse width +1 ns.
Maximum duty cycle: 10% on 100 and 50 V ranges; 25% on 20 V range; 50% on 10 V and lower ranges.
internal rapetition rate: 10 Hz to 1 MHz (s ranges), coninuously adjustable vernier.

General

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 66 Hz , approx 325 W .
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times 184 \times$ 467 mm).
Welght: net, $35 \mathrm{lbs}(16.8 \mathrm{~kg}$): shipping, $41 \mathrm{lbs}(19,7 \mathrm{~kg})$.
Price: Model 214 Pulse Generator, $\$ 975$.

The Hewlett-Packard Model 2118 is a compact, fully transistorized Square Wave Generator designed for general purpose laboratory and production line applications. It provides frequency coverage from 1 Hz to 10 MHz in seven decade ranges with a Linearly calibrated dial for continuous adjustment on all positions. The symmetry control varies the "on" time from 25% to 75% of the period.

Two negative-going ourput pulses are available simultaneously, one from a 50 -ohm source having a 5 ns rise and fall time and the other from 600 ohms with a rise and fall time of 70 ns (140 ns open circuit). The two pulses have a time phase difference of 180°. The outstandingly clean pulse shape, with less than 5% distortion, enables many pulse testing applications to be performed that usually apperrain to expensive equipment costing more than $\$ 450$.

Description, 221A

Model 221 A is a small, lightweight square wave generator with all solid-state circuits. High quality and reliability combined with a low price of $\$ 225$ results in a truly general. purpose laboratory instrument.

Clean waveshapes are assured by the 50 ohm source impedance, even when driving other than 50 -ohm loads. Amplitudes from 0 to +5 V into 50 ohms are available at repetition rates from 1 Hz to 10 MHz .

Frequency programming capability is standard and it may be operated as a voltage-controlled oscillator (VCO) by supplying a de voltage to a rear panel connector. This allows the frequency vernier to be swept over the full 10:1 range selected. The outpur may also be gated on and off by applying a pulse to the rear panel connector.

For complete specifications contact your Hewlett-Packard fleld engineer.

POWER MEASUREMENTS

 POWER METERS
Power measurements

Power measurements are basic at microwave frequencies. Unlike voltage and current levels along a transmission line, microwave power remains constant with position of measurement in a lossless line and can easily be celated to circuit performance.

Bolametrle power meters

Below 10 milliwatts, power is usually measured with bolometers (temperaturesensitive resistive elements) in conjunc. tion with a balanced bridge. There are two general types of bolometers: thermis. tors, whose resistance decreases with tem. perature (negative temperature coeff. cient), and barretters, which have a positive temperarure coefficient. Thermistors are most commonly used because they are more rugged, both physically and electrically, than barretters.

Automatic bolometer bridges

The Hewlett-Packard Model 432 Power Meter is a temperature-compensated, automatically balanced thermistor bridge. The 432 autornatically maintains bridge balance and reads substituted bias power to a basic accuracy of $\pm 1 \%$ of full scale.
Since all bolometer elements are tem-perature-sensing devices, they are unable to distinguish between applied power level changes and environmental temperature changes. Temperature variations can unbalance the bridge. This results, if uncompensated, in "zero drift" of the power meter and erroneous power measurements.

A dual bridge arrangement is used in the 432 to compensate for variations in temperature at the thermistor mount. The thermistor mounts used with the 432 have two thermistor elements. The two are in close thermal proximity and are affected equally by changes in ambient temperature. This arrangement compen. sates for temperature changes, thus reducing zero deift in the 432 by a factor of 100 over uncompensated meters. An. other advantage of the 432 design is that when zeroed on the most sensitive range, the meter may be switched to any other power range without rezeroing (zerocarryover is within 0.5% on all ranges).

Compensated thermistor mounts available for the 432 include the 478 A (10 MHz to 10 GHz) and the 8478 B (10 MHz to 18 GHz) coaxial mounts. The 486 A waveguide series collectively cover
the waveguide bands from 2.6 to 40 GHz . All mounts have low SWR over their frequency ranges without tuning.

Non-temperature-compensated bridges

The HP Model 430C Power Meter operates with a number of noo-tempera-ture-compensated barretter or thermistor mounts such as the HP 477B coaxial and 487 waveguide series. The $478 \mathrm{~A}, 8478 \mathrm{~B}$, and 486 A thermistor mounts also can be operated in a non-temperature-compensated mode with the 430 C using the 11528A adapter. This permits utilization of the 430 C power meter in waveguide bands not covered by the 487 series of mounts. Accuracy of the 430 C in measur. ing substituted power is $\pm 5 \%$ of full scale.

Calorimetric power maters

Calorimetric power meters dissipate the unknown power in a resistive termination that is matched to the transmission line or source impedance. The temperature rise caused by the power dissipation is then measured by a temperature sensor which is calibrated against known amounts of de power.

Fluid calorimeters such as the HP 434 A utilize a moving stream of oil to transfer heat quickly to the sensing element. An amplifier-feedback arrangement, in conjunction with the series oil fow system reduces measurement time in the 434 A to less than 5 seconds for full-scale response. The HP 434A covers the important range of 10 mW to 10 watts.

Peak power measurement

A frequent requirement in microwave work is the measurement of peak power in a periodic pulse.

Hewlett-Packard produces a versatile instrument that conveniently measures peak power directly in the 50 MHz to 2 GHz region. This instrument (the 8900B) utilizes a video comparator technique to bring a known impedance to a level which is equal to the pulse being measured. This allows simple measurements of peak pulse power with a basic accuracy of 1.5 dB even when the wave. form is not rectangular. A custom calibration chart increases accuracy to 0.6 dB for critical applications.

Application Note 64

Complete information on the theory and operation of bolometers and bridges
along with other types of power meters, is included in a comprehensive application note available from HewlettPackard. Application Note 64 contains up-to-date information on virtually all aspects of microwave power measure. ment, including detailed descriptions and illustrations of instraments, techniques, error analysis and applications.

Steps toward better accuracy

Tuners: Certainly one of the most important steps for higher accuracy is the elimination of mismatch loss with a tuner. Hewlett-Packard bolometer mounts and calorimeter input systems are designed and rested for good broad. band impedance match (low SWR) to common microwave transmission lines. However, source SWR must also be considered in any power measurement, and the combination of source and load SWR can produce serious mismatch errors. To eliminare mismatch error, HP 870A waveguide series or 872 A coaxial slide. screw tuners may be used ahead of the bolometer or calorimeter input.
Effective efflciency and calibration fac. tor: A bolometeric power merer can only measure power that is absorbed by the bolometer element, not that which is dissipated elsewhere in the mount or reflected by the mount (SWR). Furthermore, the spatial distribution of current and resistance within the element is slightly different for microwave frequencies and the de (or low-frequency ac) which is actually measured by the meter. The effects of these sources of error are measured at certain frequencies during the manufacture of the Models 478A and f86A mounts and presented on their nameplates as Calibration Factor and Ef. fective Efficiency. Calibration Factor is the ratio of subscituted bias power in the power meter to the microwave powes incident on the mount. Effective Efficiency is the ratio of substituted bias power in the power merer to the microwave power absorbed by the mount.

Instrumentation: HP 432 power merers provide a basic accuracy of $\pm 1 \%$ in substituted power to the thermistor. The DVM outpur of the HP 432 allows connection of a digital voltmeter (such as the HP 3480A) for high resolution readour of power. Rear panel connectors also allow direct measurement of voltages in the bridges; the computed substituted de power reduces instrumentation error to less than $\pm 0.2 \% \pm 0.5 \mu \mathrm{~W}$.

Automatic zeroing: Depress a front panel toggle switch and the 432 Poner Meter automatically resets to zero in a fraction of a second.

DC bridge circult: Using de instead of the conventional 10 kHz bias current resulis in theee benefirs: 1) No signal emission from the mount to disturb sensitive circuits 2) meter zeroing is independent of the impedance connected to the RF input of the thermistor mount 3) the instrument is not affected by capacitance changes caused by movement of the thermistor mount cable.

High accuracy-no thermoelectric error: High accuracy over a wide temperature range is featured on the 432 Power Meters. By measuring the output voltage of the thermistor bridges, and computing the corresponding porer, even higher accuracy of $\pm 0.2 \%=0.5 \mu \mathrm{~W}$ can be obtained.
Accuracy is maintained on even the most sensitive range because the error due to thermoelectric effect is reduced to a negligible level.

Recorder outputs-analog and digital: A rear panel connector provides an analog voluage proportional to the meter reading on all 432 Power Meters. In addition, the 432 B and 432 C Digital Power Meters !eature BCD output of power read. ing-standard.
Long cable options: Thermistor mount cables up to 10 feet long can be used without special matching of the bridge circuit. Optional cables up to 200 feet long may be used if the cable is matched to the bridge circuit.

Callbrated mounts: Each thermistor mount is furnished wich data stating the Calibration Factor ${ }^{\text {F }}$ and Effective Efficiency* ar various frequencies across the opcrating range. For easy and accurate poner measurements, the front panel of the 432 contains a calibration factor control, calibrated in 1% steps from 88% to 100%, that compensates for losses in the mount and eliminates the need for calculation.

Convenlent calibration: Verification of full-scale calibration on all ranges is provided by the 8477 A Pover Meter Calibrator described on page 317.

Specifications

Instrument type: auromatic, self.balancing power meter for use with temperature-compensared thermistor mount.

Power range

432A: seven ranges with full scale readings of $10.30,100$, and $300 \mu \mathrm{~W}, 1,3$, and 10 mW ; also calibrated in dBm from -20 dBm to +10 dBm full scale in 5 dB steps.
432B, 432C: four ranges with full scale readings of 10 and $100 \mu \mathrm{~W}$, and 1 and 10 mW .

[^45]Noise: less than 0.25% of full scale peak.
Response time: at recorder outpur, 35 ms times constant (typical).
Fine zero: automatic, operated by front panel switch. Remote fine zero may be accomplished with 432 C .
Zerd carryover: less than 0.50% of full scale a'hen zeroed on most sensitive range.
RFI: meets all conditions specified in MIL-r-6181D.
Meter
432A: taut-band suspension, individually computed calibrated, mirror-backed scales. Millinatt scale more than $4 / 44^{\prime \prime}(108 \mathrm{~mm})$ long.
432B, 432C: three digits with one digit overrange. 20% overrange capability on all ranges.
Calibration factor control: [3-position switch normalizes meter reading to account for thermistor mount calibration factor. Range 100% to 88% in 1% steps.
Thermistor mount: external remperarure-compensated thermistor mounts required for operation (HP 478, 84788, and 486 Series: mount resistance 100 or 200 ohms).
Recorder output: proportional to indicated power with 1 volt corresponding to full-scale. $1 \mathrm{k} \Omega$ ourput impedance.
BCD output: 8, 4, 2, 1 code: "1" positive. TTI compatible logic. Operates with HP sossA Digital Recorder. "Print" and "Inhibit" lincs a vailable. (432B and 432 C only.)
Bridge autputs (V_{RF} and $\mathrm{V}_{\text {comp }}$): direct connections to the thermistor bridges; used in instrument calibration and precision pover measurements.
Model 432C control lines: (note: instrument is referenced to +5 V , "Logical O " is equivalent to 0 V).
Outputs
BCD outpur as described above.
Overrange: single bit indicates merec overrange.
Underrange: single bit indicates meter underrange.
Range: trobir code indicates range selected.
Print: single bit indicates data is ready.
Inputs
Remote enable: single bit establishes control of instrument ranging and fine zero controls for remote programming. Remote fine zero may be accomplished in remote or local modes of operation.
Remote range: 1 wo bit code selects instrument range.
Auto zero: contact closure to ground or TTL "O" zeros meter.
Inhibit: single bit holds data and stops A/D converter.
External trigger: when in inhibit mode, single bit starts nere data conversion. Data ready in 10 msec .
Inputs and outputs: comparible with sOSSA Digital Re. corder and 12566A.M2 interface card for 2100 Series computers.

Power

432A: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$. 30 to 400 Hz . $21 / 2$ watts. Optional rechargeable battery provides up to 24 hours continuous operation. Automatic battery recharge.
432B: 115 or $230 \mathrm{Vac} \pm 10 \%$. so to $400 \mathrm{~Hz}, 10$ watts.
432C: 115 or 230 V ac $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 16$ watts.
Welght
432A: net, 6 lbs $1: \frac{2}{}$ ($3,1 \mathrm{~kg}$): shipping, 10 lbs 5 oz (4.7 kg).
432B: net, 6 lbs 14 oz ($3,1 \mathrm{~kg}$) : shipping, 10 lbs 5 oz (4,7 kg).
432C: net, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping, $10 \mathrm{lbs} 7 \mathrm{oz}(4,8 \mathrm{~kg})$.

THERMISTOR MOUNTS, CALIBRATOR Broad Frequency coverage Models 478A, 8478B, 486 Series, 8477A

POWER METERS

Dimensions: $54 / 8^{\prime \prime}$ wide, $6-3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($130 \times 155 \times$ 279 mm).
Accessorles furnished: s fr ($1, \$ 2 \mathrm{~m}$) cable for HewlettPackard remperature-compensated thermistor mounts; $71 / 2 \mathrm{ft}$ ($2,29 \mathrm{~m}$) power cable. Main plugs shipped to match destination requirements.
Options
001: rechargeable battery installed, provides up to 24 hours continuous operation, add $\$ 100$ (432A only).
002: input connector placed on rear panel in parallel with front, add \$25.
003: input connector on rear panel only, add $\$ 10$.
(Note: thermistor mount cable impedance is patt of the 432 inpur bridge circuit. For cables over 10 feet long, the bridge is matched to specific cable options, so the various cables should not be interchanged.)
009: $10 \mathrm{ft}(3,05 \mathrm{~m}$) cable for 100 -ohm or 200 -ohm mount, add $\$ 30$.
010: $20 \mathrm{ft}(6,10 \mathrm{~m})$ cable for 100 ohm or $200 \cdot \mathrm{ohm}$ mount. add $\$ 50$.
011: $50 \mathrm{ft}(15,24 \mathrm{~m}$) cable for 100 -ohm or 200 -ohm mount, add $\$ 100$.
012: $100 \mathrm{ft}(30,48 \mathrm{~m}$) cable for 100 ohm or 200 ohm mount, add \$150.
013: $200 \mathrm{ft}(60,96 \mathrm{~m})$ cable for $100 . \mathrm{ohm}$ or $200-\mathrm{ohm}$ mount, add $\$ 250$.
Price: Model 432A, $\$ 575$; Model 432B. $\$ 975$; Model 432C, $\$ 1375$.

478A, 486 Series

Temperature-compensated Thermistor Mounts

High efficiency and good RF match are chatacteristic of the HP 478A and 8478 B Coaxial and 486A-Series Waveguide Thermistor mounts which, in conjunction with the 432 Power Merer, provide you with high accuracy even in toutine power measurements. These thermistor mounts are temperature-compensated for low drift, even in the presence of thermal shocks, permitting measurement of microwave porver as low as one microwatt. Each mount contains data shorving Calibration Factor and Effective Efficiency at six frequencies, directly traceable to the National Bureau of Standards at those frequencies where NBS provides calibration service.

Specifications

$\begin{gathered} \text { HP } \\ \text { Modil } \end{gathered}$	Frequency range, CHz	$\begin{aligned} & \text { Maximum } \\ & \text { SWR } \end{aligned}$	Operating restatanoe (ohms)	97100
478A	$\begin{gathered} 10 \mathrm{MHz} \text { to } \\ 10 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 1.75,10 \text { to } 25 \mathrm{MHz} \\ & 1.3,25 \mathrm{MHz} \text { to } 7 \mathrm{GHz} \\ & 1.5,7 \text { to } 10 \mathrm{GHz} \end{aligned}$	200	\$195
847882	10 MHz to 18 GHz	$1.75,101030 \mathrm{MHz}$ 1.35 .3010100 MHz $1.1,0.101 \mathrm{GHz}$ $1.35,1$ to 12.4 GHz $1.5,12.41018 \mathrm{GHz}$	200	$\$ 3254$
S486A	2.60103 .95	1.35	100	\$390
6486A	3.95105 .85	1.5	100	\$275
J486A	5.30108 .20	1.5	100	\$275
H486A	7.05 to 10.0	1.5	100	\$275
X486A	8.20 to 12.4	1.5	100	\$190
M486A	10.0 to 15.0	1.5	100	\$335
P486A	12.4 to 18.0	1.5	100	\$240
K486A ${ }^{3}$	18.0 to 26.5	2.0	200	\$350
R486A ${ }^{3}$	26.5 to 40.0	2.0	200	\$395

${ }^{1} 11528$ A Adapter adapts mount to 430 Serles Power Meter (thermistor clreult unbalanced. no temperature compensation), $\$ 10$.
\% 11527 A Adapter adapts 8478B to 431A/B Power Meters (ihermistor circult unbalanced), $\$ 25$.
${ }^{3}$ Circular flange adaplers: K.band (UG-425/U) HP 11515A, $\$ 60$ each; R-band $U G$-381/(U) KP 11516A, $\$ 50$ each.

- Option 011, furnlshed with APC-7 Rf connector, add $\$ 25$.

8477A Power Meter Calibrator

The 8497 A Calibrator is specifically designed for use with the 432 Power Meter. It allows you to verify full-scale meter readings on all ranges, and meter tracking. Simply connect three cables berween the power meter and calibrator; no chatts or additional instruments are required.

Specifications. 8477A
Calibration points: outpurs corresponding to meter readings of : $0.01,0.03,0.1,0.3,1.0,2.0,3.0$, and 10 mW (for mount resistance switch servings of both 100 and 200 ohms).
Callbration uncertainty: $\pm 0.2 \%$ on the top five ranges, and $\pm 0.5 \%$ on the 0.01 and 0.03 mW ranges from $+20^{\circ}$ to $+30^{\circ} \mathrm{C}$.
RFI; meets all conditions specified in MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}$, approximately 2 W . Weight: net, $41 / 2 \mathrm{lbs}(2,0 \mathrm{~kg})$; shipping, $61 / 4 \mathrm{lbs}(2.9 \mathrm{~kg})$.
Dimensions: $6.3 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $8^{\prime \prime}$ deep ($155 \times 130 \times$ 203 mm).
Price: Model 8497A, \$495.

The HP 430 C reads RF power directly in dBm or mW . The instrument may be used with either positive or negative bolometer mounts at any frequency for rehich there is a mount avail. able.

The Model 477B riermistor mount allox's measurements from 10 MHz to 10 GHz , and the 487 -series waveguide mounts cover the $8.2 \cdot 18.0 \mathrm{GHz}$ frequency range. Hewletr-Packard barretter mounts may be used as can the $478 \mathrm{~A}, 8478 \mathrm{~B}$, and 486-series thermistor mounts α ith the 11528A adapter.

Specífications, 430C
Power range: 5 ranges, front-panel selector; full-scale readings of $0.1,0.3,1,3$, and $10 \mathrm{~m} \mathrm{~W}_{\text {: }}$ also calibrated in dB from -20 to +10 dBm .
External bolometer: frequency range depends on bolomerer mount; bolometers can operate at resistance levels of 100 or 200 ohms and can have positive or negative temperature coefficients; any dc bias current up to 16 mA is available for biasing bolometers.
Accuracy: $\pm 5 \%$ of full scale.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, so to 400 Hz , approximately 90 W.
Dimenslons: cabinet, $71 / 2^{\prime \prime}$ wide, $111^{\prime \prime}$ high, $1.1 / /^{\prime \prime}$ deep (191 x $292 \times 362 \mathrm{~mm}$) ; rack mount. $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $131 / \mathrm{s}^{\prime \prime}$ deep behind panel ($483 \times 178 \times 333 \mathrm{~mm}$).
Weight: net, $14 \mathrm{lbs}(6,3 \mathrm{~kg})$: shipping, $16 \mathrm{lbs}(7,2 \mathrm{~kg})$ (cabince); ner, $18 \mathrm{lbs}(8,1 \mathrm{~kg})$; shipping. $27 \mathrm{lbs}(12,2 \mathrm{~kg})$ (rack mount)
Accessory avallable: 11528A adapter, adapts HP 478A, 486A, 8478 B thermistor mounts for use with 430C, $\$ 10$.
Price: HP 430C, $\$ 490$ (cabinet): HP 430CR, $\$ 500$ (rack mount).

Specifications, 477B thermistor mount

Frequency range: 10 MHz to 10 GHz .
Refiection coefficient: full range, <0.2 (1.5 SWR, 14 dB return loss) ; so MHz to $7 \mathrm{GHz},<0.13$ (1.3 SWR, 17.7 dB retura loss).
Power range: 0.01 to 10 mW (with HP 430 C) 10 mW maximum average powes; I W' maximum peak powec.
Element: 200 -ohm, negative temperature coefficient thermistor included; approximately 13 mA bias required.
RF connector: Type N male.
Price: HP 477B, $\$ 135$.
Specifications, 487 thermistor mounts

HP Model	Maximum SWR	Frepronoy range* GHz	Prlos
X487B	1.5	$8.2-12.4$	$\$ 150$
P487B	1.5	$12.4-18.0$	$\$ 175$

- HP 486a Waveguide Thermistor Mounts are avallable in S. through R-band $\mathbf{~} 2.8$ to 40 GHz); 11528 A Adapter required.

Peak Power Calibrator Model 8900B

Features:

Measures true peak power $\pm 0.6 \mathrm{~dB}$ absolute
Measurement completely independent of repetition rate and pulse ridrh ($>0.25 \mu \mathrm{sec}$)
Readily standardized against external boloneter or caiorimeter.
Incorporates wide-band (7 MHz) detector outpur for pulse monitoring
The HP 8900 B peak power calibrator provides a conveniene means for measuring the peak RF power of pulses in the range from 50 to 2000 MHz . The power level is read out directly on the panel meter and is completely independent of repetition rate and pulse ridth ($>0.25 \mu \mathrm{sec}$).

Specifications

Radio frequency measurement characteristics
RF range: 50 to 2000 MHz .
RF power range: 200 mW peak full scale (may be readily increased through use of external attenuators or directional couplers).
RF power accuracy: $\pm 1.5 \mathrm{~dB}$ ($\pm 0.6 \mathrm{~dB}$ with custom calibration curve furnished with instrument).
RF power precislon: 0.1 dB .
RF pulse width: $>0.25 \mu \mathrm{~s}$.
RF repetition rate: 1.5 MHz maximum.
RF impedance: 50 ohms.
RF VSWR: <1.2s.
Monitor output
Level: >0.2 volt for 20 mW input (nominal).
impedance: 150 ohms nominal.
Bandwidth $>7 \mathrm{MHz}$.
Physicas characteristics
Dlmensions: 73/4" wide, $61 / 8^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($197 \times 156 \times$ 279 mm).
Weight: net, $10 \mathrm{lbs}(4,5 \mathrm{~kg}$) ; shipping, $13 \mathrm{lbs}(5,9 \mathrm{~kg}$)
Power: 105 to 125 or 210 to 250 volts, 50 to 60 Hz .
Price: HP 8900B, $\$ 725$ (includes calibration curve).

CALORIMETRIC POWER METER
 Just connect, read power 10 mW to 10 watts
 Model 434A

POWER METERS

With the 434A, measurement is literally as simple as connecring to a so-ohm Type N front-panel terminal and reading power ditectly. The instrument has only two simple front-panel controls and is ideal for use by nontechnical personnel.

Model 434A fills the important range between microwave power meters such as the HP 432 Series, and conventional calorimeters whose lower sange is approximately 10 watts. But, unlike previous cumbersome and costly equipment suggested for this range, the HP 434A is completely self-contained and requires no external derectors. In addition, the wider frequency response permits the unit to be conveniently calibrated by the application of a known de power.

Rapid response time

Model 434 A employs a self-balancing bridge and a highefficiency heat transfer system to and from an oil stream to provide a full-scale response time of 5 seconds or less. This fast reaction, a fraction of the response time needed by ordinary calorimeters, means the 434A quickly follows small power changes, such as may be encountered in tuning.

Basically, the Model 434A consists of a self-balancing bridge which has identical temperature-sensitive resistors (gauges) in
two legs, an indicating meter and two load resistors, one for the unknown input power and one for the comparison power. The input load resistot and one gauge are io close thermal proximity so that heat generated in the input load resistor heats the gauge and unbalances the bridge. The unbalance signal is amplified and applied to the comparison load resistor which is in close thermal proximity to the other gauge so that the heat generated in the comparison load resistor is transferred to its gauge and nearly rebalances the bridge.

The meter measures the power supplied to the comparison load to rebalance the bridge. The characteristics of the gauges are the same, and the heat transfer characteristics from each load are the same, so the power dissipated in each load is the same, and the meter may be calibrated directly in input power.

The power measurement is accurate because the flow rates through the two heads are the same and the oil enters the heads at nearly the same temperature. To ensure constant temperature and to bring the streams to nearly the same temperacure, they are passed through a parallel-flow heat exchanger just before entering the heads. Identical fow rates are obtained by placing all elements of the oil system in series.

Specifications

Input power range: seven meter ranges; full-scale readings of 0.01 , $0.03,0.1,0.3,1,3$ and 10 watts; meter scale also calibrated from - 10 to 0 dBW, providing continuous readings from - 30 to +10 dBW ; power range can be extended upward with attenuators or directional couplers.
Maximum Input power: 1 kW peak; 10 watts average.
Frequency range: dc to 12.4 GHz .
Accuracy: within $\pm 5 \%$ of full scale; includes dc calibration and RF termination efficiency but not mismatch loss; greater accuracy can be achieved through appropriate techniques.

Estimated attainable accuracy

	Upper ranges	Tro lowest ranges
DC	0.5%	2%
0 to 1 GHz	1%	3%
1 to 4 GHz	2%	4%
4 to 10 GHz	3%	5%
10 to 12.4 GHz	4%	5%

DC Input impedance: 50 ± 5 ohms at Type N input jack.
Reflection coefficient: de to $5 \mathrm{GHz},<0.13$ ($1.3 \mathrm{SWR}, 17.7 \mathrm{~dB}$ return loss) ; 5 to $11 \mathrm{GHz},<0.2$ (1.5 SWR, 14 dB return loss); 11 to $12.4 \mathrm{GHz},<0.26$ ($1.7 \mathrm{SWR}, 11.7 \mathrm{~dB}$ return loss).
Meter response time: less than 5 seconds for full-scale deflection. Internal callbrator: 100 mW de $\pm 1 \%$ into 45 to 55 ohms.

Power: 115 or 230 volts (specify) $\pm 10 \%, 50$ to 60 Hz approximarely 180 wates with no input, 200 wats with 10 watts input.
Dlmenslons: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $14^{\prime \prime}$ deep (527 x $324 \times 356 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $131^{\prime \prime}$ deep behind panel ($483 \times 266 \times 343 \mathrm{~mm}$).
Weight: net $49 \mathrm{lb}(22,2 \mathrm{~kg})$, shipping $59 \mathrm{lb}(26,8 \mathrm{~kg})$ (cabinet); net $43 \mathrm{lb}(19,4 \mathrm{~kg})$, shipping $56 \mathrm{lb}(25,2 \mathrm{~kg})$ (fack mount).
Accessories available: 281A,g Waveguide-to-Coax Aadapters; 11550A (formerly K02.434A) DC Test Set (for more accurate power measurements), \$2000.
Price: HP 434A, $\$ 2100$ (cabinet) ; HP 434AR, $\$ 2085$ (rack mount).

MICROWAVE TEST EOUIPMENT

NOISE FIGURE METERS; SOURCES
Automatic noise figure measurements to 18 GHz Models 340B, 342A; 343A, 345B, 347A, 349A

In microwave communications, radar, etc., the weakest signal that can be detected is usually determined by the amount of noise added by the receiving system. Thus, any decrease in the amount of noise generated in the receiving system will produce an increase in the output signal-to-noise ratio equivalent to a corresponding increase in received signal. From a performance standpoint, an increase in the signal-to-noise ratio by reducing the amount of noise in the teceiver is more economical than increasing the power of the cransmitter.
The quality of a receiver or amplifier is expressed in a figure of merit, or noise figure. Noise figure is the ratio, expressed in dB, of the actual ourput noise power of the device to the naise power which would be availabie if the device were perfect and merely amplified the thermal noise of the input termination
rather than contributing any noise of its own

The Hewlett-Packard system of automatic noise figure measurement depends upon the periodic insertion of a known excess noise power at the input of the device under test. Subsequent detection of noise power results in a pulse train

Figurs 1. Automatic noise figure measure. ment system.
of two power levels. The power ratio of these two levels contains the desired noise figure information. Hewlert-Packard noise figure merers automatically measure and present this ratio directly in dB of noise figure.

Noise figure is discussed in detail in Hewlett-Packard Application Note 57, which is available from your local Hewlett-Packard field office upon request. Application Note 57, "Noise Figure Primer," derives noise figure formulas. describes general noise figure measurements and discusses accuracy considerations. One of the measurement systems discussed in Application Note 57 is shown in Figure 1. The portion of the diagram within the dashed box is a simplified block diagram of the HP 340 B and 342A Noise Figure Meters, and the excess noise source could be any of the noise sources described on these pages.

Advantages:

Reads noise figure directly in dB
Completely automatic measurement
Easily used by nontechnical personnel
No periodic recalibration needed
Fast response; ideal for recorder operation
Uses:
Measure noise figure in microwave or radar receivers, RF and IF amplifiers
Compare unknown noise sources against known noise levels
Adjust parametric amplifiers for optimum noise figure

HP noise figure meters and noise sources offer time saving and cost-reducing advantages. Their ease of operation and continuous, automatic metering of noise figure reduce the time required for alignment and adjustment and simplify measurements so that they can be done by nontechnical personnel. No periodic recalibration of the meters is needed, and accurate alignment is easy, so high-level, on-line performance is assured.

In operation, a noise source is connected to the input of the device under test. The IF output of the device is connected to the 340 B or 342 A . The noise figure meter gates the noise source on and off. When the noise source is on, the noise level is that of the device plus the noise source. When the noise source is off, the noise level is that of the

device and its termination. The noise figure meter automatically compares the two conditions and displays noise figure directly in dB. Power to operate the noise source is supplied by the noise Ggure meter. Simply connect the noise source, adjust drive current using the controls and meter on the 3408 or 342 A , and the noise source is ready for operation.

Noise figure meters

Model 340 B Noise Figure Meter, when used with an HP noise source, automatically measures and continuously displays noise figure for frequencies of 30 and 60 MHz . On special order up to four custom frequencies between 10 and 70 MHz , and some frequencies outside this range, can be supplied.

Model 342A is similar to Model 340B, except that it operates on five frequencies: $60,70,105,200$, and the basic tuned-amplifer frequency of 30 MHz . Up to six custom frequencies between 10 and 200 MHz , including 21.4 MHz , are available on special order.

Noise sources

Hewlett-Packard 343A VHF Noise Sousce: Specifcally for IF and RF amplifier noise measurement, a temperaturelimited diode source with broadband noise output from 10 to 600 MHz with $50.0 h m$ source impedance and low SWR.

Hewlett-Packard 345B IF Noise Source: Operates at either 30 or 60 MHz , as selected by a switch; another selector permits matching 50-, 100 -, 200-, and 400 -ohm impedances.

Hewlett-Packard 347A Waveguide Noise Source: Argon gas discharge tubes mounted in waveguide sections; for waveguide bands 3.95 through 18 GHz , they provide uniform noise throughout the range; maximum SWR is 1.2 .

Hewlett-Packard 349A UHF Noise Source: Argon gas discharge tubes in Type N coaxial confguration for automatic noise figure readings, 400 to 4000 MHz .

Specifications, $340 B$ and 342A

Noise figure range: 5.2 dB noise source, 0 to 15 dB , indication to infnity; 15.2 dB noise source, 3 to 30 dB , indication to infinity.
Accuracy (excluding source accuracy): noise diode scalc: ± 0.5 $\mathrm{dB}, 0$ to 15 dB ; gas tube scale: $\pm 0.5 \mathrm{~dB}, 10$ to $25 \mathrm{~dB} ; \pm 1 \mathrm{~dB}$, 3 to 10 dB and 25 to 30 dB .
Input frequency: 340 B ; 30 or 60 MHz , selected by swich; 342 A : $30,60,70,105$, and 200 MHz , selected by switch. Other frequencics available; prices and details on request.
Bandwldth: 1 M Hz minimum.
Input requirements: -60 to -10 dBm (noise source on); corresponds to gain between noise source and input of approximately 50 to 100 dB for 5.2 dB noise source and 40 to 90 dB for 15.2 dB noise source.
Input impedance: so ohms nominal.
AGC output: nominal 0 to -6 V from rear binding posts.
Recorder output: 1 mA maximum into 2000 ohms raximem.
Power input: 115 or 230 volrs $\dot{ \pm} 10 \%$, 50 to 60 Hz , iss to 435 watts, depending on noise source and line vohage.
Power output: sufficient to operate $343 \mathrm{~A}, 345 \mathrm{~B}, 347 \mathrm{~A}$ or 369 A Noise Sources.
Dimenslons: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep (527 x $324 \times 368 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $137 / \mathrm{s}^{\prime \prime}$ deep behind panel ($483 \times 266 \times 353 \mathrm{~mm}$).

Welght: net $44 \mathrm{lb}(19,8 \mathrm{~kg})$, shipping $55 \mathrm{lb}(24,8 \mathrm{~kg})$ (cabinet): net $37 \mathrm{lb}(16,7 \mathrm{~kg})$, shipping $51 \mathrm{lb}(22,9 \mathrm{~kg})$ (rack rount).
Accessories furnished: one 340A-16A Cable Assembly, conneces noise figure meter to 347 A or 349 A Noise Source.
Price: HP 340A, $\$ 1000$ (cabinet); HP 340BR $\$ 985$ (rack mount); HP 342A, $\$ 1100$ (cabinet); HP 342AR, $\$ 1085$ (rack mount); not available in all countries.

Specifications, 343A

Fraquency range: 10 to 600 MHz .
Excess nolse ratlo: 10 to $30 \mathrm{MHz}, 5.20 \mathrm{~dB} \pm 0.20 \mathrm{~dB} ; 100 \mathrm{MHz}$, $5.50 \mathrm{~dB} \pm 0.25 \mathrm{~dB} ; 200 \mathrm{MHz}, 5.80 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 300 \mathrm{MHz}$, $6.05 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 400 \mathrm{MHz}, 6.30 \mathrm{~dB} \pm 0.50 \mathrm{~dB} ; 500 \mathrm{MHz}$, $6.50 \mathrm{db} \pm 0.50 \mathrm{~dB}: 600 \mathrm{MHz}, 6.60 \mathrm{~dB} \pm 0.50 \mathrm{~dB}$.
Source impedance: 50 ohms.
Reflection coefficient: <0.091 (1.2 SWR), 10 to 400 MHz : <0.13 (1.3 SWR), 400 to 600 MHz .
Nolse generator: emperature-limited diode.
Dlmensions: $23 / 4^{\prime \prime}$ wide, $21 / 2^{\prime \prime}$ high, $5^{\prime \prime}$ deep ($70 \times 63 \times 127 \mathrm{~mm}$).
Weight: net $3 / 4 \mathrm{lb}(0,34 \mathrm{~kg})$; shipping 2 lbs ($0,9 \mathrm{~kg}$).
Price: HP 343A, $\$ 150$.
Option 001: spare noise diode(s) calibrated and supplied with insirument, add $\$ 40$ each.

Specifications, 345B

(same weight and dimensions as 343A)
Spectrum center: 30 or 60 MHz , selected by switch.
Excess noise ratio ${ }^{1}: 5.2 \mathrm{~dB}$.
Source Impedance: $50,100,200$ or 400 ohms, $\pm 4 \%$, as selected by switch; less than 1 pF shunt capacitance.
Nolse generator: temperature-limited diode.
Price: HP 34SB, 5200 (operation at any two frequencies berween 10 and 60 MHz in lieu of 30 and 60 MHz available on specia! order).

Specifications, 347A

$\stackrel{H P}{\text { Model }}$	Rango (aHz)	Expass noiso ralbl,2	Approx. lengh		Price
			(in.)	(mm)	
6347A	3.95-5.85	15.2 ± 0.5	19	483	\$450
J347A	$5.30-8.20$	15.2 ± 0.5	19	483	\$450
H347A	7.05-10.0	15.6 ± 0.5	16	405	$\$ 425$
X347A	$8.20-12.4$	15.7 ± 0.4	143/4	375	\$375
P347A	12.4-18.0	$15.8=0.5$	144/4	375	\$400

Reflection coefficient for all models, fired or undired, 0.091 (SWR 1.2; max. (source terminated in well-matched load).

Specifications, 349A

Frequency range: 400 to 4000 MHz , wider with correction.
Excess noise ratio': $15.6 \mathrm{~dB} \pm 0.6 \mathrm{~dB},{ }^{2} 400$ to $1000 \mathrm{MHz} ; 15.7 \mathrm{~dB}$ $\pm 0.5 \mathrm{~dB},{ }^{2} 1000$ to 4000 MHz .
SWR: <1.35 (fired), <1.55 (unfred) up to $2600 \mathrm{MHz}^{2}<1.55$ (fired or unfired), 2600 to 3000 MHz ; <2.0 (fired), <3.0 (unfred) 3000 to 4000 MHz .
Dimensions: $3^{\prime \prime}$ wide, $2^{\prime \prime}$ high, $15^{\prime \prime}$ long ($76 \times 51 \times 381 \mathrm{~mm}$).
Weight: net $31 / 4 \mathrm{lb}(1,4 \mathrm{~kg})$; shipping $6 \mathrm{lb}(2,7 \mathrm{~kg})$.
Price: HP 349A, \$325.

[^46]
MICROWAVE TEST EQUIPMENT

BASIC INSTRUMENTS FOR MICROWAVE MEASUREMENTS

Frequency, impedance, attenuation

Hewlett-Packard offers a complete line of microwave test equipment from which systems can be assembled for making accurate reflection, transmission and frequency measurements. Measurement techniques and equipment functions are dis. cussed briefly in the following para. graphs. More detailed information is available in Application Notes 64, 65, and 84, complimentary copies of which are available from Hewlett-Packard sales offices.

Frequency measurements

There are two general classes of frequency measuring devices-active and passive types. Electronic counters, rransfer oscillators, and frequency converters are examples of active types. These instruments measure frequency well into the microwave region with accuracies of a few pares in 10^{5}. More information about active frequency-measuring instruments is contained in the frequency counter section of this catalog.

Where the accuracy of active devices is not required, passive devices offer direct readout as a considerable saving in cost. Passive rransmission-type frequency meters, such as the HP 532, 536A, and 537 A , are two port devices that absorb part of the input power in a tunable cavity. When the cavity is tuned to resonance, a dip occurs in the transmitted power level. This dip can be observed on a meter or oscilloscope display of the detected RF voltage. Frequency is then read from a calibrated dial driven by the cavity tuning mechanism.

The accuracy of cavity frequency meters depends upon the cavity Q, dial calibration, backlash, and effects of temperature and humidity variations. The Herlett-Packard waveguide and coaxial passive frequency meters achieve ac. curacies of a few parts in 10 .

Impedance measurements

Impedance-matching a load to its source is one of the most important considerations in microwave transmission systems. If the load and source are mismatched, part of the power is reflected back along the transmission line toward the source. This reflection not only prevents maximum power trânsfer, but also can be responsible for erroneous measurements of other parameters or even cause circuit damage in high-power applica. tions.

The power reflected from the load interfcres with the incident (forward)
power, causing standing wraves of voltage and current along the line. SWR which is the ratio of standing-rave maxima to minima is directly related to the impedance mismatch of the load. The standingwave ratio (SWR), therefore, provides a valuable means of determining impedance and mismatch.

There are two methods for measuring SWR; sloted line recinnique (single and swept frequency) and refiectometer techniques.

Slotted line techniquessingle frequency

Figure 1. Typical setup for SWR and impedance measurements in coax using HP 805C Slotted Line

Standing-riave ratio can be measured directly with a slotted line in a setup like the one shown in Figure 1. The slotred line is placed immediately a head of the load in rest, and the source is adjustable for $1 . \mathrm{kHz}$ amplitude modulation at the desired microwave frequency. The slotted line probe is loosely coupled to the RF field in the line, thus sensing relative amplitudes of the standing-wave pattern as the probe is moved along the line. The ratio of maxima to minima ($S W R$) is displayed directly on the SWR meter.

While this method works pell for single-frequency testing, it is time-consuming for broadband applications.

The swept slotted line

A measuring system which combines the speed and convenience of sweptfrequency measurements and the inherent accuracy of the slotted line can be built around the 817A Slocted Line System. The 817A consists of an 816A Coaxial Slotted Line, 800C Casriage and 448A Slotted Line Sweep Adapter and can be used throughout the range from 1.8 to 18 GHz . The signal source is a sweep oscillator and the readout device is an oscilloscope.

The measurement technique is much the same as for fixed-frequency measure. ments. However, instead of the plot being a single vertical line, which would be the case in a fixed-frequency measurement. it is a smear or envelope as shown in Figure 2. At any given frequency, the ratio of the maximum and minimum amplitude of the envelope is the SWR.

Figurs 2. Mullt-sweep slotted line measurement. Verical scale $0.5 \mathrm{~dB} / \mathrm{cm}$ (SWR $=$ $1.22 / \mathrm{cm})$.

A storage oscilloscope such as the HP lila is ideal for these measurements. A plot of SWR can be generated in a few seconds and retained on the CRT for evaluation or photography. Accuracy of slotred line measurements is limited primarily by the residual SWR of the line irself, 1.01 in waveguide and 1.02 to 1.06 in coax depending upon the frequency and type of connector. However, there are other considerations. Penetration of the detector probe into the line should be kept to a minimum to prevent standing waves due to the probe itself. Elimination of harmonics from the signal source is also important. HP 360, 362, and 8430 filters are excellent for this purpose.

Reflectometer technlques

The reflection coefficient (p) of a device or system is another useful term in establishing the impedance match of microwave devices. The following relationships of p and $S W R$ are frequently used in impedance work:

$$
\left.\right|_{P} \left\lvert\,=\frac{E_{\text {reflicied }}}{E_{\text {incident }}}=\frac{S W R-1}{S W R+1} .\right.
$$

The amplitude of refected voltage with respect to the incident voltage is given in terms of dB return loss by the expression: $\mathrm{dB}=-20 \log _{10}|\mathrm{p}|$. For example, if the refiected signal from a test is 26 dB below the incident signal level. the reflection coefficient of the device is calculated as 0.05 .

The zeflection coefficient of a load can be measured by separating the incident and reflected waves propagated in the transmission line connecting the source and load. The reflectometer uses directional couplers to accomplish this separation in both waveguide and coaxial systems. Refectometers permit continuous oscilioscope displays or permanent $\mathrm{X} \cdot \mathrm{Y}$ recordings of reflection coefficient across complete operating bands.

Incident power in the improved refiectometer is held constant by leveling. With incident power held constant, only the relative amplitude of the reffected wave need be measured to determine reflection coefficient. This rechnique permits better accuracy than older systerns, and fast sweep speeds enable the tuse of oscilloscope displays. See Figure 3.

To calibrate the reflectometer, a short circuit is placed at the output port, thus reflecting all of the incident poser. The detector in the reverse.arm coupler samples the reflecred power and provides a proportional de voltage for readout. By placing a calibrated attenuator ahead of the derector, specific amounts of ceturn loss may be pre-inserted for calibration of the oscilloscope or recorder gain. The attenuator is then returned to zero, the short removed and the test device connected and measured on the pre-calibrated display.

Calibration also is possible without the pre-insertion attenuator if the detector law is known and the vertical response of the readout device is constant. Calibration levels with this technique are established with the RF turned off (corresponding to no reflection), then with all of the power reflected by a sliding short. A more complete discussion and error analysis of refectometer systems is included in Hewlett-Packard Application Note 6s, "Swept Frequency Techniques."

Figure 3. Typical wavegulde Reflectometer.

Attenuation measurements

Artenuation is defined as the decrease in power (at the load) caused by inseri. ing a device between a Z_{0} source and load. Under this condition, the measured value is a propecty of the device alone so that this is the "ideal system" in which to make measurements. The term Z_{0} is used to describe a unity SWR condition where the load and source impedances equal the transmission line impedance.

There are three common methods for measuring RF attenuation: 1) squarelaw detection with audio substitution, 2) linear detection with IF substitution, and 3) direct RF substitution using alcenuators calibrated by either of the first two methods. Accurate squarelaw measurements and RF substitution are possible using modern crystal detecrors such as the HP 423A coaxial, and 424A waveguide series.

Square-law detection technique

Figure 4. Swept attenuation system for measurements up to 40 dB with oscilloscope.

Figure 4 shows a waveguide system for swept attenuation measurements of 30 to 40 dB . Source power is leveled using a single 752 -series $10-\mathrm{dB}$ direc. tional coupler in the ALC loop. Coupling variation versus frequency in the leveling loop causes leveled power variation of about 1 dB at the point of test device insertion. This power variation is nearly equal to, but opposite, the coupling variation of the readout coupler.

With the 8620A sweeping the frequency range of interest, a zero.dB reference level is established on the oscillo. scope without the test device in the system. The device is then inserted as indicated in Figure 4 and its attenuation versus frequency determined by the amplitude decrease from the CRT reference level previously established.

IF substitution technique

The IF substitution technique of at. tenuation measurement involves conversion of the microwave frequency to a constant, much lower frequency for which very accurately calibeated attenuators are available. These are the prin. ciples used in the HP 8405A Vector Voltmeter and HP 8410A Network Ana. lyzer. For information abour these instruments see the Network Analyzer section of this catalog.

RF substitution technique

Swept attenuation measurements up to 45 or 50 dB can be made using the RF pre-insertion, X-Y recorder system shown in Figure 5. Coupler tracking and detector errors are eliminated by plotting a calibration grid on the X.Y recorder prior to the actual measurement. In addition to being leveled, the sweeper is internaily amplitude-modulated at 1 kHz to drive the 415E SWR Meter. The 415E, after amplifying the $1 \cdot \mathrm{kHz}$ signal, feeds a proportional do voltage to the recorder Y-input. The dc sweep voltage from the 8620 A drives the recorder X -mput directly.

Calibration lines are plotted by setting in specific values of attenuation on the 382A near the anticipated test device attenuation and triggering single 30 -second sweeps. The 382A is then set to 0 dB and the test device inserted as shown in Fig. ure S. A Enal sweep is triggered and attenuation of the test device plotted over the callibration gird.

Figure 5. RF pre-Insertion techniqua for swept attenustion measurements.

COAXIAL INSTRUMENTATION
For coaxial systems operating to 18 GHz

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instrumeant
Name} \& \multirow[b]{2}{*}{Uses} \& \multirow[b]{2}{*}{Family ${ }^{1}$ Model Number} \& \multicolumn{9}{|c|}{Frequensy covarage by band - $\mathbf{G H z}$}

\hline \& \& \& $$
\begin{gathered}
8 \\
2.6- \\
3.95
\end{gathered}
$$ \& $$
\begin{aligned}
& 0 \\
& 3.95- \\
& 5.85
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{J} \\
& 8.80 . \\
& 8.20
\end{aligned}
$$ \& $$
\begin{gathered}
H \\
7.05- \\
10.0
\end{gathered}
$$ \& $$
\begin{gathered}
x \\
8.50- \\
12.4
\end{gathered}
$$ \& $$
\begin{gathered}
\mathrm{M} \\
10.0 . \\
16.0
\end{gathered}
$$ \& $$
\begin{gathered}
p \\
12.4- \\
18,0
\end{gathered}
$$ \& $$
\begin{gathered}
K \\
18.0 . \\
26.5
\end{gathered}
$$ \& $$
\begin{gathered}
R \\
26.6- \\
40.0
\end{gathered}
$$

\hline Adsplers \& Interconnect coaxial-waveguide systems Interconnect two different waveguide systems \& $$
\begin{aligned}
& 281 A \\
& 2818 \\
& 292 A \\
& 292 B
\end{aligned}
$$ \& x \& x \& x \& x \& $$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$ \& x \& $$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
$$ \& x \&

\hline Low-pass fillers \& Output filters for signal sources to eliminate harmonics \& 362A \& \& \& \& \& x \& X \& X \& X \& X

\hline Variable attenuators \& Measurement of reffection coefficient, insertion loss, transter characteristics by RF substitution; reduction of power levels; reduction of source mismatch \& $$
\begin{aligned}
& 382 \mathrm{~A} \\
& 375 \mathrm{~A}
\end{aligned}
$$ \& x \& \& x \& X \& $$
\begin{aligned}
& x \\
& x
\end{aligned}
$$ \& \& $$
\begin{aligned}
& x \\
& x
\end{aligned}
$$ \& X \& x

\hline Crystal Detectors \& RF delection: reflection coefficient, aftenuation measurements \& $$
\begin{array}{r}
424 \mathrm{~A} \\
422 \mathrm{~A}
\end{array}
$$ \& X \& X \& X \& X \& x \& X \& x \& X \& X

\hline Detector mount \& Tunable detector mount for accurate matching of waveguide sections to crystal or bolometer \& 485B \& \& \& \& \& x \& \& \& \&

\hline Thermistor mount \& Power measurements with 432 series (486 A), and 430C (487B). \& $$
\begin{aligned}
& 486 \mathrm{~A} \\
& 4878
\end{aligned}
$$ \& x \& X \& X \& X \& $$
\begin{aligned}
& x \\
& x
\end{aligned}
$$ \& x \& $$
\begin{aligned}
& x \\
& x
\end{aligned}
$$ \& x \& x

\hline Frequency meters \& Frequency measurements \& $$
\begin{aligned}
& 532 A \\
& 5328
\end{aligned}
$$ \& \& \& X \& X \& X \& \& X \& X \& X

\hline Directional couplers \& Power measurements; power leveling; reflection measurements; isolation \& $$
\begin{aligned}
& 752 \mathrm{~A} \\
& 752 \mathrm{C} \\
& 752 \mathrm{D}
\end{aligned}
$$ \& \& \& X
\times
\times
\times \& $$
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
$$ \& x
χ
χ
χ \& \& x

X
X \& x

\times
\times \& x
\times
\times
X

\hline Slotied line systems \& Measurement of SWR, wavelength, impedance; fixed and swept.frequency slotted line measure. ments \& $$
\begin{aligned}
& 810 \mathrm{~B} \\
& 8158
\end{aligned}
$$ \& \& \& X \& X \& X \& \& X \& x \& X

\hline PIN modulators \& Sinusoidal and complex AM and RF pulsing of microwave sources without incidental FM \& $$
\begin{aligned}
& 8735 A \\
& 8735 B
\end{aligned}
$$ \& \& \& \& \& \[

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$
\] \& \& \& \&

\hline Fixed and sliding loads \& Fixed loads for terminating waveguide systems. Sliding loads for separating load reflections from other system reflections \& $$
\begin{aligned}
& 910 \mathrm{~A} \\
& 990 \mathrm{~B} \\
& 914 \mathrm{~A} \\
& 914 \mathrm{~B}
\end{aligned}
$$ \& \& \& \[

\mathrm{x}

\] \& \[

x

\] \& \[

$$
\begin{gathered}
x \\
x
\end{gathered}
$$

\] \& \& \[

x
\] \& x \& X

\hline Fixed and sliding shorts \& Establish measurement planes, reflection phase and magnitude references \& $$
\begin{aligned}
& 920 \mathrm{~A} \\
& 920 \mathrm{~B} \\
& 923 \mathrm{~A} \\
& 930 \mathrm{~A}
\end{aligned}
$$ \& \& \& X \& X \& X \& \& x \& x \& X

\hline Mixers \& Harmonic Mixer \& 932A \& \& \& \& \& \& \& x \& \&

\hline Slide screw tunars Phase shifters \& Correct discontinuities in waveguide Provide phase control \& $$
\begin{aligned}
& 870 A \\
& 885 A
\end{aligned}
$$ \& \& \& X \& \& X \& \& x \& \&

\hline
\end{tabular}

[^47]COAXIAL ATTENUATORS

8491A／B，8492A，8493A／B Fixed Attenuators

Hewlett－Packard fixed coaxial attenuators provide pre－ cision attenuation，flat frequency response，and low VSWR over broad frequency ranges at low prices．Attenuators are available in nominal attenuations of $3-\mathrm{dB}, 6 \cdot \mathrm{~dB}$ and $10-\mathrm{dB}$ increments from 10 dB to 60 dB ．These attenuators are swept－frequency tested to insure meeting specifications at all frequencies．

11581A，11582A，11583A Attenuator Sets

A set of four Hewlett－Packard attenuators，3，6， 10 and 20 dB are furnished in a handsome walnut accessory case． In addition to the calibration stamping on the bodies of the attenuators，the set includes a calibration report．The cali－ bration report is certifed traceable to the National Bureau of Standards．The calibration report also includes accuracy of both the attenuation and the reflection coefficients at se－ lected frequencies．
11581A（ 8491 A ＇s）：includes 3，6，10， 20 dB ．Price：$\$ 250$ 11582A（ 8491 B s）：includes 3， $6,10,20 \mathrm{~dB}$ ．Price：$\$ 310$ 11583A（8492A＇s）：includes 3，6，10， 20 dB ．Price：$\$ 575$

Specifications 8491A／B，8492A，8493A／B

	84014		84818			84924			LS93A		Mes：		
$\begin{gathered} \text { Alungmation }{ }^{1}(d B) \end{gathered}$	$\text { Option : } 1,8,10,20,30,$		Dption：3，日，30，20，32，40，80， 30			Opiloa ：3，6，10，20，20，10，50， 30			Opten ：8，0，10，20，to		Oplion ：4，0，10，20， 80		
Fresuosoy	OC． 124 aHz		DC． 5 ECHz			DC－18 OHz			DC－12．40Hz		DC－18 OHz		
8W月1	$D \mathrm{C}-\mathrm{B} Q \mathrm{HI}_{\mathrm{I}}$	$\begin{aligned} & 8-124 \\ & 1.3 \end{aligned}$	$\mathrm{DO.}_{1.2}^{\mathrm{aHz}}$	$\begin{gathered} 8.1240 \mathrm{arz} \\ 1.5 \\ \hline \end{gathered}$	$124.11 \mathrm{gHz}$	$00.1 \mathrm{aHz}$	$\begin{array}{\|c\|} \hline 8.1260 \mathrm{OHz} \\ 1.28 \\ \hline \end{array}$	$124 \underset{\substack{18 \\ 1,95}}{ } 9 \mathrm{~Hz}$	$\begin{gathered} 00.80 \mathrm{~Hz} \\ 1.2 \end{gathered}$	$8.1240 \mathrm{Hx}$	$\mathrm{coc}_{1.2}^{\mathrm{O}} \mathrm{aHz}$	$\mathrm{Br}_{1.34}^{\mathrm{aHz}}$	$\begin{gathered} 12 . \mathrm{J} \cdot 18 \mathrm{aHz} \\ 1.5 \\ \hline \end{gathered}$
AltenLation Aoduracy 3 dB	$\pm 0.3 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$			$\pm 0.3 \mathrm{~dB}$			± 0.3		$=0.3 \mathrm{~dB}$		
6 dB	＝ 0.3088		$\pm 0.3 \mathrm{~dB}^{3}$			$\pm 0.3 \mathrm{~dB}^{3}$			$\pm 0.3 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}^{2}$		
10 dB	$\pm 0.5 \mathrm{~dB}$		$\checkmark \pm 0.5 \mathrm{~dB}$			$x 0.5 \mathrm{~d} 8$			$\pm 0.5 \mathrm{~dB}$		$=0.5 \mathrm{~dB}$		
20 dB	$\pm 0.5 \mathrm{~dB}$		$=0.5 \mathrm{~dB}^{4}$			$\pm 0.5 \mathrm{~dB}^{4}$			$\pm 0.5 \mathrm{~dB}$		$\pm 0.5 \mathrm{~dB}$		
30 dB	$\pm 1 d B$		$\pm 1 \mathrm{~dB}$			$\pm 1 \mathrm{~dB}$			$\pm 1 \mathrm{~dB}$		$\pm 1 \mathrm{~dB}$		
40 dB	$\pm 1.5 \mathrm{d8}$		$\pm 1.5 \mathrm{~dB}$			$=1.5 \mathrm{~dB}$			－		－		
50 dB	± 1.548		$=1.5 \mathrm{~dB}$			$=1.5$ dB					－		
60 dB	$\pm 2 \mathrm{~dB}$		$=2 \mathrm{~dB}$			$\pm 2 \mathrm{~dB}$					－		
Connector	N		N			APC． 7			SMA		SMA		
Dimensions	$\begin{aligned} & 2-7 / 16 \times 13 / 16 \\ & \text { inches } \end{aligned}$		$\begin{gathered} 2-7 / 15 \times 13 / 16 \\ \text { inches } \end{gathered}$			$\begin{gathered} 23 / 4 \times 13 / 16 \\ \text { inches } \end{gathered}$			$1-9 / 1$	$6 \times 1 / 2$ thes	$\begin{gathered} 1-9 / 16 \times 1 / 2 \\ \text { inches } \end{gathered}$		
Shipping Wt	602.		602.			702.			402.		4 OL		
Price （Qty．1－4）	$\begin{gathered} 3-30 \mathrm{~dB}, \$ 60 E a \\ 40-60 \mathrm{~dB}, \$ 85 \end{gathered}$		$\begin{gathered} 3-30 \mathrm{~dB}, \$ 75 \mathrm{Ez} \\ 40-6 \mathrm{~dB}, \$ 110 \end{gathered}$			$\begin{aligned} & 3-30 \mathrm{~dB}, \$ 140 \mathrm{Ea} \\ & 40-60 \mathrm{~dB}, \$ 175 \end{aligned}$			$\$ 65 \mathrm{Ea}$		$\$ 80 \mathrm{Ed}$-		

－Option numbers same as attenuator values；e．名，Optlon 003 10r $3 \mathrm{~dB}, 00 \mathrm{tlon} 006$ for 6 dB ．option 010 for 10 obetc．
．Check data sheet for SWR sllght varjation of options 003 and 006 with frequency bands．
． 20 option accuracy is $=0.4 \mathrm{dS}, 12.4 \cdot 18 \mathrm{GHz}$

MICROWAVE TEST EQUIPMENT

COAXIAL ATTENUATORS
Variable attenuators to 12.4 GHz
Models 354A, 355C-F, 393A, 394A, 33300 Series

B
A

With loads A and 8 in place the Instrument is an attenuator. With loas A only, the instrument is a varlade directional coupler.

354 A step attenuator, dc to 12.4 GHz

The Model 354 A is a curret-type coaxial attenuator which provides 0 to 60 dB of attenuation in $10 \cdot \mathrm{~dB}$ steps over the frequency range from dc to 12.4 GHz . Attenuation changes are made with a simple knob rotation: no pull-turn-push sequence is required. For bench use the attenuator is supplied with a base; however, the base is removable for easy conversion to rack mount.

355C, D, E, F manual and programmable attenuators, dc to 1 GHz

These are precision attenuators from dc-1 GHz. The 355 C and D are manual while the 355 E and F are programmable. $0-12 \mathrm{~dB}$ in $1 . \mathrm{dB}$ steps are provided by the 355 C and $\mathrm{E} ; 0.120$ dB in 10 dB steps are provided by the 355 D and \mathbf{F}. Attenuator sections are inserted and removed by cam-driven microswitches. The programmable version uses a 7 -pin connector which allows remote control by BCD signals.

$393 \mathrm{~A}, 394 \mathrm{~A}$ attenuators, 500 MHz to 1 GHz and 1 GHz to 2 GHz

Each of these coaxial variable attenuators uses the principle of a directional coupler to achieve a wide range of artenuation over a full octave. The HP 393A covers 5 to 120 dB from 500 to 1000 MHz ; HP 394 A covers 6 to 120 dB from 1 to 2 GHz . With special high-power terminations they handle up to 200 watts average. Since these instruments are variable directional couplers, they are particularly useful for mixing signals while maintaining isolation.

33300/01/04/05 programmable step attenuators, $d c$ to 18 GHz

These step artenuators provide a fast and precise means for electrically controlling the level of signal attenuation in automatic rest systems. They are available in four basic configurations: 0.70 dB in $10 . \mathrm{dB}$ steps (33300), 0.42 dB in $6-\mathrm{dB}$ steps (33301), 0.11 dB in $1 . \mathrm{dB}$ steps ($3330 \mathrm{f}^{\circ}$) and 0.110 dB in $10 \cdot \mathrm{~dB}$ steps (33305). Magnetic latching solenoids (12 and 24 volts) are used to switch individual attenuation elements into and out of contact with a 50 ohm eransmission line, A and B are "no contacts" and C and D are "with contacts." Specifications in the table below are for the 33300 only. Refer to data sheer for specifications of the $33301 / 04 / 05$, whose prices range from \$650. $\$ 950$.

Speetificatlons	354A	356C/E	356D/F	398A	394A	33300A, B, C, D,
Mode of Operation	Manual	355C: Manual 355E: Programmable	$\begin{aligned} & \text { 355D : Manual } \\ & \text { 355F: Programmable } \\ & \hline \end{aligned}$	Manual	Manual	Programmable
Attenuation:	$0-60 \mathrm{ml} 10 \mathrm{~dB}$ steps	12 dB in $1 . \mathrm{d8}$ steps	120 d 8 in (0-dB steps	5-120 ob, variable	6-120 dB variable	$\begin{array}{\|c\|} \hline 0-70 \mathrm{dBm} 10 \mathrm{~dB} \\ \text { steps } \end{array}$
Frequency range:	dc. 12.4 GHz	dc - 1 GHz	dc-1 GHz	.5-1 6Hz	$1-2 \mathrm{GHz}$	de-18 GHz
Accuracy:	$=2 \mathrm{~dB}$	$\begin{aligned} & =0.1 \mathrm{~dB} \text { at } 1000 \mathrm{~Hz} \\ & =0.25 \mathrm{~dB} \mathrm{dc} 10500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \mathrm{~dB} \text { to } 120 \mathrm{~dB} \mathrm{dt} \\ & 1000 \mathrm{~Hz}=1.5 \mathrm{~dB} \text { to } 90 \\ & \mathrm{~dB} \text { below } 1 \mathrm{GHz} ; 3 \mathrm{~dB} \\ & \text { to } 120 \mathrm{~dB} \text { below } \mathrm{GHz} . \end{aligned}$	$\begin{aligned} & \pm 1.25 \mathrm{~dB} \text { or }=1.75 \% \\ & \text { whichever is greater } \end{aligned}$	$\pm 1.25 \mathrm{~dB} \text { or } \pm 2.5 \%$ whichever is greater	$\begin{aligned} & 3 \%, \text { de to } 12.4 \mathrm{GHz} \\ & 4 \% 12.4 \text { to } 18 \mathrm{GHz} \end{aligned}$
Impedance:	50 ohms	50 oh	ims	50 or	hms	50 ohms
Power dissipation:	$\begin{aligned} & 2 \text { walts ave., } 100 \\ & \text { peak } \end{aligned}$	0.5 wall average,	350 volts peak	Approximately 200 lermination must be	watt, max. rating of observed	$\begin{array}{\|c\|} \hline \text { 2 watt ave } 500 \\ \text { watts peak } \\ \hline \end{array}$
Maximum SWR:	$\begin{aligned} & 1.5, d c-8 \mathrm{GHz} \\ & 1.75,8-12.4 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 1.2 \text { below } 250 \mathrm{M} \\ 500 \mathrm{MHz} ; 1.5 \end{gathered}$	$\begin{aligned} & \text { Mhz; } 1.3 \text { below } \\ & \text { below } 1 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2.5,5015 \mathrm{~dB} \\ & 1.515 \text { to } 30 \mathrm{~dB} \\ & 1.4,30 \text { to } 120 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.5 .6010 \mathrm{~dB} \\ & 1.8,10 \text { to } 15 \mathrm{~dB} \\ & 1.6,15 \text { to } 120 \mathrm{~dB} \end{aligned}$	reter 10 data sheet
Maximum insertion Loss:	$<1.5 \mathrm{~dB}$	$\begin{array}{r} 0.25 \mathrm{~dB} \text { at } 100 \mathrm{MHz} \\ 1.5 \mathrm{~dB} \end{array}$	$\begin{aligned} & 75 \mathrm{~dB} \text { to } 500 \mathrm{MHz} \text {; } \\ & 1 \mathrm{GHz} \end{aligned}$	-	-	$\begin{aligned} & 0.8 \mathrm{~dB}, \mathrm{dc}-8 \mathrm{8Hz} \\ & 1.2 \mathrm{~dB}, 8.12 .4 \mathrm{GHz} \\ & 1.8 \mathrm{~dB}, 12.4-18 \mathrm{GHz} \end{aligned}$
Dimensions (in.) :	4 long, 4/2 wide. $31 / 8 \mathrm{in} \text {, high }$	6 long. $23 / 4$ wide. $25 / 8 \mathrm{hig}$	$\mathrm{gh}(152 \times 70 \times 67 \mathrm{~mm})$	51/2 wide, 12 140×30	$\begin{aligned} & \text { ong, } 23 / 1 \text { deep, } \\ & 305 \times 70) \end{aligned}$	$\begin{aligned} & 7 \times 1.5 \times 1.25(178 \times \\ & 38 \times 32) \end{aligned}$
Weight:	$\begin{aligned} & \text { net } 2 \mathrm{lb}(1,2 \mathrm{~kg}) \\ & \text { shipping } \Delta \mid \mathrm{b} .(1,8 \mathrm{~kg}) \end{aligned}$		pping 3 b, ($1,4 \mathrm{~kg}$)	net $6 \mathrm{lb} .(2.7 \mathrm{~kg})$, sh	hipping $9 \mathrm{lb} .(4.1 \mathrm{~kg})$	$\begin{aligned} & \begin{array}{l} \text { net } 2 \mathrm{lb} \cdot(0,9 \mathrm{~kg}), \\ \text { shipping } 3 \mathrm{lb} .(1,4 \mathrm{~kg}) \end{array} \end{aligned}$
Price:	354A - $\$ 390$	355C: $\$ 180$ Manual 355E: $\$ 275$ Program. mable	355D $\$ 180$ Manual$355 \mathrm{~F}: \$ 275$Program- mable	393: $\$ 775$	394A: \$725	$33000 \mathrm{~A}: \$ 665$ 33000 B 33000 C $360000: \$ 690$

Precision Variable Attenuators

Operation of these direct-reading, precision attenuators depends on a mathematica! lave, rather than on the resistivicy of the attenuating material. Acrurste attenuation from 0 so 50 dB to to 60 dB for S 382 C) is assured regardless of temperacure and humidity. The
instruments can handle considerable porer and feature large, easily read dials. In addition, the $\$ 382 \mathrm{C}$ achieves both long electrical length and short physical dimensions through dielectric loading. The result is an S-band attenuator which is only $251 / 4$ inches long and yet is more accurate than previously available units.

HP Model	S382C	J382A	H382A	X382A	P382A	K382A1	R382AI
Frequency range ($\mathrm{GHz}_{\mathbf{z}}$):	2.6-3.95	5.3 -8.2	$7.05 \cdot 10.0$	8.2-12.4	12.4 -18.0	$18.0 \cdot 26.5$	26.5 - 40.0
$\begin{array}{ll}\text { Weveguide size } & (\text { in): } \\ & (E \mid A)\end{array}$	$\begin{aligned} & 3 \times 11 / 2 \\ & \text { WR284 } \end{aligned}$	$\begin{aligned} & 11 / 2 \times 3 / 4 \\ & \text { WR137 } \end{aligned}$	$\begin{aligned} & 11 / 4 \times 5 / 8 \\ & \text { WR112 } \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & \text { WRSO } \end{aligned}$	$\begin{gathered} .702 \times .391 \\ W R 62 \end{gathered}$	$\begin{gathered} 1 / 2 \times 1 / 8 \\ \text { WRA2 } \end{gathered}$	$\begin{gathered} .360 \times .220 \\ W R 28 \end{gathered}$
Power handling capacily, watts, average continuous daty:	10	10	10	10	5	2	1
Size length, in. (mm): height, in. $(\mathrm{mm}):$ depth, in. $(\mathrm{mm}):$	$\begin{array}{cc} \hline 251 / 4 & (641) \\ 6 & (152) \\ 8 & (203) \end{array}$	$\begin{array}{cc} 25 & (635) \\ 7 \% / 8 & (200) \\ 6.3 / 16 & (157) \end{array}$	$\begin{array}{cc} 20 & (908) \\ 7.15 / 16 & (202) \\ 61 / 2 & (165) \\ \hline \end{array}$	$155 / 6$ (397) $75 / 8$ (194) $4.11 / 16$ (119)	$121 / 2$ (318) $73 / 4$ (197) $43 / 4$ (121)	$75 / 8$ (194) $61 / 8$ (156) $43 / 8$ (121)	$63 / 8$ (162) $61 / 3$ (156) $43 / 4$ (121)
Weight net, $\mathrm{lb}(\mathrm{kg}):$ shipping, lt $(\mathrm{kg}):$	18 $(8,1)$ 22 $(9,9)$	$\begin{array}{ll} 13 & (5,9) \\ 17 & (7,7) \end{array}$	$\begin{array}{ll} 11 & (5,0) \\ 15 & (6,8) \end{array}$	$\begin{array}{ll} 6 & (2,7) \\ 8 & (3,6) \end{array}$	$\begin{array}{ll} 5 & (2,3) \\ 8 & (3,6) \end{array}$	$\begin{array}{ll} 3 & (1,4) \\ 6 & (2,7) \end{array}$	$\begin{array}{ll} 3 & (1,4) \\ 6 & (2,7) \end{array}$
Price:	\$1800	\$700	\$675	$\$ 425$	\$500	\$725	\$800

For all 382A Models
Incremental attenuation range: 0 to 50 dB .
Residual attenuation: less than 1 dB .
Reflection coetficient: less than 0.07 (1.15 SWR, 23.1 dB return loss).
Accuracy: $\pm 2 \%$ of reading in dB ; or 0.1 dB , whichever is greater. includes calibration and fequency error.

For Model S382C
Calibrated attenuation range: 0 to 60 dB (above residual at. ienuation).

Residual attenuation: less than 1 dB .
Accuracy: $\pm 1 \%$ of reading in dB , or 0.1 dB , whichever is greater, from 0 to 50 dB ; $\pm 2 \%$ of reading above 50 dB ; includes calibration and frequency error.

Reflection coefficient: less than 0.091 (1.2 SWR, 20.8 dB Recurn loss), 2.6 to 3 GHz ; less than 0.07 (1.15 SWR, 23.1 dB return loss), 3 to 3.95 GHz .
Degrae dial: 0 to 90°; calibrated in $0.0 t^{\circ}$ increments.

Circular flange adapters: K.band (JG-A25/U) 11515A, \$60 each: R-band (UG-381/U) 11516A, \$50 each.

General-Purpose Attenuators

Variable flap attenuators provide a siniple. convenient means of adjusting waveguide power level or isolating source and load. They consist of a slotted section in which a matched resistive strip is inserted. The degree of strip penetration determines attenuation. A dial shows average reading over the frequency band, and a shielded dust cover reduces external radiation and eliminates hand capacity effects. Attenuation is variable fron: 0 to 20 dB . Dial calibration is accurate within $上 1 \mathrm{~dB}$ fron 0 to $10 \mathrm{~dB}, \pm 2 \mathrm{~dB}$ from 10 to 20
dB. Maximum reflection coefficient is 0.07 (1.15 SWR, 23.1 dB return loss).

Specifications, 375A

$\underset{\text { Model }}{\mathrm{HP}^{2}}$	Frequenay (OH_{2})	Powerdisspatlon (watts)	Length		Fitswavegulde sles (ln.)	Prioe
			(ln.)	(mm)		
X375A	8.2-12.4	2.0	7-4/5	198	$1 \times 1 / 2$	\$225
P375A	$12.4 \cdot 18.0$	1.0	71/8	184	. $702 \times .391$	\$250

774D-777D Dual Directional Couplers

The economical 774D-777D couplers cover frequency spreads of more than two-to-one, each centered on one of the important VHF/UHF bands. With their high directivity, these couplers are ideal for reflectometer applications. Furthermore, the close tracking of the auxiliary arms makes these couplers particularly useful for refectometers driven by externally-leveled sweep oscillators such as HP8690B and $8620 \mathrm{~A} / \mathrm{B}$. The forward signal is detected and used to level the output of the sweep oscillator while the reflected signal, after detection is applied to a display device. Changes in the leveled power due to the coupling rariation in the forward acm are virtually cancelled by a similar coupling variation in the reverse arm.

778D Dual Directional Coupler

The HP778D is a $20-\mathrm{dB}$ dual directional coupler with a frequency range of 100 MHz to 2 GHz . High directivity
and close tracking (typically 0.7 dB and 4°) of the auxiliary arms make it ideal for reflectometer measurements of complex refection coefficient. Maximum errors in such measurements are:

Freq, Ranga (GHz)	Maximum Magntuda Error $\Delta \Gamma_{L}$	
	Swept Frequency	Flxod Froquency
0.1-1	$\pm\left(0.015+0.02\|\Gamma \mathrm{~L}\|+0.05\left\|\Gamma_{\mathrm{L}}\right\|^{2}\right)$	$=\left(0.015+0.05\left\|\Gamma_{L}\right\|^{2}\right)$
1-2	$\pm\left(0.025+0.02\left\|\Gamma_{\mathrm{L}}\right\|+0.05\left\|\Gamma_{\mathrm{L}}\right\| 2\right)$	

Maximum phase ertor $= \pm \sin ^{-1}\left(\Delta \Gamma_{\mathrm{L}} / \Gamma_{\mathrm{L}}\right)$.
$\left|\left|\Gamma_{\mathrm{L}}\right|=\right.$ reflection coefficient of unknown.
Errors include directivity, source match, and tracking, but do not include any detection errors.

The 778D is provided with type " N " connectors. APC.7 is available as an option, and adapters to other connectors are available on request.

Specifications 774D, 775D, 776D, 777D, 778D

HP Model	Frequensy Range	Coupling Atenuation	Couplling Vaplatlon	Direotivity	SWR	Max Ingut	Comreotor	Length $\ln (\mathrm{mm})$	Prise
7740	$215-450 \mathrm{MHz}$	20 dB	± 188	40 dB	$\begin{aligned} & 1.15 \text { pri } \\ & 1.2 \text { aux } \end{aligned}$	50 W avg. 500 Wpk ,	pri: type N , one male, one female	$\begin{gathered} 9-1 / 16 \\ (230) \end{gathered}$	\$300
7750	450.940 MHz	20 8	$\pm 1 \mathrm{~dB}$	40 dB	$\begin{aligned} & 1.15 \text { pri } \\ & 1.12 \text { aux } \end{aligned}$	0.1 sec duty cycle	aux: lype N, female	$\begin{gathered} 9.1 / 16 \\ (230) \end{gathered}$	\$325
776D	940-1900 ${ }^{1 / 2 z}$	20 dB	$\pm 1 \mathrm{dBl}$	40 dB	$\begin{aligned} & 1.15 \mathrm{pri} \\ & 1.2 \mathrm{aux} \end{aligned}$			$\begin{gathered} 6-5 / 16 \\ (161) \end{gathered}$	\$325
7770	$1900-4000 \mathrm{MHz}$	20 dB	± 0.41	$30 \mathrm{d8}$	$\begin{aligned} & 1.2 \mathrm{pri} \\ & 1.3 \mathrm{aux} \end{aligned}$			$\begin{gathered} 81 / 8 \\ (225) \end{gathered}$	\$350
778D	$100-2000 \mathrm{MHz}$	20 dB nominal	$=1 \mathrm{~dB}^{2}$	Inc. port: $36 \mathrm{~dB}, 0.1-1 \mathrm{GHz}$, $32 \mathrm{~dB}, \mathrm{I}-2 \mathrm{GHz}$ Refl. Dort: 30 dB , $0.1-2 \mathrm{GHz}$	1.1 all	50 w avg, 10 kW pk	Pri line ${ }^{3}$ N -male input, N -fermale output Aux arms: N -female	$\begin{aligned} & 161 / 8 \\ & (425) \end{aligned}$	$\begin{aligned} & \$ 450 \\ & \text { Opptoll: } \\ & \text { add } \$ 25 \\ & 0 \mathrm{p} 012 \text { no } \\ & \text { extra charge } \end{aligned}$

[^48]
779D directional coupler

Representing the latest achicvement in broadband coaxial couplers, the HP 779D spans more than two octaves from 1.7 to $12 .\{\mathrm{GHz}$ with excellent directivity. With increased coupling factor (typically 2 A dB), the 779D is useful down to 500 MHz . Upper frequency usefulness extends to 18 GHz with directivity reduced to about 15 dB .

The 779D is normally supplied with type N^{N} connectors on all ports. On special order, a precision APC-7 connector can be supplied on any, or all. ports.

790 directional couplers

The 790 directional couplers are ultra flat, high direcrivity couplers which are ideal for power-monitoring applications in coaxial systems. Outpur coupling (ratio of output power from main and auxiliary arms) is specified rather than coupling factor. Thus, no correction factor is required to account for insertion losses in the main arm.

780 directional detectors

The 780 serics direcrional detectors are directional couplers with built -in crystal detectors. The coupless have Rat frequency

response and good directivity, while the detectors have good frequency response plus high sensitivity. The configuration of the directional detector reduces the number of ambiguities over the standard system of separate coupler and detector and makes possible tighter correlation between main-arm power and derected signal.

The directional detector is well suited for sweep oscillator leveling and can also be used to monitor power with a voltmeter or oscilloscope.

Specifications, 779D, 790 Series

$H^{1 P}$ Model	$\begin{aligned} & \text { Froquenoy } \\ & \text { range (} \mathrm{aHz}_{2} \text {) } \end{aligned}$	Mean oulput ooupling (dB) ${ }^{1}$	Ourput soupling varlation (dB) ${ }^{2}$	Direa- Husty (dB) ${ }^{2}$	Equaly. source matoh2,1	Max. promary line SWR	Max. aux. arm SWR	Max. Input (W)	Max. Insertion loss (dB)4	Length		Shlpplng wehht		Prise
										(In)	(mm)	(tb)	(kg)	
7790	1.7 to 12.4	20 ± 0.5	$<=0.75$	30,1,7-4 GHz 26, 4.12.46 Hz	1.2	1.2	1.2	50	0.5	7\%/4	196	3	1,4	\$550
7960	0.96 to 2.11	20 ± 0.5	± 0.2	30	1.13	1.152	1.202	50	0.4	6	152	2	0,9	5275
7970	1.9 to 4.1	20 ± 0.5	± 0.2	26	1.16	$1.15{ }^{2}$	1.252	50	0.5	4//9	124	2	0,9	\$300
798C	3.7108 .3	10×0.3	± 0.3	20	1.25	1.20	1.20	10	0.8	4/8	124	2	0,9	\$325

For all models: RF connectors: primary line: type N, one male (input), one ferale; auxiliary arm: type N female. 5
idfference in dB between power out of primary llne and auxiliary arm.
2Swal-frequency tester.
The apparent SWR at the output port of a directional coupler when it is used in a closed.loop levellag system.

- Preludes loss doe to coupiling.
sType N connectors mate compatibly with connectors whose dimenslons conform to MIL-C-39012 or MiL.C.71.
Specifications, 780 Series

HP Model	Frequenoy range (GHz)	Freq. resp, (dB) 1	$\begin{gathered} \text { Low- } \\ \text { Joval } \\ \text { sens. } \\ (\mu V / \mu W) \end{gathered}$	Direoivilty (d⿴)	Equly. saurce SWR 2	Max. SWR	Max. Input (W, peok or avg.)	Max. Insertion loss (dB)	Langth		Shipplng walght		Price
									(in)	(mm)	(ib)	(ka)	
7860	0.95 to 2.11	$=0.2$	>4	30	1.13	1.15	10	0.4	6	152	2	0,9	\$300
787 D	1.9 to 4.1	± 0.2	>4	26	1.16	1.15	10	0.5	4/8	124	2	0,9	\$300
788C	3.7 t0 8.3	± 0.3	>40	20	1.25	1.20	1	0.8	47/8	124	2	0.9	\$325
789C	8.0 to 12.4	$=0.5$	>20	17	1.25	1.40	1	1.2	11\%/8	295	3	1,4	\$550

I Includes coupler and cetector varlation with frequency as pead on a meter calbrated for squarelaw delactors (e.g. HP 415E SWf Meter).
2 The apparent reflection coefflcient at the output of an RF generating system, usling a directianal detector in a closed-lood levellng system.
3 Type N conneciors mate compatibly with connectors whose dimensions conform to MiL.C. 39012 or MiL.C.71.

For all models

Detector output impedance: $15 \mathrm{k} \Omega$ max. shunted by approx. 10 pF .
Detector element: supplied.
Noise: $<200 \mu \mathrm{~V}$ peak•to-peak with CW power applied to produce 100 mV output.
Detector output polarity: negative.
Detector output connector: BNC female.
RF connectors: ${ }^{3}$ Type N, one male (input). one female (789C: both fernale).

Options

2. Furnished with load resistor for optimum square law characteristics at $24^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right),< \pm 0.5 \mathrm{~dB}$ variation from square law over a cange of at least 30 dB from low level up to 50 mV peak output (brorking into external load $>75 \mathrm{k} \Omega$): sensitivity typically one-fourth of unloaded sensitivity; add $\$ 20$.
3. Positive polarity detector output; no additional charge.

The HP 752 Directional Couplers are important tools in waveguide measurements. They can be used to monitor power, measure refections, mix signals, or isolate signal sources or wavemeters.

Each coupler has an overall directivity of better than 40 dB (including reflection from built-in termination and flange) over its entire range. Performance characteristics are unaffected by humidity, temperature or time, thus making these units especially useful in microwave "standards" measurements. Coupling factors are 3,10 and 20 dB ; mean coupling accuracy is $\pm 0.4 \mathrm{~dB}$ ($\pm 0.7 \mathrm{~dB}$ for K . and R bands); and coupling variation vs frequency is $\pm 0.5 \mathrm{~dB}$ ($\pm 0.6 \mathrm{~dB}$ for R 752 D).

Used together and connected back to back, two couplers are most useful with the HP 8620A Sweep Oscillator (see Signal Sources) in broadband reflection and SWR measurements. One directional coupler samples power traveling toward the load, and the detected sample can be used to

DIRECTIONAL COUPLERS Easy-to-use, precision instruments

Model 752A,C,D

Specifications, 752 Series

Band 1,2 (profix)	Frequency (GHz)	Fies waveguide sles (ln)	Mean odupling accuracy (dB) 3,4	SWR 5,5 main gulde		$\begin{gathered} \text { Avepage } \\ \text { sower aux. } \\ \text { gulde } \\ \text { load (W) } \\ \hline \end{gathered}$	Length (in)			Shipping welght		Prioa
				7524	752C,D		A	C	D	(lbs)	(kg)	
$J^{\prime \prime}$	5.85-8 2	$11 / 2 \times 3 / 4$	± 04	11	105	1	261/2	25-9/16	25-9/16	8	3,6	\$300
H	$705-10$	$11 / 4 \times 5 / 8$	$=04$	11	105	1	185/9	171/2	171/2	4	1,8	\$400
X	82-12 4	$1 \times 1 / 2$	± 0.4	11	1.05	1	16-11/16	15-11/16	15-11/16	3	1,4	\$200
P	$12 \mathrm{~A}-18$	702×391	± 04	11	1.05	1	$131 / 4$	121/4	121/4	2	10,9	\$225
$K \dagger$	18-26.5	$1 / 2 \times 1 / 4$	$=07$	11	1.05	1/2	103/8	9-15/16	9-15/16	2	0.90	\$275
R \dagger	26.5-40	360×220	-07	11	105	1/2	115/8	85/8	8-23/32	2	0,90	\$300

[^49]

The HP 8470 A and 8472 A extend the frequency range of coaxial crystal detectors to 18 GHz . Like the 423 A and 424 A Crystal Devectors, the 8470 A and 8472 A combine extremely flat frequency response with high sensitivity and lor SWR , making them extremely useful as the detecting element in closed loop leveling systems. Matched pairs are available for applications requiring the utmost in detector tracking, and all but the 8472 A can be supplied arith video loads for optimum conformance to square law over a range of at least 30 dB .

The 422A Crystal Derectors are convenient waveguide detectors which cover K- and R-bands. They have a dynamic range of 40 dB or more, making them suitable for reffectomerer as well as general-purpose applications.

The 420A is a low cost crystal detector which covers the coaxial range from 10 MHz to 12.4 GHz , making it ideal for general-purpose video detection. The 420 B is essentially the same unit as the 420A with the addition of a selcted video
load for oprimum square law characteristics in the 1 to 4 GHz range.

X485B Detector Mount

The X485B Detector Mount permits the accurate matching of waveguide sections to a bolometer element. The mount is tuned by a variable short, can be used with a barretter or, where SWR is not critical, with a silicon crystal.

Specifications, X485B ${ }^{1}$

$\begin{aligned} & \text { HP } \\ & \text { Modol } \end{aligned}$	Frequanoy range (GRi)	Maximum SWR ${ }^{2}$	$\underset{\substack{\text { Fits wavegulde } \\ \text { size }}}{\text { and }}$		Lenuth		Price
			(In_{2})	(E1A)	(I.	(mm)	
X485日 ${ }^{\text {3 }}$	$8.2 \cdot 12.4$	1.25	$1 \times 1 / 2$	WR90	8-7/16	163	\$150

- Detector eloments ara no: supplled
with Welnschel 1180 P - 8 barretter
way use 1 N21 or $1 N 23$ crystal for maximum detaction sensflivity where SWR is not critical

Specifications

$\underset{\text { HP }}{\text { Modal }}$	Frequenay Range GHz	Frequenay Rosp. (dB)	Low-Level Sensitlviy ($\mathrm{mV} / \mu \mathrm{W}$)	MaxImum SWR	RF Input	Matohed Palr Avallable	SquareLaw Load Avallabla	Length		Shlpplng Welght		Price
								(In.)	(mm)	(lb.)	(kg)	
8471A	$\begin{aligned} & 100 \mathrm{KHz}_{-} \\ & 1.2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.6 \pm \mathrm{fyp} \\ & =0.1 / 100 \mathrm{MHz} \\ & =0 \end{aligned}$	>0.35	Typically 1.3	$\begin{aligned} & \text { BpC } \\ & \text { Male } \end{aligned}$	No	No	21/4	70	(1)	0.5	\$ 50
423 A	0.01-12.4	± 0.2 /octave $108 \mathrm{CHz}=0.5$ overall	>0.4	$\begin{aligned} & 1.2104 .5 \mathrm{GHz}_{2} \\ & 1.35,4.5-7 \mathrm{GHz} \\ & 15,7-12.4 \mathrm{GHz} \end{aligned}$	Type N Male	Yes ${ }^{1}$	Yes ${ }^{2}$	2-15/32	63	0.5	0.2	150
420A	.01-12.4	$\pm 3.5 \mathrm{~dB}$	>0.1	3.0	$\begin{aligned} & \text { Type N } \\ & \text { Male } \end{aligned}$	No	No	3	76	0.5	0.2	65
420 B	$\begin{aligned} & \text { load } \mathrm{GHz} \text { with } \\ & \text { lod } \end{aligned}$	$=3$	>0.05	3.0	Type N Male	Yes ${ }^{1}$	Yes ${ }^{2}$	3	76	0.5	0,2	95
8470A	0.01-18	$\begin{aligned} & \pm 0.2 / \mathrm{octave} \\ & 108 \mathrm{GHz} \\ & \pm 0.5 \mathrm{to} 12.4 \mathrm{GHz} \\ & =10 \text { verall } \end{aligned}$	>0.4	$\begin{aligned} & 1.2 \text { to } 4.5 \mathrm{GHz}^{2} \\ & 1.35 \text { to } 7 \mathrm{GHz} ; \\ & 1.5 \text { to } 2.4 \mathrm{GHz} ; \\ & 1.7 \text { to } 18 \mathrm{GHz} \end{aligned}$	APC. 7	Yes ${ }^{1}$	Yes	21/r	64	1	0.5	190
8472A	0.01-18	Same as 8470A	>0.4	Same as 8470A	$\begin{aligned} & \text { SMA } \\ & \text { Maide } \end{aligned}$	Yes ${ }^{1}$	No	21/2	64	0.2	0.1	175
$\begin{aligned} & \hline 8472 \mathrm{~A} \\ & \text { Opt. } 100 \end{aligned}$.01-18	Same as 8470A	>0.4	Same as 8470A	$\begin{aligned} & \begin{array}{l} \text { Osim } \\ \text { Male } \end{array} . \end{aligned}$	Yes ${ }^{\prime}$	No	2-1/16	53	0.2	0.1	190
S424A	2.60-3.95	± 0.2	>0.4	1.35		Yes ${ }^{3}$	Yes ${ }^{2}$	2-7/16	62	2	0.9	210
G424A	3.95-5.85	± 0.2	>0.4	1.35		Yes ${ }^{3}$	Yes ${ }^{2}$	2-1/16	52		0.9	200
J424A	5.30-8.20	± 0.2	>0.4	1.35	Wave.	Yes ${ }^{3}$	Yes ${ }^{2}$	1/1/	48	1	0.5	200
H424A	7.05-10.0	± 0.2	>0.4	1.35	Guide	Yes ${ }^{3}$	Yes ${ }^{2}$	1-9/16	40	0.6	0.3	190
X424A	8.20-12.4	=0.3	>0.4	1.35	Cover	Yes?	Yes ${ }^{2}$	13/8	35	0.5	0.2	170
M424A	10.0-15.0	± 0.5	>0.3	1.5	Flange	Yes ${ }^{2}$	Yes ${ }^{2}$,	25	0.5	0.2	290
P424A	12.4-18.0	± 0.5	>0.3	1.5		Yes ${ }^{3}$	Yes ${ }^{2}$	15/16	24	0.4	0.2	210
K422A ${ }^{\text {S }}$	18.0-26.6	± 2	$x 0.3$	2.5		Yes ${ }^{\text {b }}$	Yes ${ }^{2}$	2	$5!$	0.6	0.3	350
R422A ${ }^{3}$	26.5-40.0	± 2	$x 0.3$,		Yes ${ }^{4}$	Yes ${ }^{2}$	2	51	0.6	0.3	350

[^50][^51]

8050

817A

Slotted Lines, Detectors

Hewlett-Packard offers a complete line of slotted lines, detectors and carriages covering the frequency range of 5-40 GHz . A summary of this product group is presented on the following three pages.

805C Coaxial Slotted Line, $0.5 \cdot 4 \mathrm{GHz}$
Model 805 C is a coaxial slotted line with an integral probe circuit tunable from 500 to $4,000 \mathrm{MHz}$. The slotted line consists of two parallel planes and a rigid center conductor. This configuration results in negligible slot radiation, minimum sensitivity to variation in probe depth or centering, and greater strucutral stability.

Specifications, 805C
Frequency range: 500 to $4,000 \mathrm{MHz}$.
Impedance: 50?.
Residual SWR: less than 1.04:1.
Connectors: type N, one male/iemale.
Calibratlon: metric, cm and mm; vernier reads to 0.1 mm .
Detector probe: tunable; detector may be 1 N21B crystal (sup. plied) or 821 series barretter or selected $1 / 100$-amp in. strument fuse.
Accessorles furnished: 11511A shorting jack; 11512A shorting plug.
Accessory availabla: 11510A carrying case, $\$ 100$.
Price: HP 805C, \$1000.

817A Coaxial Swept Slotted Line System, 1.8 .18 GHz
The 817A is a fully tested, complete swept slotted line system that enables you to make accurate swept-frequency SWR measurements in coax from 1.8 to 18 GHz . The 817 A system consists of an 816 A Coaxial Slotted Line, an 809 C Carriage with baseplate, and a 448A Slotted Line Sweep Adapter.

Specifications, 817A

Frequency range: 1.8 to 18 GHz .
lmpedance: $50 \Omega \pm 0.2 \Omega$.
Output connector: APC. 7 or type N female, depending upon which end of the 816A is connected to the load.
Residual SWR:
APC-7 connector: 1.02-1.04 depending on frequency cov. erage.
Type N connector: $1.04 \cdot 1.06$ depending on frequency coverage.
Accessories furnished: 11512 A N male short, 11565 A APC. 7 short.
Dimensions (maximum envelope): $131 / 2^{\prime \prime}$ long, $7^{\prime \prime}$ wide, $7^{\prime \prime}$ high ($343 \times 178 \times 178 \mathrm{~mm}$).
Weight: net, $15 \mathrm{lbs}(6,5 \mathrm{~kg})$; shipping $20 \mathrm{lbs}(9,0 \mathrm{~kg})$.
Price: Model 817A, \$1100.
Option 022: type N male connector in lieu of APC-7, less $\$ 15$.

809C Carriage

The 809 C Carriage operates with the 816 A Coaxial Slotred Section and four 810B Waveguide Slotred Sections. Four detectors can be used with the 809 C : the $442,444 \mathrm{~A}$, 447 B , and 448 A . The carriage has a centimeter scale with a vernier reading to 0.1 mm , and provision is made also for mounting a dial gauge if more accurate probe position reading is required.
Price: $809 \mathrm{C}, \$ 300$.

816A Coaxial Slotted Section, 1.8-18 GHz
 (Used with 809 C Carriages and 447 B or 448 A Detector Probes)

The 816A consists of two parallel planes and a rigid center conductor. This configusation virtually eliminates radiation and minimizes the effect of variation in probe penetration and centering It is fitted with one APC. 7 and one type N female connector.

Speciflcations, 816A
Frequency: 1.8 .18 GHz .

Residual VSWR:

APC-7 1.02-1.04 depending on frequency coverage.
type N 1.04-1.06 depending on frequency corerage.
Length: $93 / 4$ inches (248 mm).
Weight: net, $11 / 2 \mathrm{lbs}(0,68 \mathrm{~kg}$) ; shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Accessories furmished: 11512A type N male short; 11565A
APC-7 short.
Price: HP 816A, $\$ 350$.
Option 011: both connectors APC-7, add $\$ 25$.
810B Slotted Sections, 5.3.18 GHz
(Used with 809C Carriage and 442B/444A Detector)
Waveguide slotted line measurements in the frequency
range 5.3-18 GHz are made using the 810 B Slotted Section, the 809 C Carriage and 444 A Probe or 440 A plus 442B Probe combination.

Specifications, 810B

$\begin{gathered} \mathrm{HP} \\ \text { Modes } \end{gathered}$	Frequency range (GH2)	FHs Wavogulde shre EIA	Equalvalen!	Price
J8108	5.30-8.20	WR137	UG441/U	\$275
H8108	7.05-10.0	WR1)2	UGI38/U	215
$\times 810 \mathrm{~B}$	8.20-12.4	WR90	UG135/U	205
P8108	12.4-18.0	WR62	U6419/U	225

444A Untuned Probe, 2.6-18 GHz

The 444A Untuned Probe, for use with HP 810 B Wave. guide Slotted Sections, consists of a crystal, plus a small an. tenna in convenient housing. The probe is held in position by friction or may be fixed by a locking ring. No tuning is required and sensitivity equals or exceeds many elaborate single and double-tuned probes. The 444A firs the 809 C Carriage or other carriages with a $3 / 4$ inch (19 mm) mounting hole. Frequency range is 2.6 to 18 GHz .
Accessary turnished: 11506A Probe Extension Kit.
Price: HP 444A, \$65.

447B Detector

Model 447 B consists of a crystal diode detector plus a small anienna probe for sampling energy in HP 816 A Coaxial Slotled Lines. The untuned probe is extremely sensitive over its frequency range of 1.81018 GHz . Such performance is achieved through the use of a unique, easily replaced diode package developed by Hewlett-Packard. The 447B firs HP 809 C Carriage or other carriages with a $3 / 4^{\prime \prime}(19 \mathrm{~mm})$ mounting hole.
Price: HP 447B, $\$ 125$.

The 440 A is a tunable mount used for detecting RF energy in coaxial systems or in conjunction with the HP 442B in waveguide or coaxial slotted sections. Detector (not supplied) can be a 1N21 or 1N23 Crystal or 821 Series Barretter.
Price: 440A, \$125.

442B Broadband Probe, $2.6-12.4 \mathrm{GHz}$

Model 442 B is a probe whose depth of penetration into a slotted section is variable. Held in position by friction, it may be fixed in place by a locking ring. Sampled RF appears at a type N jack. It can be connected to a 440 A Detector Mount to form a sensitive and convenient tuned RF detector for HP $810 B$ Waveguide Slotted Sections. The 442B fits the 809 C Carriage. Frequency range is 2.6 to 12.4 GHz .
Price: HP 442B, $\$ 60$.

448A Slotted Line Sweep Adapter, (detector probe) $1.8-18 \mathrm{GHz}$

The 448 A consists of a short slotted line and two matched detectors with adjustable probes. One detector levels the sig. nal source, the other monitors the standing waves in the 816A.

Specifications, 448A

frequency range: $1,8 \cdot 18 \mathrm{GHz}$.
Connectors: type N, one male/female.
Weight: net, 7 oz ($0,20 \mathrm{~kg}$); shipping, $14 \mathrm{oz}(0.40 \mathrm{~kg})$. Price: $448 \mathrm{~A}, \$ 400$.

815B Slotted Section, 18-40 GHz
(Used with 814B Carriage and 446B Detector)
The 815 B Wiaveguide Slotted Sections are designed to 6 t the 814 B Carriage. Like the lower-frequency slotred sections, each 815 B is precision-manufactured, broached and checked with precision gauges for careful control of guide wavelength. The slot is rapered to insure a low SWR.

Specifications, 825B

	K815B	R816B
Frequency range $\langle\mathrm{GHz} ;:$	181026.5	26.51040
Residual SWR:	1.01	1.01
Overall length:	$7.9 / 16^{\prime \prime}(192 \mathrm{~mm})$	$7-9 / 16^{\prime \prime}(192 \mathrm{~mm})$
Price:	$\$ 675$	$\$ 700$

- Clicular flange adapters: K-band \{ug485/J) [1515A, $\$ 60$ each, R-band (UG381.U) 11516 A , $\$ 50$ each.

814B Carriage

The HP 814 B Carriage is designed for use with the HP K 815 B (18 to 26.5 GHz) and R815B (26.5 to 40 GHz) Waveguide Slotted Sections and HP 446B Untuned Pcobe. The carriage is equipped with a dial indicator for accurate reading. Slotted sections are easily interchanged.
Price: HP 814B, $\$ 660$.

446B Broadband Detector

The HP 446B is a broadband detector and probe which consists of a modified 1 N 53 silicon diode in a carefully designed shielded housing. No tuning is required, and probe penetration may be varied quickly and easily. Designed for use with the 814 B Carriage, the 446 B has a frequency range of 18 to 40 GHz .
Price: HP 446B, $\$ 275$.

905A, 907A, 911 Sliding Loads

The $905 \mathrm{~A}, 907 \mathrm{~A}$ and 911 A are movable 500 , low reflection loads for precision measurements. The 905A and 907A are supplied with three interchangeable connectors, N -male, N.female and APC-7. The 911A is supplied with SMA male and female.

HP Madal	Freguanoy range	Load SWR	Pows ralng	Length n. $\langle\mathrm{mm}\rangle$	Shleping wolght	Prile
9054	1.8 .18 GHz	1.05	IW ave 5kN ok	$\begin{aligned} & 111 / 2 \\ & (440) \end{aligned}$	$\underset{(1,4 \mathrm{~km})}{3 / \mathrm{D}}$	\$300
907A	1.18 6Hz	1.1, 1-1.5GHz: $1.05,15-18 G H z$	1W ove. 5KW ph	$\begin{aligned} & 30 \% \\ & \text { (718) } \end{aligned}$	$\begin{gathered} 916 \\ (4,1 \mathrm{~kg}) \end{gathered}$	$\$ 450$
9114	2.18 GHz	1.1, 2-4 GHz: $1.05,4-18 \mathrm{GHz}$	1W avg. 5kW of	$\begin{aligned} & 14 Y / \\ & (380) \end{aligned}$	$\left(\begin{array}{c} 310 \\ (1,4 \mathrm{~kg}) \end{array}\right.$	\$250

908A, 909A Terminations
The 908A and 909A Terminations are low-refection loads for terminating 50Ω coaxial systems in their characteristic impedance:

908A 909A Speclfications

11511 A, 11512A, $11565 A$ Shorts
These shorts are used for establishing measurement planes and known reflection phase and magnitude in 500 coaxial systems.

Price: 11511 A N.female $\$ 10,11512 \mathrm{~A}$ N-male $\$ 10$, 11515A APC.? \$25.

910A-B, 914A Waveguide Terminations

The 910A. B are fixed termination for waveguide systems. The 914A-B are similar to the 910A.B, except that its absorptive element is morable and a lockable plunger controls the position of the element.

910A/B, 914A/B Specifications

Medor	Fraqueney Fanci $\left(\mathrm{OH}_{2}\right)$	9WR	Fower Aniags	Type	$\begin{gathered} \text { Wryoguldo } \\ \text { size } \\ \text { (EIA) } \end{gathered}$	Priba
1910A	5.3-8.2	1.02	1 wall	lixed	WRI31	595
M910A	1.05-10.0	1.02	1 wall	Fxad	WRIL2	80
X910B	8. 2 -12.4	1.015	1 watt	fxed	WR90	55
P910a	12.4-18	1.02	1 wall	fred	WR62	50
J914A	5.3-8.2	1.01	2	sliding	WRI37	225
H916A	7.05-10.0	1.01	1	sliding	WRII2	200
X914B	8.2-12.4	1.01	1	sliding	WR90	95
PGI4A	12.4-18	1.01	4	sliding	WR6?	175
K914B	18-26.5	101	Y/1	shding	WR42	350
RS148	26.5-40	1.01	1/3	gidine	WR28	400

920A-B, X923A, X930A Shorts
The $920 \mathrm{~A}-\mathrm{B}$ are movable shorts, adjustable tbrough at least half a wavelength at the low end of the band. The X923A is also a movable short, but is adjustable through about two wavelengths at 8.2 GHz . The X930A is a removable short. SWR is less than 1.02 in "open", greater than 125 in "short".

920A-B, X923A Speclfications

Madel	Eraquency Rango (CHz)	Wivegulde SLe E14	Price
J920Ă	5.3-8.2	WRI37	\$200
H920A	7.05-10.0	WR112	165
X913A	8.2-12.4	HR90	150
P9208	12.4-18	WR52	190
K920B	18.0-26.5	WR62	325
R920B	26.5-40.0	WR28	350
X930A	8,2-12,4	WR90	300

MICROWAVE TEST EQUIPMENT

LOW-PASS; BANDPASS FILTERS

Effective elimination of undesirable signals

 Models 360A.D; 362A; 8430A.8436A

These Hewlett-Packard low-pass and bandpass filters facilitate microwave measurements by eliminating undesirable sig. nals (such as harmonics) from the measurement system. Sup. pression of such signals is particularly important in applica. tions such as slotred-line measurements, where harmonics generated by the signal source could otherwise impair measurement accuracy. These filters also can be used as preselectors for the HP 8555A Spectrum Analyzer. As such, they permit the maximum utilization of the analyzer's broad specrrum-width capability while ensuring virtually spurious-free displays.

Specifications, 360 Serjes

HP Model	360A	380B	360 C	3600
Cul-off frequency	700 MHz	1200 MHz	2200 MHz	4100 MHz
Insertion loss	$\leq 1 \mathrm{~dB}$ below 0.9 Imes cut-off frequency			
Rejection	≥ 50 dB at 1,25 times cut-off trequency			
Impedance	50 ohms through pass band; should be matched for optimum periormance			
SWR	<1.6 to within 100 MHz of cut-off$\|$$<1.6$ to within 200 MHz of cut -off			<1.6 to within 300 MH Hz of cut-oft
Connectors	Type N , one male, one female			
Överall (inn.) length $(\mathbf{m} \mathbf{m})$	$\begin{aligned} & 103 / 8 \\ & 276 \end{aligned}$	$\begin{gathered} 7 \cdot 7 / 32 \\ 183 \end{gathered}$	$\begin{gathered} 10.25 / 32 \\ 274 \end{gathered}$	$\begin{gathered} 73 / 6 \\ 187 \end{gathered}$
Center line (in.) to male end (mm)	$\begin{gathered} 21 / 6 \\ 54 \\ \hline \end{gathered}$	$\begin{array}{r} 11 / 8 \\ 54 \\ \hline \end{array}$	-	-
Center line (in.) to female end (mm)	$\begin{array}{r}21 / 2 \\ 57 \\ \hline\end{array}$	$21 / 4$ 57	\square	-
$\begin{aligned} & \text { Shipping } \text { ((b) } \\ & \text { weight }(\mathrm{kg}) \\ & \hline \end{aligned}$	$\begin{array}{r} \overline{2} \\ 0,9 \end{array}$	- ${ }^{2}$	$\begin{array}{r} 2 \\ 0,9 \end{array}$	$0,19$
Price	\$115	\$105	\$96	\$90

Specifications, 362A Series

HP Madel	X 362 A	M362A	P362A	K382A*	R352A*
Passband (GHz)	8.2-12.4	10.0-15.5	12.4-18.0	18.0-26.5	26.5-40.0
Stop band (GHz)	18-37.5	19-47	23-54	31-80	47-120
Passband insertion loss	less than 1 dB	less than IdB	less than 1dB	less than \dB	less than 2 dB
Stopband rejection	at least 40 dB	at leas! 40 dB	at least 40 dB	at least 40 dB	at least 35 dB
SWR	1.5	1.5	1.5	1.5	1.8
Waveguide size, in. (ElA)	$1 \times 1 / 2$ (WR 90)	0.850×0.475 (WR 75)	0.702×0.391 (WR 62)	$1 / 2 \times 1 / 4$ (WR 42)	0.360×0.220 (WR 28)
Length, in. (mm)	5.11/32(136)	4-15/32(114)	$3-11 / 16$ (94)	$21 / 2(64)$	1-21/32(42)
Shioping weight. lb (kg)	$2(0,9)$	2(0,9)	13/15(0,37)	$1 / 3(0,15)$	1/4(0.11)
Price	\$450	\$350	3375	\$385	\$420

tiCircular flange adapters: K-band (UG425/U), HP 11515A, $\$ 60$ each; R-band (UG-381/U), HP 11516A, \$50 each.

Specifications, 8430 Series

HP Model	Passhand frequasicy(OHz)	Max. passhand \|nsertion loss	Rejectlon band attenustan				Dimensfons		Shipging woight		Prico
			Balow passhand		Above passhand						
			Frequency		Frequenoy						
			(GHz)	Attenuatlon	(OHz)	Attenuatlon	(ln.)	(mm)	(b)	(K, F)	
8430A	1 10 2	2 dB	≤ 0.8	$\geq 50 \mathrm{~dB}$	2.21020	$\geq 45 \mathrm{~dB}$	$51 / 2 \times 43 / 4 \times 1$	$140 \times 121 \times 25$	3	1,4	\$335
8431A	2104	2 dB	≤ 1.6	$\geq 50 \mathrm{~dB}$	4.41020	$\geq 45 \mathrm{~dB}$	$51 / 2 \times 3 \times 1$	$140 \times 76 \times 25$	3	1,4	\$335
8432A	4 to 6	2 dB	≤ 3.5	≥ 50.88	6.51020	$\geq 45 \mathrm{~dB}$	$41 / 2 \times 2 \times 1$	$114 \times 51 \times 25$	2	0,9	\$335
8433A	6108	$2 \mathrm{d8}$	≤ 5.5	$\geq 50 \mathrm{d8}$	8.5 to 20	≥ 4508	$4 \times 11 / 2 \times 1$	$102 \times 38 \times 25$	2	0,9	\$335
8434A	8 to 10	2 dB	≤ 7.5	$\geq 50 \mathrm{~dB}$	10.51017	$\geq 45 \mathrm{~dB}$	48/8×1×1	$118 \times 25 \times 25$	2	0.9	\$335
8435A	4108	2 dB	≤ 3.2	$\geq 50 \mathrm{~dB}$	8.8 to 20	$\geq 45 \mathrm{~dB}$	$33 / 8 \times 13 / 4 \times 1$	$92 \times 45 \times 25$	2	0.9	\$335
8436 A	81012.4	2 dB	≤ 6.9	$\geq 50 \mathrm{~dB}$	13.5 to 17	$\geq 45 \mathrm{~dB}$	2/8× 1×1	$73 \times 25 \times 25$	1	0,45	\$335

Connectorsi Type \mathbb{N}, one male, one female.

Advantages

High resolution, easy-to-read dial Direct reading Broadband
Accuracy specifed over $20^{\circ} \mathrm{C}$ and 0 to 100% relative humidity

These direct-reading frequency meters allow you to measure frequencies from 5.30 to 40 GHz in waveguide and from 960 MHz to 12.4 GHz in coax quickly and accurately. Their long scale length and numerous calibration marks provide a high resolution which is particularly useful when measuring frequency differences or small frequency changes. Frequency is read directly in GHz so no interpolation or charts are required.

The instruments comprise a special transmission section with a high-Q resonant cavity which is tuned by a choke plunger. A $1-\mathrm{dB}$ or greater dip in output indicates resonance; virtually full power is transmitted off resonance. Tuning is by a precision lead screw, spring-loaded to eliminate backlash. Resolution is enhanced by a long, spiral scale calibrated in small frequency increments. For example, Model X5328 has an effective scale length of 77 inches (1956 mm) and is calibrated in $5 \cdot \mathrm{MHz}$ increments. Resettability is extremely good, and all frequency calibrations are visible so you can tell at a glance the specific portion of the band you are measuring. Except for the J532A, there are no spurious modes or resonances. (See note 4 below.)

Specifications, 532A Series, 536A and 537A

Model	Frequency Rango (OHz)	DlasAsourney$\langle \%$	OverallAocuracy(\%)	Dip at Resomance	Cailbralton Inorement (MHz_{2})	Flis Wavegulde		Equlvalent Flange	Slze In. (mm)			Woldth is (kg)		Prlae
							Ela		Length	Helght	Depth	Net	Shipplng	
536A	0.96-4.20	0.102	0.173	Note 6	2				$\begin{gathered} 6 \\ (152) \end{gathered}$	$\begin{gathered} 91 / 6 \\ \text { (232) } \end{gathered}$	$\begin{gathered} 6 \\ (152) \end{gathered}$	$10(4,5)$	13 (5,9)	§600
537A	3.7-12.4	0,10	0.17	1 dB min	10				$\begin{gathered} 43 / 8 \\ (118) \\ (18) \end{gathered}$	$\begin{gathered} 53 / 4 \\ (146) \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & (89) \end{aligned}$	$4(1,8)$	$5(2,3)$	\$525
3532A	5.30-8.204	0.033	0.065	1 dB min	2	11/2 $\times 1 / 4$	WR137	UG-441/U	$\begin{aligned} & \hline 61 / 4 \\ & (159) \end{aligned}$	$\begin{array}{r} 91 / 8 \\ (232) \end{array}$	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$8(3,6)$	II (5,0)	\$550
H532A	7.05-10.0	0.040	0.075	1 dB min	2	11/6 $\times 1 / 8$	WRI12	UG-138/U	$\begin{aligned} & \hline 61 / 4 \\ & (159) \end{aligned}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 43 / 8 \\ & (1111) \end{aligned}$	$6(2,7)$	$9(4,1)$	\$650
X5328	8.20-12.4	0.050	0.08	$1 \mathrm{d8} \mathrm{~min}$	5	1 $\times 1 / 2$	WR90	UG-39/U	$\begin{aligned} & \hline 41 / 2 \\ & \text { (114) } \end{aligned}$	$\begin{aligned} & \hline 61 / 2 \\ & (156) \\ & (15) \end{aligned}$	$\begin{aligned} & \hline 276 \\ & (73) \\ & \hline \end{aligned}$	$3(1,4)$	$4(1,8)$	\$325
P532,	12.4-18.0	0.068	0.10	1 dB min	5	$\begin{gathered} 0.702 \times x \\ 0.391 \end{gathered}$	WR62	UG-419/U	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{aligned} & \hline 61 / 4 \\ & (159) \end{aligned}$	$\begin{aligned} & 23 / \\ & (70) \end{aligned}$	3 (1,4)	$4(1,8)$	\$350
K532A	18.0-26.5	0.077	0.11	1 dB min	10	$1 / 2 \times 1 / 4$	WR42	UG-595/U	$\begin{gathered} \hline 41 / 2 \\ (114) \\ \hline \end{gathered}$	$\begin{aligned} & 53 / 6 \\ & (137) \end{aligned}$	$\begin{aligned} & 27 / 8 \\ & (73) \\ & \hline \end{aligned}$	$2(0,9)$	3 (1,8)	\$525
R532A	26.5-40.0	0.083	0.12	1 dB min	10	$\begin{gathered} 0.360 x \\ 0,220 \end{gathered}$	WR28	UG-599/U	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{gathered} 51 / 2 \\ (140) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 1 \\ (70) \\ \hline \end{gathered}$	$2(0,9)$	$3(1,8)$	\$525

[^52]\&Because of the wide frequency range of the 532 A , frequencies from 7.6 to 8.2 6H2 can exclie the TE_{112} mode when the dial is set between 5.3 and 5.6 GHz .
Circular flange adapters: X-band ($U G-425 /(U)$ 11515A, $\$ 60$ each; R-band
($\mathrm{UG} .381 / \mathrm{L}$) 11516 A , $\$ 50$ esch.
© 1 dB min., $1.4 \mathrm{GHz}, 0.6 \mathrm{~dB} \mathrm{~min}, 0.96 .1 \mathrm{GHz}$ and 4.4 .2 GKz .

MICROWAVE TEST EQUIPMENT

TUNERS, PHASE SHIFTERS
 Precision instruments for lab or general use Models 870A, 885A

885A Waveguide Phase Shifters

HP 885 A Phase Shifters provide accurate, controllable phase variation in the J-, X -, and P -band frequency ranges. They are particularly useful in microwave bridge circuits where phase and amplitude must be adjusted independently. They also are used in the study of phased arrays.

The instruments are differential phase devices; that is, they add or subtract a known phase shift from the total phase
shift which a wave undergoes in traveling through the device.
The instruments have high accuracy over their entire phase range, -360 to +360 electrical degrees, have low power absorption, are simple to operate, and require no charts or interpolation. They are sturdily built, comprising two $c e c$ -tangular-to-circular waveguide transitions with a dial-driven circular waveguide mid-section. These waveguide phase shifters are housed in cast aluminum containers for extreme rigidity and durability.

Specifications, 885A

	Frequenoy Range (OHz)	Differentlai Phase Angle Rangel	Acoursoy ${ }^{2}$ (The amalles of)	Insertlan Loss ${ }^{3}$	$\begin{gathered} \text { SWR } \\ \text { (max.) } \end{gathered}$	Power Ratlng (Watis)	Wavagulde		Walght				Prics
Model							$\begin{gathered} \text { Slze } \\ (E \mid A) \end{gathered}$	Flange	lb	$\begin{gathered} \mathrm{Net} \\ \mathbf{k g} \end{gathered}$			
J885A	5.3-8.2	$-360^{\circ} 10+360^{\circ}$	$\begin{aligned} & =3^{\circ} 0 r \\ & 0,1 \Delta \phi \end{aligned}$	$<2 \mathrm{~dB}$	1.35	10	WR137	UG.344/U	14	6,3	18	8,2	\$950
X885A	8.2-12.4	-360° to $+380^{\circ}$	$\begin{aligned} & \pm 2^{\circ}\left(x 3^{\circ}, 10-\right. \\ & 12.4 \mathrm{GHz}) \text { or } \\ & 0.1 \Delta \phi \end{aligned}$	$\begin{aligned} & <1 \mathrm{~dB}, 8,2 \\ & 10 \mathrm{GHz},<2 \mathrm{c} \mathrm{~dB}, \\ & 10-12.4 \mathrm{GHz} \end{aligned}$	1,35	10	WR90	UG-39/U	8	3,5	11	5,0	\$725
P885A	12.4-18	-360° to $+360^{\circ}$	$=4^{\circ}$ or $0.1 \Delta \phi$	<3 d8	1.35	5	WR62	UG.419/U	6	2,7	8	3,6	\$900

870A Slide-Screw Tuners

Waveguide slide-screw tuners are used primarily for correcting discontinuities or for "llattening" waveguide systems. They are also used to march loads, terminations, bolometer mounts, or antennas to the characteristic admittance of the waveguide. They are particularly valuable in determining experimentally the position and magnitude of marching structures required in waveguide systems.

HP 870A tuners consist of a waveguide slotted section with a precision-built carriage on which is mounted an adjustable probe. The position and penetration of the probe is adjusted to set up a reflection which is used to cancel out an existing reflection in a system.

Probe penetration into the guide is varied by a micrometer drive. Position of the probe along the guide is adjusted by a thumb-operated wheel, and position can be read to 0.1 mm on a vernier scale. An SWR of 20 can be corrected to 1.02, and small SWR's can be corrected exactly.

Model	Fraq. Range (OHz)	Flts Wayequide size Nom, OD (In.) (EIA)		Equivalont Flange Туре	$(\mathrm{ln} .)^{\text {Length }} \text { (mm) }$		$\underset{\text { (lbs.) }}{\text { Nol Weight }} \text { (kg) }$		$\begin{gathered} \text { Shlpplng } \\ \text { Welqht } \\ (\mathrm{lbs} .) \end{gathered}$		Price
P870A	12.40-18.00	0.702×0.391	WR62	UG-419/U	5	127	1/2	0,23	2	0,9	\$275
X870A	8.20-12.40	$1 \times 1 / 2$	WR90	UG.39/N	51/2	140	$3 / 4$	0,36	2	0,9	\$250

934A, P932A Harmonic Mixers
HP 934A, P932A simplify frequency measurements from 2 to 18 GHz . They are also excellent as RF mixers in phasestabilized signal sources. Both feature high sensitivity, yet require no tuning.

Specilitations 934A, P332A					
Model	Frequency Ringe (GHz)	Maximum Input	Typical Sonstivily	Mln. video output*	Prioe
934A	21012.4	100 mW	$\begin{aligned} & -48 \mathrm{dBm} \text { at } 3.5 \mathrm{GHz} \\ & -25 \mathrm{dBm} \text { at } 10 \mathrm{GHz} \end{aligned}$	$1.4 \mathrm{mV} \mathrm{p}-\mathrm{p}$	\$150
P932A	12.41018	100 mW	$-10 \mathrm{dBm}$	$0.4 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$	\$350

8761A/B Coaxial Switch

The HP 8761 is a single-pole, double-throw coaxial switch with low standing-wave ratio, Jow insertion loss, and good isolation from dc to 18 GHz . Mechanically, the switch is a break-before-make type controlled by a latching solenoid. Solenoids are available in 12 -and 26 -volt ratings and can be operated by de or pulsed signals. Any of seven coaxial connectors, or a 50 -ohm termination, may be specified for each port.

Specifications, $8761 \mathrm{~A} / \mathrm{B}$

Characteristic impedance: 50 ohms .
Frequency range: $\mathrm{d} c$ to 18 GHz .
Standing wave ratio: looking into one of the connected ports with 50 ohms (or built-in termination) on the other, third port open,

Frequenoy	Consiector type		
	$7 \cdot \mathrm{~mm}$	N	$3 . \mathrm{mm}$ (SMA)
$\begin{aligned} & \mathrm{dc}-12.4 \mathrm{GHz} \\ & \mathrm{dc}-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15(1.20) \\ & <1.20(1.25) \end{aligned}$	$\begin{aligned} & <1.20(1.25) \\ & <1.25(1.30) \end{aligned}$	$\begin{aligned} & <1.25(1.30) \\ & <1.30(1.35\rangle \end{aligned}$

These specificatlons apply when connected ports are of the same connector type; for mixed connector types, the larger of the two YSWR's applies. N-connector VSWR speciflcations apply to Option 4 connectors.

Insertion loss: $<0.5 \mathrm{~dB}, \mathrm{dc}-12.4 \mathrm{GHz} ;<0.8 \mathrm{~dB}, \mathrm{dc}-18$ GHz.
Isolation: $>50 \mathrm{~dB}, \mathrm{dc}-12.4 \mathrm{GHz} ;>45 \mathrm{~dB}, \mathrm{dc}-18 \mathrm{GHz}$.
Power: safely handles 10 W average, 5 kW peak, without built-in termination; buitt-in termination rated at 2 W average, 100 W peak.
Switching energy: 1.5 W for 20 ms (permanent magnet latching),
Solenoid voltages (dc or pulsed): 12-15 V, 8761A; 24.30 V, 8761 B.
Switching speed: $35-50 \mathrm{~ms}$ (includes settling time).
Life: $>1,000,000$ switchings.
Dimensons; $1.6 \times 1.5 \times 1.5 \mathrm{in}$. ($41 \times 38 \times 38 \mathrm{~mm}$), exclud. ing connectors and solenoid terminals.
Weight: net, 5.8 oz (140.220 gm) ; shipping, 8.11 oz (220$300 \mathrm{gm})$.
Price: Model $8761, \$ 150$ each, $1-9 ; \$ 140$ each, 10-24. Add $\$ 35$ for buitr-in termination.

Ordering information, $8761 \mathrm{~A} / 8$

Specify solenoid voltage and connectors (including builtin $50 n$ termination) by the alphabetic suffix on the switch model number and the appropriate three-digit option number.

A: 12 - $15 \mathrm{~V} ; \mathrm{B}: 24 \cdot 30 \mathrm{~V}$

Opion Code	Connactor Type	Optlon Code	Connector Type
0	N Jack	4	$7-$ mm for UT-250 Coax
1	NPlug	5	$3 \cdot m m$ Jack
2	n.mm Jack	6	$3-m m$ Plug
3	$7 . m m$ Plug	7	505 Termination

"Jack" Identsfias the connector with flxad threads: "plug'" joentifies the connector with the coupling nut.

MICROWAVE TEST EOUIPMENT

MISCELLANEOUS EQUIPMENT
Increase flexibility of microwave measurements
Models 281A-B, 292A-B, I1524A/25A, 11588A, 11606A

281A-B Coax to Waveguide Adapters

HP 281A-B adapters transform waveguide impedance into 50 -ohm coaxial impedance. Power can be transmitted in either direction, and each adapter covers the full frequency range of its waveguide band with SWR less than 1.25 .

Speollioatlons 2814, ${ }^{\text {B }}$							
$\begin{gathered} \text { HP } \\ \text { Modgl } \end{gathered}$	SWH	Frequency Range (OHI)	Wavegulde Size EIA	Coaxial Connestor	Length		$\begin{aligned} & \text { Oty } \\ & 1.4 \\ & \text { Pyloe } \end{aligned}$
					(In.)	(mm)	
S281A	1.25	2.50.3.95	WR284	N Female	21/2	64	\$75
G281A	1.25	3.95-5.85	WR187	N Fernale	21/8	54	\$50
1281A	1.25*	5.30-8.20	WR137	N Female	2	51	\$55
H281A	1.25	7.05-10.0	WR112	N Female	13/9	41	\$50
X281A	1.25	8.20-12.4	WR90	N Female	13/8	35	\$45
$\times 2818$	1.25	8.20-12.4	WR90	APC.7**	13/8	35	\$90
P2818	1.25	12.4-18	WR62	APC.7**	15/16	24	\$95

-1.3 from 5.3 to 5.5 GHz .
*Option 0l3. Furnished with stainless steel N-female connector, less $\$ \leq 5$.

Waveguide to Waveguide Adapters

Models 292A-B waveguide-to-waveguide adapters connect two different waveguide sizes with overlapping frequency ranges. The 292A consists of a short tapered section of waveguide. The 292B is broached waveguide with a step transistion between waveguide sizes.

Sumolitiotlans 292A, B					
HP Model	SWR	Length		Frequenoy range (GHz)	Prioe
		(19.)	(mm)		
HX292B	1.05	11/2	38	8.201010 .0	\$60
M $\times 2928$	1.05	28/8	60	10.0 to 12.4	\$70
MP2928	1.05	$23 / 8$	60	12.4 to 15.0	\$80
NP292A	1.05	21/8	60	15.0 to 18.0	\$60
NK292A	1.05	23/3	60	18.01022 .0	\$60

11524A, 11525A, 11533A, 11534A

Coax to Coax Adapters

These coaxial adapters, not pictured here, permit easy interconnection of 50 -ohm precision $7 . \mathrm{mm}$ (APC.7) connectors and $50.0 h m$ Type N or SMA ($3 . \mathrm{mm}$ type) connectors.

HP Madel	Description	Shipplng Welght	Prlog
11524 A	APC. 7 to N female	$402(110 \mathrm{gm})$	$\$ 70$
11525 A	APC. 7 to N male	$502(140 \mathrm{gm})$	$\$ 70$
11533 A	APC-7 to SMA male	$502(140 \mathrm{gm})$	$\$ 115$
11534 A	APC-7 to SMA female	$502(140 \mathrm{gm})$	$\$ 115$

11588A Swivel Adapter, 11606A Rotary Air Line

The 11606A rotary air line and the 11588A swivel adapter are capable of a full 360° of rotation. A combination of the air line and the adapter permits rigid coax movement in three dimensions. Even the most awkwardiy shaped devices can be easily connected or disconnected in a coax system with the aid of these components.

Specifications, 11588A and 11606A
Frequency range: $\mathrm{d} c$ to 12.4 GHz .
Reflection coefficient (SWR): 0.048 (1.1). Ambiguity due to rotation 0.003 (-50 dB).
Insertion loss: 0.5 dB .
Connectors: 11588A, one precision $7 . \mathrm{mm}$ jack and one APC. 7; 11606A, one $7 . \mathrm{mm}$ plug and one $7 . \mathrm{mm}$ jack. Combinations of APC-7, Type N , and 3 -mm type SMA available; prices on request.
Dimensions: 11588A, $15 / 8^{\prime \prime} \times 25 / 16^{\prime \prime} \times 13 / 16^{\prime \prime}(42 \times 59$ $\times 30 \mathrm{~mm}) ; 11606 \mathrm{~A}, 315 / 16^{\prime \prime} \times 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}(100 \times 19$ $\times 19 \mathrm{~mm}$).
Weights: 11588 A , net, 8 oz (220 gm), shipping, 11 oz (310 $\mathrm{gm})$; 11606 A , net, 6 oz (170 gm), shipping, 11 oz $310 \mathrm{gm})$.
Prices: Model 11588A, \$200; Model 11606A, \$150.

Waveguide Stand, Waveguide Clamps

The 11540 A wareguide stand locks HP waveguide clamp at any height from $23 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}$ (70 to 133 mm). The stand is $21 / 2^{\prime \prime}(64 \mathrm{~mm})$ high, and the base measures $43 / 4^{\prime \prime}$ (121 mm) in diameter. Price: $11540 \mathrm{~A}, \$ 10$. The wave. guide clamps are offered in six sizes to hold waveguide covering frequencies from 5.30 to 40 GHz . They consist of a molded plastic cradle with a center rod. Price: 11543A. 11548 A , $\$ 5$ each.

SWR METER
 Reduced noise for greater usable range
 Model 415E

MICROWAVE
TEST EOUIPMENT

The Hewlett-Packard Model 415E SWR Meter is a low. noise tuned amplifier-voltmeter calibrated in $d B$ and SWR for use with square-law detectors. It is an extremely useful and versatile instrument, measuring SWR, attenuation, gain, or any other parameter determined by the ratio of two signal levels. The standard tuned frequency is 1000 Hz and is adjustable over a range of about 7% for exact matching to the source modulation frequency. Amplifier bandwidth is also adjustable, from 15 to 130 Hz . The narrow bandwidth facilitates single-frequency measurements by reducing noise, while the widest setting accommodates a sweep rate fast enough for oscilloscope presentation.

The 415 E has a very low noise figure, less than 4 dB . This represents a 6 to 10 dB improvement over other SWR meters. Equally significant is the fact that the noise figure has been optimized for source impedances presented by detectors most often used with SWR meters. As a result the 415 E has greater measurement range because the reduction in noise permits the measurement of lower-level signals for a given signal-to-noise ratio.

A precision $60-\mathrm{dB}$ attenuator with an accuracy of 0.05 $\mathrm{dB} / 10 \mathrm{~dB}$ assures high accuracy in attenuation measurements. In addition, an expand-offset feature allows any 2 dB range to be expanded to full scale for maximum resolution. Linearity on the expanded ranges is $\pm 0.02 \mathrm{~dB}$, permitting full utilization of the increased resolution; high accuracy is possible on the normal scales as well, for linearity is limited only by meter resolution. The meter itself has individually calibrated, mirror-backed scales plus a rugged taut-band movement for full realization of the inherently high accuracy, resolution, and linearity of the instrument.
The Model 415 E operates with either crystal or bolometer detectors. Both high- and low- impedance inputs are available for crystal detectors (see page 333), optimum crystal source impedances being 50 to 200 and 2500 to 10,000 ohms respectively. For operation with bolometers, the 415 E provides precise bias currents of 4.5 and 8.7 mA into 200 ohms, as selected at the front panel. This bias is peaklimited for positive bolometer protection.
Both ac and dc outputs are provided for use of the 415 E as a high-gain tuned amplifier and with recorders. The solid-state 415 E can be operated with an internally mounted battery pack (optional extra) for completely portable use or to eliminate ground loops.

Specifications

Sensitivity: $0.15 \mu \mathrm{~V}$ rms for full-scale defection at maximum bandwidth ($1 \mu \mathrm{~V}$ rms on high impedance crystal input).
Nolse: at least 7.5 dB below full scale at rated sensitivity and 130 Hz bandwidth with input terminated in 100 or 5000 R ; noise figure less than 4 dB .
Range: 70 dB in 10 and $2-\mathrm{dB}$ steps.
Accuracy: $\pm 0.05 \mathrm{~dB} / 10-\mathrm{dB}$ step; maximum cumulative error between any two $10-\mathrm{dB}$ steps, $\pm 0.10 \mathrm{~dB}$; maximum cumulative error between any two $2-\mathrm{dB}$ steps, $\pm 0.05 \mathrm{~dB}$; linearity, $\pm 0.02 \mathrm{~dB}$ on expand scales, determined by inherent meter resolution on normal scales.

Input: unbiased low and high impedance crystal (50-200 and $2500-10,000 \Omega$ optimum source impedance respectively for low noise); biased crystal (1 V into $1 \mathrm{k} \Omega$); low and high current bolometer (4.5 and $8.7 \mathrm{~mA} \pm 3 \%$ into 200Ω), positive bolometer protection; input connector, BNC female.
input frequency: 1000 Hz adjustable 7%; other frequencies between 400 and 2500 Hz available on special order.
Bandwidth: variable, $15 \cdot 130 \mathrm{~Hz}$; typically less than 0.5 dB change in gain from minimum to maximum bandwidth.
Recorder output: 0.1 V dc into an open circuit from 1000Ω source impedance for ungrounded recorders; output connector. BNC female.
Amplifler output: 0.0 .3 V rms (Norm), 0.0 .8 V rms (Expand) into at least $10,000 \Omega$ for ungrounded equipment; output connector, dual banana jacks.
Meter scales: calibrated for square-law detectors; SWR: 1-4, 3.2-10 (Norm); 1-1.25 (Expand). dB: 0-10 (Norm); 0-2.0 (Expand); battery: charge state.
Meter movement: taut-band suspension, individually calibrated mirror-backed scales; expanded dB and SWR scales greater than $41 / 4 \mathrm{in}$. (108 mm) long.
RFI: conducted and radiated leakage limits are below those specified in MIL-I-6181D.
Power: $115-230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}, 1 \mathrm{~W}$; optional rechargeable battery provides up to 36 hr continuous operation.
Dimenslons: $7^{25 / 52}$ in. wide, 6952 in. high, 11 in. deep from panel ($190 \times 155 \times 279 \mathrm{~mm}$).
Weight: net, $10 \mathrm{lb}(4,5 \mathrm{~kg})$ shipping, 13 lb ($6,3 \mathrm{~kg}$)
Accessory avallable: 11057A Handle, fits across top of instrument for carrying convenience.
Combining cases: $1051 \mathrm{~A}, 111 / 4 \mathrm{in}$. (286 mm) deep. 1052 A . $163 / 8 \mathrm{in}$. (416 mm) deep.
Price: HP Model 415E, \$425.
Options: 001. rechargeable battery installed, add $\$ 100 ; 002$. rear-panel input connector in parallel with front-panel connector, add $\$ 25$.

415B Standing Wave Indicator

Similar to the 415 E , this meter is a tuned voltmeter for SWR measurements with Hewlert-Packard slotted lines and detecror mounts. It has an input selector for both bolometers and crystals. A special $S d B$ attenuator is incorporated to increase resolution through use of the upper portion of the logarithmic meter scale.

Specifications, 415B

Input: "bolo" (200 ohms), bias provided for 8.7 or 4.3 mA bolometer or 1/100 amp fuse; "Crystal" (200 ohms) for crystal rectifier; "Crystal" ($200 \mathrm{k} \Omega$) high impedance for crystal rectifier as null detector; BNC connector.
Sensitivity: $0.1 \mu \mathrm{~V}$ at 200 ohms for full-scale deflection.
Nolse: at least S dB below \{ull scale when operated from 200.0 hm resistor at room temperature.

Frequency: $1000 \mathrm{~Hz} \pm 2 \%$; other frequencies, 315 to 2020 Hz , available on special order; should not be harmonically selated to power line frequency.
Bandwidth: 30 Hz (nominal).
Range: 70 dB ; input attenuator provides 60 dB in $10-\mathrm{dB}$ steps; accuracy, $\pm 0.1 \mathrm{~dB}$ per $10 \cdot \mathrm{~dB}$ steps.
Calibration: square lavw; meter reads SWR, dB.
Scale selector: "Normal," "Expand" and "一S dB."
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{~Hz}, 55$ watts.
Dimensions: cabintt: $71 / 2^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$. high, $121 / 2^{\prime \prime}$ deep ($191 \times 299 \times 318 \mathrm{~mm}$).
Weight: net, $14 \mathrm{lbs}(6,3 \mathrm{~kg})$; shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$ (cabinet); net, 17 lbs (7,7); shipping, $27 \mathrm{lbs}(12,2)$ (rack mount).
Price: HP 41 SB, $\$ 500$ (cabinet) ; HP 415BR, $\$ 510$ (rack nount).

416B

The HP 416 B is designed for use with unleveled signal sources in the measurement of reflection coefficient. The ratio meter provides valid results independent of incident power variations as high as 20:1. Either swept. or fixedfrequency measurements can be made using the Model 416B.

A high-impedance output on the rear of the instrument permits swept-frequency measurements to be presented on an oscilloscope or preserved on a graphic recorder. The 416B operates with either crystals or bolometers.

	Crystal	Bolemotor
incident channel	3 to 109 mV rms	0.3 to 10 mV rms
Rellected channel	$3 \mu \vee$ to 100 mV ms	$0.3 \mu \mathrm{~V}$ to 10 mV rms

Balanced/symmetrical measurements

The world of relecommunications is characterized by the extensive use of balanced or symmerrical circuitry. The basic reasoning behind this is that the extremely large number of circuits in close physical proximity to each other and to $50 / 60 \mathrm{~Hz}$ power lines must have some protection against pickup of spurious and unwanted signals. Shielding is usually not practical. since most of the coupling is electromagnetic due to the relatively low impedance of the circuirs. This kind of coupling requires expensive magnetic shielding to be ef. fective. The solution, then, is to operate the circuits balanced or symmetrical. Provided the two sides of the circuit receive relatively equal exposure to the source of interference, the coupling will be in the form of a long. itudinal or common-mode voltage; i.e., equal amplitude and phase on both sides of the circuit. The balanced input of various amplifiers in the relephone muleiplex equipment will ignore spurious signals by virtue of their common. mode rejecrion capability.
DB readings are typically used in the communications industry tather than voltage readings as power is generally of more interest. DB readings compress the extremely wide range of voltages and powers in a communications system and offer the ability to compute gain and loss.

Hewlett-Packard dedicated communications instruments properly indicate dB , dBm or dBrn regardless of the input impedance chosen. Wide frequency ranges allow measurements to be made on voice frequency circuirs or carrie: sys. tems up to 3600 channels. Narrow band. width filters are available to make highly selective measurements in voice frequency relegraph systems using frequency shifr keying techniques. Wider bandwidths are available to allow a complete 3.1 kHz voice channel to be measured. Sreeep and wide dynamic range plorting capability rakes possible highly accurate measure-
ments of group filters, channel bank filters and voice frequency telegraph filters. Hewlett-Packard selective voltmeters and tracking detectors may be used as a team to allow the entire baseband spectrum, or a portion thereof, of a carrier system to be displayed on an oscilloscope. They may be used to determine the frequency response of active or passive transmission devices. Hewlett-Packard selective voltmeters make highly accurate and wide range measurements practical in most complex communications systams.
Modern telephone communications has expanded and developed to the point where a high quality connection can be established across the country as read. ily as across town. High quality longhaul communications would be impossible if it were not for the telephone carrier system. A carriec system combines a large number of communications channels having a normal 4 kHz bandwidth into a single baseband. which may be many MHz in bandwidth and which can be used to modulate a micronave radio system or transmitted direct over a coaxial cable system. Each voice channel is given a definite frequency assignment and by modulation techniques (usually single sideband suppressed carrier) elevated to an assigned slot. The resulting frequency spectrum looks something like Figure 1.

The chamnel assignment shown in Figure 1 represents the baseband signal. An individual channel may occupy a different frequency slot from those shown at different stages in a carrier system. bur the channel will still be a nominal 4 kHz wide. In order to synchronize the receive demodulators with the send modulators (since the carrier is suppressed) and to provide level regulation, several pilor tones are inserted in spaces between channnels. Hence a carrier system produces a signal having a very complex spectrum. Since this baseband sigmal represents the capability of transmitting 3600 re venue producing toll circuits, down time is out of the question and main.

tenance must be performed on an "in. service" basis. This is where the selective volumeter finds one of its most practical applications. It can be used to examine the entire baseband, signal by signal, without interfering with or interference from the other signals.

Noise measurements

The theory of message-circuir noise measurement is based on a relative interfering effect of the noise on the subscriber's hearing. Because of the frequency response of the telephone subset and the fact that the human ear responds differently to noise of various frequencies, a weighting function is assigned to each frequency in proportion to its contribu. tion to the interfering effect. The weight. ing curve currently accepted as a U.S. Standard is the Bell System C-message weighting. The unit used to define noise measured in this manner is dBRNC, meaning deciBels above Reference Noise, C-message weighted. The CCITT recommendation is psophometric weighting. which has a slightly different curve and is referenced to 800 Hz . The measuring units for this weighting are picorratts psophometric, pWp.

Radio link test equipment

The Microwave Link Analyzer (Model 3702B/3710A system measures and identifies the principle forms of distortion occurring in radio relay communications systems. Measurements can be made on an end-to-end or loopback basis. Overall performance can be assessed in a baseband to baseband or IF to IF mode and combinations thereof. Individual sections can be checked in a similar fashion. Measurement capability includes envelope delay distortion, FM lineariky, porver, gain/atrenuation, IF amplitude response, IF return loss and modulator/demodulator sensitivity. See Pages 354 and 355. Mod. el 8605A Communications Sweep Oscillator is an all solid state $C W$ and swept source which offers 47 to 100 MHz IF coverage and multiband RF coverage. See Page 353.

Meeting the requirements of the telecommunications industry is one of the chief activities of Hewlett-Packard, as evidenced by the instruments briefly described in this dedicated communications section of the catalog. Many of these instruments were developed specifically at the request of the industry.

See Pages 249-314 (Oscillators) and 33.83 (Volmeters) for your general purpose instruments needs.

The HP 35s5B Transmission \& Noise Measuring Set and HP Psophometer are designed especially for telephone plant maintenance. Both instruments measure transmission gain, loss, cross-talk coupling and noise. The weighting curves of the 3555 B complies with the Bell System C-message weighting standard. Besides the built-in C-message, program, 3 kHz and 15 kHz filters are also included.

The 3556A has built-in telephone program filters weighted
according to 1960 CCITT recommendations. Also included are 3 kHz and 13 kHz filters. Operating instructions printed in the protective cover are available in different languages at no extra charge. Refer to data sheet.

Complementary equipment for the 3555 B is the HP 236 A Telephone Test Oscillator (236A Opt. H10 for the 3556A). When used together, they make a complete transmission test set for accurate, convenient voice and carcier measurements.

Spacifications*		
	35558 (Bell Standards)	3556 A (CCITT STANDARDS)
VOJCE FREQUENCY LEVEL MEASUREMENTS:		
d8/volt range	$91 \mathrm{dBm} 10 \div 31 \mathrm{dBm}$. 78 dBm to $+32 \mathrm{dBm} / 0.1 \mathrm{mV}$ ro $30 \mathrm{VF.S}$.
Level accuracy	$\begin{aligned} & \pm 0.5 \mathrm{~dB} ; \pm 0.2 \mathrm{~dB}, 40 \mathrm{~Hz} \text { to } 15 \mathrm{kHz} \text {, level } \\ & >60 \mathrm{dBm} \end{aligned}$	$\pm 0.5 \mathrm{~dB}, \pm 0.2 \mathrm{~dB}, 100 \mathrm{~Hz}$ to 5 kHz
Inpet	Terminated or bridged 600Ω or 900Ω bal. anced. Bridging lass: $<0.3 \mathrm{~dB}$ at 1 kHz . Balance: $>80 \mathrm{~dB}$ at 60 Hz ، $>70 \mathrm{~dB}$ at 6 $\mathrm{kHz},>60 \mathrm{~dB}$ to 20 kHz .	Terminated: 600 symmetrical. Nonterminated: $10 \times \mathrm{n}$ symmetrical. Nonterminered error: $<0.4 \alpha B$ at 800 Hz . Symmetry: $>80 \mathrm{~dB}$ at $50 \mathrm{~Hz},>70 \mathrm{~dB}$ at $6 \mathrm{kHz},>50 \mathrm{~dB}$ 1020 kHz .
Return loss	$30 \mathrm{d8}$ min (50 Hz to 20 kHz)	$30 \mathrm{~dB} \mathrm{~min} \mathrm{(} 50 \mathrm{~Hz}$ to 20 kHz)
Holding circuit	700 O de resistance, 60 mA max. 100 p line current at 300 Hz . With holding circuit in, above specs apply from 300 Hz to 4 kHz .	
NOISE MEASUREMENTS:		
dB/volt range	. 1 d8rn to +121 d8rn	. $78 \mathrm{dBm} 10+32 \mathrm{dBm} / 0.1 \mathrm{mV}$ to $30 \mathrm{VF.S}$
Weighting filzers	$3 \mathrm{kHz}, 15 \mathrm{kHz}, \mathrm{C} \cdot \mathrm{message}$ and program. (EEI, Bell System)	$3 \mathrm{kHz}, 15 \mathrm{kHz}$, telephone and program. (P53, CCITT)
Jnput	Same as for voice frequency measurements.	
CARAIER FAEQUENCY LEVEL MEASUREMENTS;		
- dB/volt range	-61 dBm $10+11 \mathrm{dBm}$	$48 \mathrm{dBm} 10+12 \mathrm{dBm} / 3 \mathrm{mV}$ to 3 V F.S.
Lovel accuracy	600 n balanced (symmetrical): 1 kHz to $150 \mathrm{kHz}, \pm 0.5 \mathrm{~dB} ; 10 \mathrm{kHz}$ to $100 \mathrm{kHz}, \pm 0.2 \mathrm{~dB}$. $135 \Omega \mathrm{bal}$ anced (or 160Ω balanced) t: 1 kHz to $600 \mathrm{kHz}, \pm 0.5 \mathrm{~dB} ; 10 \mathrm{kHz}$ to $300 \mathrm{kHz}, \pm 0.2 \mathrm{~dB}$. 75Ω unbal. ancad (asymmetrical): 100 Hz to $600 \mathrm{kHz}, \pm 0.2 \mathrm{~dB} ; 30 \mathrm{~Hz}$ to $1 \mathrm{MHz}, \pm 0.5 d 8 ; 1 \mathrm{MHz}$ to $3 \mathrm{MHz}, \pm 0.5$ $\mathrm{dB} \pm 10 \%$ of meter reading.	
Input	Terminatad or brioged 1350t or 6000 balanced (symmetrical) and 750 unbalanced (asymmetrical).	
Return loss	$600 \cap$: 26 dB min., 3 kHz to $150 \mathrm{kHz} ; 135 \mathrm{nt}$: 260 B min. 1 kHz to $600 \mathrm{kHz} ; 75 \Omega: 30 \mathrm{~dB}$ min to 3 MHz .	
8si/symmetry	$>70 \mathrm{~dB}$ to $10 \mathrm{kHz},>60 \mathrm{~dB}$ to $100 \mathrm{kHz},>40 \mathrm{~dB}$ to 600 kHz .	
GENERAL:		
Meter	Linear 08 scale	Linear dBm scale
External battery	24 V or 48 V office batterv, $<15 \mathrm{~mA}$.	
fnternal batiery	Single NEDA 202. 45 V "B" battery.	4 rechargesble batteries (25 V totall or power line from 90 V to 250 V зс, 48 Hz to 440 Hz , $<10 \mathrm{VA}$. Option 001 uses same battery as 3555B,
AC:	116 or 230 V (specify for 3555 B) (switch for 3556 A) 48 Hz to $440 \mathrm{~Hz},<10 \mathrm{VA}$.	
Dimensions	7% in, wide $\times 11 \%$ in, high $\times 81 / 8 \mathrm{in}$. deep.	197 mm wide, 299 mm high, 207 mm deep.
Weight	Net: $15 \mathrm{lb}(6,8 \mathrm{~kg})$ shipping: $17 \mathrm{lb}(7,5 \mathrm{~kg})$	
Jacks	Will accept Western Electric 241, 309, 310, 358, 289 and 347 plugs: 101 \& B hand-set or 52 type head-set.	Will accept Siemens 9 REL KL1-6A, 4 mm diameter banana plugs or 3-prong Siemens 9 REL STP.6AC connector.
Price	HP 35558 S625	HP 3556A \$800

[^53]ti50 n for 3556A.

General

The solid-state Hewlett-Packard 236A and 236A Option H10/H20 Telephone Test Oscillators are designed specifically to deliver transmission test signals. They are particularly useful for lineup and maintenance of telephone voice and carrier systems.

Description

The HP 236A is the perfect companion to the HP 3555B Transmission/Noise Measuring Set for accurate, convenient voice and carrier measurements meeting Bell standards. Like.

wise, CCITT recommendations are met when the HP 236A Option H10 and HP 3556A Psophometer are used together. Refer to the opposite page for specifications and details.

Complementary equipment for the 236 A is the HP 3555 B Transmission and Noise Measuring Set (3596A Psophometer for the 236A Option H10). When used together, they make a complete transmission test set for accurate, convenient voice, carrier and noise measurements. Operating instructions printed in the protective cover are available in different languages (236A Option H10 and H20 only) at no extra charge. Refer to data sheet.

Specifications*		
	2364 (Bell)	236A Optian H10 (CCITT)
Frequency range	50 Hz to 560 kHz	
Fraquency dial accuracy	$\pm 3 \%$ of setting	
Frequency response		
600n autput	$\pm 0.3 \mathrm{~dB}$ from 50 Hz to 20 kHz	
900 П oupput	$\pm 0.3 \mathrm{~dB}$ from 50 Hz to 20 kHz	
1350 dutput	$\pm 0.3 \mathrm{~dB}$ from 5 kHz to 560 kHz	
150 \& 75Ω outputs		$\pm 0.3 \mathrm{~dB}$ from 5 kHz to 560 kHz
Output level/accuracy	$.31 \mathrm{to}+10 \mathrm{dBm}$ in 0.1 dBm step/ $\pm 0.2 \mathrm{d8m}$ from -31 to $+10 \mathrm{dBm}(1 \mathrm{kHz} \mathrm{ref.}, \mathrm{Opt}$.H 10.800 Hz ref.)	
Noise	At least 65 d8 below total output or -90 dBm - whichever noise is greater.	
Distortion	At least 40 dB below fundamental output.	
Output circuit	Balanced (symmetrical) and floating. Can be operated up to $\pm 500 \mathrm{~V}$ de above (earth] ground.	
Output impedance	$\begin{aligned} & 600 \text { and } 900 \cap \pm 5 \% \\ & 135 \Omega \pm 10 \% \\ & \hline \end{aligned}$	600 and 150Ω symmetrical 75 n asymmetrics
Output balance \{output symmetry\}	600 and 900 n outputs: 70 dB at $100 \mathrm{~Hz}, 55 \mathrm{~dB}$ at 3 kHz 136 and $150 \cap$ outputs: 50 dB at $5 \mathrm{kHz}, 30 \mathrm{~dB}$ at 560 kHz	
Dutpux jacks	Accepts Western Electric 241, 309, and 310 plugs.	Accepts 3-prong Siamens 8 REL, STP 6 AC or 4 mm diamerer banena plugs.
	Binding posts accept banana plugs, spade lugs, phone tips or bare wires. Removable shorting bar between sleeve and ground binding posts.	
Dial jacks	Accepts Western Electric 309 and 310 plugs. Clip posts accept Western Electric 10118 lineman's hand-set clips.	Accepts 3-prong Siemens 9 REL. STP 6 AC or 4 mm diameter plugs. Clip posts accept lineman's handset clips as alligator elios.
DC holding coil	600 and $900 \cap$ outputs only. $700 \cap \pm 10 \%$ de resistance; 80 mA maximum loop current at 100 Hz .	
Power requirements	Line: 115 or 230 V (switch) $\pm 10 \%$ ac, 48 Hz to $440 \mathrm{~Hz},<2 \mathrm{VA}$. Internal battery: single NEDA 20245 V " 8 " battery. 236A Option H20: (same as 236A Option H10 except) five 6.25 V rechargeable batteries; 90 V . $250 \mathrm{Vac}, 48 \mathrm{~Hz} \cdot 440 \mathrm{~Hz}$, < 10 VA during bartery charge.	
Weight	Net: $13.5 \mathrm{lbs}(6,1 \mathrm{~kg})$; shipping $17 \mathrm{lbs}(7,7 \mathrm{~kg}$)	
Complementary equipment	HP 3555B Transmission and Noise Measuring Set	HP 3556A Psophometer
Price	HP 236A 5600	HP 236A Option H10 (ac line and dry battery) 5700 HP 236A Option H20 (ac line and rechargeable batteries) $\$ 750$

[^54]
COMMUUNCATIONS TEST EQUIPMENT

PORTABLE TEST SET

Measures transmission line characteristics Model 3550B

The Hewlett-Packard Model 3550B Portable Test Set is designed specifically to measure transmission line and system characteristics such as attenuation, frequency response, or gain. It is particularly useful for lineup and maintenance of multichannel communication systems. Model 3550 B contains a wide range oscillator, a voltmeter, and a patch panel to match both the oscillator and the voltmeter to 135, 600, and 900 ohm lines. These instruments are mounted in a combining case that is equipped with a splash-proof cover. In addition, the oscilla. tor, voltmeter, and patch panel may be used separately whether they ate in or removed from the combining case.
Both the oscillator and voltmeter are transistorized and op. erate from their internal rechargeable batteries or from the ac line. The batteries provide to hours of operation between charges and are recharged automatically during operation from the ac line.

Specifications ${ }^{\text {ma }}$

Oscillator 204C Opt. H20
Frequency range: $\$ \mathrm{~Hz}$ to 1.2 MHz in 6 ranges. Vernier.
Dial accuracy: $\pm 3 \%$ of setting.
Frequency response: $+5 \%-1 \%$ s Hz to $100 \mathrm{~Hz}=0.5 \%$ 100 Hz to $300 \mathrm{kHz} . \pm 1 \%$ C\% 300 kHz to 1.2 MHz (normal). Output impedance: 600Ω.
Output: $>2.5 \mathrm{~V}$ mss (10 mW or +10 dBm) into $600 \Omega ;>5 \mathrm{~V}$ ims open circuit. Can be floated up to $\pm 500 \mathrm{~V}$ peak between output and chassis ground
Output control: $>40 \mathrm{~dB}$ ranges continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz .
Distortion: $<1 \% 5 \mathrm{~Hz}$ to 30 Hz and 100 kHz to 1.2 MHz ; $<0.1 \% 30 \mathrm{~Hz}$ to 100 kHz (Low Dist. Mode).
Hum and noise: $<0.01 \%$ of ourput.
Operating temperature: (for specifications): $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Voltmeter 403B Opt. 001

Range: 0.001 to 300 V rms full scale (12 ranges).
Frequency range: 5 Hz to 2 MHz .
Accuracy: within $\pm 0.2 \mathrm{~dB}$ of full scale from 10 Hz to 1 MHz ; within $\pm 0.4 \mathrm{~dB}$ of full scale from 5 Hz to 10 Hz and 1 MHz to 2 MHz , except $\pm 0.8 \mathrm{~dB} 1$ to 2 MHz on the 300 V range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Meter: individually calibrated, taut band. Responds to average value of inpuc waveform and is calibrared in the ems value of a sine wave.
Nominal input impedance: $2 \mathrm{M} \Omega$: shunted by $<60 \mathrm{pF}$ on 0.001 V to 0.03 V ranges, $<30 \mathrm{pF}$ on 0.1 V to 300 V ranges.
DC isolation: signal ground may be $\pm 500 \mathrm{~V}$ de from chassis ground

Patch panel, 353A
(specifications with oscillator and voltmeter)
Input (receiver)
Frequency range: 50 Hz to 560 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 560 kHz .

Balance: better than 70 dB at 60 Hz for 600Ω and 900Ω; better than 60 dB at 1 kHz for 600 and 9008 ; better than f0 dB over entire frequency range for 135,600 and 900Ω.
Impedance: $135,600,900 \Omega$ and bridging ($10 \mathrm{k} \Omega$); centestapped.
Insertion loss: $<0.75 \mathrm{~dB}$ at 1 kHz .
Maximum level: +22 dBm (10 V rms at 600 n).
Output (source) includes all recelver specifications and attenuation: 110 dB in 1 dB steps.
Accuracy: 10 dB section $< \pm 0.25 \mathrm{~dB}$ per step. 100 dB sec. tion, $< \pm 0.5 \mathrm{~dB}$ per step.

Available telephone patch panels

Patch panel 353A opt. H02 (same as Model 353A except as indicated).
Attenuator: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ (1.step slide switch).
Hold circuit (send terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240Ω NOMINTAL.
Maximum de current: 100 mA .
Maximum de voltage: 150 V .
Connectors: special telephone jacks to accept Western Elec. tric No. 309 and 310 plugs. Sleeve jack is connected to sleeve of jacks 309 and 310 .
Patch panel 353A opt. H03 (same as Model 353A except as indicated).
Hold circuit (receive terminals)
Frequency response; 300 Hz to $3 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240 N NOMINAL.
Maximum de current: 100 mA .
Maximum dc voltage: 150 V .
Attenuation: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ (1-step slide switch).
Hold circuit (send terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240Ω NOMINAL.
Maximum de current: 100 mA .
Maximum de voltage: 150 V .
Connectors: special telephone jacks to accept Western Electric No. 309, 310 and 241 at send and rec terminals. Sleeve jack is connected to sleeve of jacks 309 and 310.

General

Power: specifications for both voltmeter and oscillator (patch panel has no porer connector). 4 rechargeable batteries (furnished); 40 he operation per recharge, up to 500 recharging cycles; recharging circuit is self-contained and functions automatically when instrument is operated from ac line (115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 448 Hz , toral of 7 VA max).
Dimensions: $83 / 8^{\prime \prime}$ high, $1914^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep (with cover installed) ($213 \times 489 \times 336 \mathrm{~mm}$).
Welght: net, $30 \mathrm{lbs}(13.5 \mathrm{~kg}$); shipping, $41 \mathrm{lbs}(18,5 \mathrm{~kg}$)
Accessories furnished: detachable poreer cord; two 11035A Cables (1 foor long, dual banana-plug to BNC) ; the three instruments are enclosed in a 11046 A Combining Case with a splash-proof cover.
Price: HP 3550 B (204C opt. H20. 353A and 403B opt. 001), s1255. HP 3550 B opt. H02 (204C opt. H20, 353 1 opt. H02 and 403 opt .001), $\$ 1375$. HP 3550 B opt. H03 (204C opt. H20, 353A opt. H03 and 403B opt. 001), $\$ 1375$.

- For complete soeclfications refer to data sheet.

VIDEO TEST OSCILLATOR Balanced, unbalanced, auto leveled outputs Models 653A, 653A Option HO1

The 653A Test Oscillator is a lightweight, portable, solidstate signal source primarily used in the adjustment of trans. mission characteristics of television video loops. For this adjustment, the HP 653A Test Oscillator replaces the Western Electric 61C Signal Generator, HP 200 CD Reference Oscillator, Western Electric 70B Power Meter at the sending end, and the Western Electric 1AP or 38A Transmission Comparing Set and associated cabling.

Adjustable test frequencies from 10 Hz to 10 MHz cover the complete video frequency range. The internal 300 kHz seference oscillator, conveniently selected by a front-panel switch for comparison measurements, eliminates the need for a separate reference oscillator. Amplitude stability, accuracy, and frequency response, good for 90 days from calibration, elimi. nate the need for the power meter at the sending end.

Front and rear covers provide protection and convenient cable storage space during transportation and periods when the instrument is not in use. The test set can be operated vertically on the floor or ground.
In addition to the fearures of the standard, the 653A option Hol includes a 60 Hz square wave, a simulated video signal, a modulated video signal, and a separate sync-only pulse. The simulated video signal, useful for qualitative monitoring, contains a blanking pulse, sync pulse, and white window. For video measurenents and adjustments, the 653A option H01 can replace the Western Electric 61C Signal Generator, 70B Power Meter, 1AP or 38A Transmission Comparing Set, HP $200 C D$ Reference Oscillator, and much associated cabling.

The 654A Test Oscillator is similar to the 653 A except it is a general purpose test oscillator. The internal 300 kHz reference oscillator is deleted. It has BNC outpur connectors, and the meter is calibrated in dBm . Output impedances of 50 and 75 ohms unbalanced and 135, 150, and 600 ohms balanced are selected by a pushbutton switch.

Specifications, 653A

Frequency range: 10 Hz to 10 MHz in 6 bands.
Test frequency accuracy: $\pm 1 \%$ at $4.5 \mathrm{MHz} \ddagger ; \pm 2 \%, 100 \mathrm{~Hz}$ to 5 MHz (on X 100 range) ; $\pm 3 \%, 10 \mathrm{~Hz}$ to $5 \mathrm{MHz} ; \pm 4 \%$, 10 Hz to 10 MHz .
Reference accuracy (0 dBV): frequency, $300 \mathrm{kHz} \pm 2 \%$; level, $\pm 0.1 \mathrm{~dB}$ for 90 days.
Output impedance: 75Ω unbalanced, 124Ω balanced.
Return loss (on 0 dB range and below): $>40 \mathrm{~dB}$ to 5 MHz ;
$>30 \mathrm{~dB}, 5 \mathrm{MHz}$ to 10 MHz .
Output level: +11 dBV max to $-90 \mathrm{dBV}, 10 \mathrm{~dB}$ and 1 dB steps with adjustable $\pm 1 \mathrm{~dB}$ vernier into 75Ω unbalanced or 124Ω balanced.
Overall attenuator accuracy: $\pm 0.15 \mathrm{~dB}$ ($\pm 1 \mathrm{~dB}$ at output levels below - 60 dB at frequencies $>300 \mathrm{kHz}$).
Meter range: $\pm 1 \mathrm{dBV}$ full scale.
Meter resolution: 0.02 dB .
Meter tracking accuracy: $\pm 0.05 \mathrm{~dB}$.
Frequency response (0 dBV , with meter centered, at end of recommended 6 -ft cables): $\pm 0.05 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 MHz .
Balance: $>50 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $1 \mathrm{MHz} ;>40 \mathrm{~dB}, 1 \mathrm{MHz}$ to 10 MHz .
Distortion (THD): $>40 \mathrm{~dB}$ below fundamental, 10 Hz to 5 $\mathrm{MHz} ;>34 \mathrm{~dB}, 5 \mathrm{MHz}$ to 10 MHz .
Hum and noise: $>70 \mathrm{~dB}$ below full outpur.
Ortput jacks: accepts WE 358A and 408A plugs; max de voltage which can be applied to the output jacks, $< \pm 3 \mathrm{~V}$ p.
Counter output: $>0.1 \mathrm{~V}$ rms into 50n, BNC connector.

Specifications, 653A option HO1

(in addition to the 653A specifications)
Functions*
Sine wave (standard operation).
60 Hz square wave, $0 \mathrm{dBV}=1 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$, risetime $2 \mathrm{~T}(\mathrm{~T}=$ 125 ns).
Simulated video signal with sync pulse, blanking pulse and white window, $0 \mathrm{dBV}=1 \mathrm{~V}$ p.p, risetime 150 ns .
Video signal modulated by 60 Hz square wave, $0 \mathrm{dBV}=$ 1 V p.p, risetime 150 ns.
Sync pulse only, $0 \mathrm{dBV}=0.25 \mathrm{~V} \mathrm{P} \cdot \mathrm{P}$, width $12.7 \mu \mathrm{~s}$, tise. time 150 ns.
Output amplitude accuracy: $\pm 5 \%$ all signals except sine wave.

General

Operating temperature: $32^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 35 \mathrm{VA}$ max.
Dimensions (covers installed): $163 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ high, $16^{\prime \prime}$ deep ($425 \times 127 \times 406 \mathrm{~mm}$).
Weight: net, $21 \mathrm{lbs}(9,5 \mathrm{~kg}$); shipping, $31 \mathrm{lbs}(14 \mathrm{~kg}$).
Accessories furnished: rack mount kit, front cover, rear cover, $7.5-\mathrm{ft}$ yellow power cord.
Price: HP 653A, $\$ 1030$.

[^55]
COMMUNICATIONS TEST EQUIPMENT

SELECTIVE VM; OSCILLATOR Signal analysis to 22 MHz ; tracking oscillator Models 312A, 313A

Description

The Hewlett-Packard Model 312A/313A is a frequency selective voltmeter/tracking oscillator set operating in the frequency range of 1 kHz to 18 MHz (22 MHz for 312 A Option H01) that covers the range of all commercially available carrier and radio systems including the Western Eleciric Lif system. The set is capable of making transmission and noise measurements with an unparalleled speed and accuracy resulting in a substantial time savings even when operated by inexperienced craftsmen.

Many accurate measurements can be made using the automatic features of the 312A. The digital frequency readout and AFC eliminate any guesswork on the part of the craftsman as to the signal being measured. The high level of stability and many operating features of the 312A eliminate the need for corrections and external accessories, making even the most difficult measuring rask simple. The 312A performs level, noise and transmission measurements, all in one convenient, easy-touse package.

Pilot level measurement

The frequency accuracy and tuning ease of the 312A allow a quick, unambiguous measurement of pilot levels. The ceaftsman needs only to determine the frequency of the pilot from the system frequency chart and then set the digital frequency dial of the 312A to this frequency.

No guesswork is required to determine if the correct pilot is being measured. Pilot frequency can be checked by tuning the 312A co a small wavemeter dip in the exact center of the set's passband. When tuned to this dip, the digital counter indicates the incoming frequency to the nearest 10 Hz .

Measurement of other tones

The 312A can easily measure and discriminate between other signals such as suppressed carriers, test tones, signalling tones, fault alarm tones, intermodulation products and any other sig. nals present in the system. The digital frequency readout allow's exact measurement of the tones and eliminates the timeconsuming procedure of bumping these rones to determine if the proper one is being measured. All that is needed is a system frequency chart. The selection of inpur impedances allon's measurement at group, supergroup. baseband and entrance link test points without any external matching pads or transformers. Noise measurement

One of the problens in measuring channel noise in working systems is that conventional 3 kHz bandwidth selective volt-
meters measure the carrier leak in addition to the noise. This has been avoided by making the measurenment at a narrower bandwidth to eliminate the carrier leak and then converting to an equivalent 3 kHz bandwidth. The 312A Option 001 is equipped with carrier rejection filters that measure the noise in a 3 kHz bandwidth and filter our the carrier leak. In this measurement, noise is measured directly in $\mathrm{dBrnC}_{\mathrm{m}}$ withour the need for error-prone conversions and calculations.

Frequency response measurement

The $312 \mathrm{~A} / 313 \mathrm{~A}$ combination can measure frequency response. because the ourpur frequency of the aracking oscillator is slaved to the selective voltmeter tuning. Back-to-back or loop-around measurements can be made with one set. End-toend measurements can be easily made wirh a set at each end. The 313 A is an inexpensive ($\$ 1400$) addition to the 312 A Selective Volemeter for this application. The accuracy of the digital frequency runing insures that signals will not inadvertencly be placed in active channels or near pilots. In addizion, response of repeaters and the various system filters may be readily and accurately measured. Equalizer adjustments of cable systems and enerance links are rapidly made with this tracking setup.

Specifications, 312A

Tuning characteristics

Frequency renge: 1 kHz to 18 MHz in 18 overlapping bands, 200 kHz overlap berween bands. (Options H01, H05, and $\mathrm{H}: 0,1 \mathrm{kHz}$ to 22 MHz in 22 overlapping bands.)
Frequency accuracy: $\pm(10 \mathrm{~Hz}+$ time-base accuracy $)$. Fre. quency indicated on in-line digital readout with $\pm 10 \mathrm{~Hz}$ resolution.

Time-base stability

Aging rate: $\pm 2 \mathrm{ppm}$ per week; as a function of ambient temperature: $+15^{\circ}$ to $+35^{\circ} \mathrm{C}, \pm 20 \mathrm{ppm} ; 0^{\circ}$ to $+55^{\circ} \mathrm{C}$. $\pm 100 \mathrm{ppm}$; as a function of line voltage: $\pm 0.1 \mathrm{ppm}$ for changes of $\pm 10 \%$.
Selectivity

Rejection	200 Hz bandwidth	1000 Hz bandwidth	3100 Hz bandwidth
3 dB	$200 \mathrm{~Hz} \pm 10 \%$	$1 \mathrm{kHz} \pm 10 \%$	$3.1 \mathrm{kHz} \pm 10 \%$
60 dB	$<470 \mathrm{~Hz}$	$<2350 \mathrm{~Hz}$	$<6680 \mathrm{~Hz}$

(Midpoint of the band is marked by rejection notch 3 Hz wide)

Automatic frequency contros
Dynamic hold-In range: $\pm 3 \mathrm{kHz}$ at 3.1 kHz bandwidth.
Tracking speed: $100 \mathrm{~Hz} / \mathrm{s}$; locks on to signals as low as 60 dB below zero reference. Zero reference level set with amplitude range switch set to 0 dB .
Amplitude characteristics
Amplitude range (full scale): 50 to 150Ω, -97 dBm to $+23 \mathrm{dBm} ; 600 \mathrm{n},-107 \mathrm{to}+13 \mathrm{dBm}$.
Voltage: $3 \mu \mathrm{~V}$ to 3 V full scale (son reference). Amplitude accuracy

Amplitude range attenuator: $\pm 0.1 \mathrm{~dB}(1 \%$ of reading). Reference level attenuator: at $1 \mathrm{MHz}, \pm 0.2 \mathrm{~dB}$.
Frequency response (bridging input with external termination of $50 \Omega \pm 1 \%): 1 \mathrm{kHz}$ to $10 \mathrm{kHz} . \pm 0.5 \mathrm{~dB}$ (5% of reading) ; 10 kHz to $10 \mathrm{MHz}, \pm 0.2 \mathrm{~dB}$ (2% of reading): 10 MHz to $18 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}$ (5% of reading). Meter tracking: $\pm 0.1 \mathrm{~dB}$ to -10 dB ($1 / \%$ of reading).

	312A Option HD1	312A Oprion H10	312A Option H05
FREO. RGE.	1 kHz to 22 MHz in 22 over-lapping bands		
AMP. ACC.	$75 \Omega 1 \pm 0.2 \mathrm{~dB}$		$50 \cap 1 \pm 02 d 8$
METER CALIB.	$\mathrm{d} 8 \mathrm{~m} / 75 \Omega$		\checkmark and dBm/50
INPUT Z	75Ω or bridging $(10 \mathrm{k} \Omega /<35 \mathrm{pF}$ \}		50Ω or bridging (10 k $\cap / 35 \mathrm{pFl}$
QUTPUT/INPUT	WE-477B/WE-289B	BNC/WE.477B	BNC/BNC
PRICE	ON REQUEST		

Internal callibrator output

Frequency: 1 MHz square wave (derived from time base). Amplltude: -40 dBm into 75Ω termination.
Amplitude stability: $\pm 0.1 \mathrm{~dB}$.
Oulput connector: BNC female.
Matching impedance: $50,60,75,124,135,150$ or 600Ω, balanced or unbalanced.
Bridging impedance: $20 \mathrm{k} \Omega \pm 3 \%$ shunted by $<30 \mathrm{pF}$ (balanced); $10 \mathrm{k} \Omega=3 \%$ shunted by $<60 \mathrm{pF}$, reference level attenuator at $-\varsigma 0 \mathrm{~dB}$ (unbalanced). Refer to daca sheet for complete spers.
Common-mode rejection (balanced input): i kHz to 5 MHz , $>40 \mathrm{~dB} ; 5 \mathrm{MHz}$ to $18 \mathrm{MHz},>30 \mathrm{~dB}$.
Input connector: BNC female (2).
Harmonic distortion: 1 kHz to 1 MHz , $>55 \mathrm{~dB}$ below zero reference. 1 MHz to 18 MHz , $>65 \mathrm{~dB}$ below zero reference in any position: residual responses: 72 dB below zero reference; noise level, referred to input: 50 to $1508,-120 \mathrm{dBm}$; 600Ω. -130 dBm (200 Hz bandwidth at 0).

Receiver characteristics

Receiver mode outputs
AM and AM/AFC: diode-demodulated audio.
Beat: beat frequency audio center at f_{0}.
LSB: product-demodulated audio, carcier reinserted at f_{0} +1.8 kHz .
USB: product-demodulated audio, carrier reinserted at f_{0} -1.8 kHz .
Audio output level: $>0.5 \mathrm{~V}$ rms into $10 \mathrm{k} \Omega$ with full scale meter defiection.
Recorder output level: $1 \mathrm{~V} \pm 0.1 \mathrm{~V}$ with full-scale meter de. flection across open circuit. Outpur connector, BNC female. Tracking accuracy, better than $\pm 0.1 \mathrm{~dB}$ to 20 dB below full-scale reference on 0 dB position of amplitude range switch: better than $\pm 0.2 \mathrm{~dB}$ to 30 dB below full-scale reference. Ourput resistance, $1 \mathrm{k} \Omega$.
Auxiliary outputs
$1 \mathrm{MHz}: 1 \mathrm{~V}$ p-p sine wave into $1 \mathrm{k} \Omega$; ourput connector, BNC female.
$30 \mathrm{MHz}: 40 \mathrm{mV}$ ro 70 mV rms into 50Ω; output connector, BNC female.
Local oscillator (30 to 48 MHz): 60 mV to 90 mV rms into 508; ourpur connector, BNC female.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 100 \mathrm{VA}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $103 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 274 \mathrm{x}$ 467 mm) ; hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $10 \cdot 15 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel (483 x $266 \times 416 \mathrm{~mm}$)
Welght: net, $46 \mathrm{lbs}(20,7 \mathrm{~kg})$; shipping, $62 \mathrm{lbs}(27,9 \mathrm{~kg})$.
Price: HP 312A, \$8275. HP 312 Option H01, 312A Option H05, 312A Option H10, price on request. HP 312A Option C 01 (furnished with input connecror equivalent to WE-465C and internal calibrator output connector equivalent to WE. $477 \mathrm{~B})$, price on request.

Specifications for 312A, Option 001

(Same as Standard Model 312A with following exceptions)
Bandpass: 3100 Hz with carricr rejection notched at $\pm 2 \mathrm{kHz}$ from the center of passband.

Rejection notches: down $>55 \mathrm{~dB}$ at 2 kHz above and below center of passband; down $>\mathrm{AS} \mathrm{dB}$ at $\pm 7.5 \mathrm{~Hz}$ from center of rejection notch.
Price: 312A Option 001, add $\$ 100$.

Specifications, 313A

Frequency range

As tracking oscillator: same as 312A (18 MHz) or (22 MHz).
As signal source: 1 kHz to 22 MHz in one band, continuous tuning.
Frequency accuracy
As tracking oscillator: $35 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ above 312 A tuning.
As signal source: $\pm 1 \%$ of maximum dial setting from 10 kHz to $2 \mathrm{MHz} ; \pm 3 \%$ of maximum dial setring from 2 to 8 MHz ; $\pm 5 \%$ of maximum dial serting from 8 to 22 MHz .
Frequency stablity
As tracking oscillator: same as 312 A time base $\pm 100 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
As signal source: short term (s min) drift $<1 \mathrm{kHz}$ in stable environment after warmup.
Frequency response: $\pm 0.1 \mathrm{~dB}, 10 \mathrm{kHz}$ to 22 MHz .
Amplitude stability: $\pm 0.1 \mathrm{~dB}$ for 90 days (0 to $+55^{\circ} \mathrm{C}$).
Meter mode
312A expand: meter expands any 2 dB range of 312 A meter indication from -7 to +3 dB using 312 A recorder output. Meter range. -1 to +1 dB ; racking error, $\pm 0.05 \mathrm{~dB}$ over full 2 dB range (operates with any $1 \mathrm{~V}, 1 \mathrm{k} \Omega$ recorder output).
Output monitor: meters voltage at the input of the attenuator and can be calibrated from the front panel.
Maximum output: 0 or $+10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$, selectable ar front pancl.
Output attenuator: 3 -section attenuator provides 0 to 99.9 dB attenuation in 0.1 dB seeps.
Attenuator accuracy: 0.9 dB section (0.1 dB steps), $\pm 0.02 \mathrm{~dB}$: 9 dB section (1 dB steps), $\pm 0.1 \mathrm{~dB}$; 90 dB section (10 dB sreps), $\pm 0.1 \mathrm{~dB}$ to $50 \mathrm{~dB}, \pm 0.2 \mathrm{~dB}$ to 90 dB .
Output Impedance: 75Ω unbalanced (50 optional, see Option 001 below).
Output connector: BiNC female.
Harmonic distortion: $>34 \mathrm{~dB}$ below fundamental.
Non-harmonic distortion
As tracking oscillator: $>40 \mathrm{~dB}$ below fundamental.
As signal source: $>50 \mathrm{~dB}$ belon fundamental.
Recorder output: $=0.3 \mathrm{~V}$ for full-scale deflection. Output impedance $1 \mathrm{k} \Omega$, BNC female connector.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 35 \mathrm{VA}$ maximum.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($426 \times 141 \times$ 467 mm).
Weight: net, 25 lbs ($11,3 \mathrm{~kg}$) ; shipping, $30 \mathrm{lbs}(13,5 \mathrm{~kg}$).
Accessories furnished: 11086A interconnecting cables for use with HP 312A, each cable $2 \mathrm{Ft}(610 \mathrm{~mm}$) long with BNC male connectors (3).
Price: HP 313A, \$1400. HP 313A Option C01 (furnished with output connector equivalent to $\mathrm{WE}-477 \mathrm{~B}$), price on request. Option 001: output impedance 50Ω unbalanced; no additional charge.

3591A/3594A

Description

The 3591A is a gencral purpose 20 Hz to 620 kHz frequency selective voltmeter having balanced/symmetrical input with selectable impedances. With the balanced input circuitry, the 3591A is particularly useful for communications applications in the lab, field, or production line. Other than input differences, the 3591 A is essentially identical to the 3590 , (see page 376). having all the virtues of automatic ranging, wide dynamic range, and \log and linear X and Y recorder outpurs.

Because of the input amplifier arrangement, diferencial signals can be measured by the 3591 A in the presence of longitudinal (common mode) voltage. Compatibility is thus obrained with balanced/symmerrical systems which can only be moni. tored by balanced/symmetrical inpur devices such as the 3591A. Applicarions include measurement of transmission lines, equalizers, filters, and multiplex carrier systens up to 120 channels.

Specifications ${ }^{n *}$

Frequency range: 20 Hz to 620 kHz .
Amplitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 15 ranges.
Amplitude accuracy with input terminated

Meter switch in normal position

Overall accuracy: $\pm 0.43 \mathrm{~dB}$ to $\pm 0.67 \mathrm{~dB}$ or $\pm 5 \%$ to $\pm 8 \%$ of reading depending on frequency, including the following:
Frequency response flatness, total deviation; goon termina. tion: 20 Hz to $100 \mathrm{~Hz} \pm 0.53 \mathrm{~dB}(\pm 5 \%): 100 \mathrm{~Hz}$ to $620 \mathrm{kHz} \pm 0.26 \mathrm{~dB}$ ($二 3 \%$). All other terminations: 5 kHz to $620 \mathrm{kHz} \pm 0.26(\pm 3 \%)$; merer cracking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 dB indication. Meter switch in linear $d B$ position: overall accuracy: $\pm 1 \mathrm{~dB}$.
Amplitude accuracy with input bridged: same as 3590 A specification.
Amplitude ranges (DBM): 75Ω : -90 dBm to +50 dBm full scale in 10 dBm steps; $135 \Omega, 150 \Omega$ and $600 \Omega,-100 \mathrm{dBm}$ to +40 dBm full scale in 10 dB sreps; (Voltage) : $3 \mu \mathrm{~V}$ to 30 V full scale in 3,10 sequence.

Noise fevel

Bardwidths	Input Noise Leval 1600 Source Impedancel
10 Hz and 100 Hz	$<-125 \mathrm{dBm}(<0.44 \mu \mathrm{VI}$ or at least 85 dB below zero d8 reference
1 kHz and 3.1 kHz	$<-115 \mathrm{dBm}(<1.38 \mathrm{JV})$ or at last 85 dB below zero dB reference

input mode: single-ended or balanced about ground (not floatable) terminated or bridged.
Functions DBM: level calibrated in dBm for input impedance selecred; ABS VM: level calibrated in volts for inpur impedance selected: REL: variable amplitude reference adjustment, 10 dB range: CAL: internal level calibrator.
Impedances, resistances:* $100 \mathrm{k} \Omega$ bridged and balanced: 50 kn bridged and single-ended; $600 \Omega, 150 \Omega, 135 \Omega, 75 \Omega$ tcrminated; capacitance (each channel to ground): 10 mV and 30 mV ranges: $<55 \mathrm{pF} ; 100 \mathrm{mV}$ to 30 V ranges: $<10 \mathrm{pF}$; return loss: 100 Hz to $620 \mathrm{kHz}: 600 \Omega,>30 \mathrm{~dB} ; 5 \mathrm{kHz}$ to 620 $\mathrm{kHz}: 150 \Omega, 135 \Omega .75 \Omega:>35 \mathrm{~dB}$; longitudinal voltage (com-mon-mode) rejection: 20 Hz to $620 \mathrm{kHz}:>40 \mathrm{~dB}$.

Maximum Input level

Terminated: 75 n : 4.3 V rms $(+2 \mathrm{f} \mathrm{dBm}) ; 135 \Omega: 9.8 \mathrm{~V}$ rms $(+24 \mathrm{dBm}) ; 150 \Omega: 6.1 \mathrm{~V}$ rms $(+24 \mathrm{dBm}) ; 600 \Omega: 12.3$ Vrins (+2 d dBm)
Bridged: 10 mV and 30 mV input sanges: $1.1 . \mathrm{V}$ rms: 100 mV to 30 V input ranges: 75 V rms: max longitudinal (commonmode) voltage not to exceed max input voltage range setting.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 115 \mathrm{VA}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $93 / 4^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($425 \times 221 \times$ A 16 mm).
Weight: net, $38 \mathrm{lbs}(17.2 \mathrm{~kg}$) ; shipping, $56 \mathrm{lbs}(25 \mathrm{~kg}$).
Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack. (Refer to page 376 for plug-in information. The 3591 A must have a plug-in to operate).
Price: HP 3591A, $\$ 3435$.
Plug-ins: HP 3592A, $\$ 80$; HP 3593A, $\$ 1130$; HP 3594A, $\$ 1640$.

[^56]
COMMUNICATIONS SWEEP OSCILLATOR AND ACCESSORIES Model 8605A

Description

The Hewlett-Packard Model 8605A Communications Sweep Oscillator is an all solid state CW and swept source which offers 47 to 100 MHz IF coverage and multitand RF coverage. Multiband RF coverage is available anywhere in the microWave region, 1.7 to 13.25 GHz . While 4,6 and 11 GHz bands are standard options almost any other band or bands are avail. able upon request.

The instrument is easy to use and features excelicnt frequency accuracy and extremely flat power ourput characteristics (0.01 dB). The 70 MHz IF sweep generator controls are on the right of the mainframe, the multiband RE (microwave) controls ate separate and on the left of the mainframe. The meleiband RF section features a band switching lever for convenient control of RF frequency range and a highly adaptive multiband. modular desiga that enables Hewlert-Packard to offer self-contained multiband capacity anywhere in the 1.7 to 13.25 GHz region.

General instrument specifications

Sweep frequency: adjustable from 20 to 10 sweeps per second.
Sweep output: direct-coupled sawtooth, zero to approx. +10 V . Blanking output. o V during trace, +15 V during retrace.
Furnished: $71 / 2^{\prime}$ (2290 mm) power cable with NEMA plug, rackmounting kit. and accessory kit.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz ; approx 150 wates.
Dimensions: $51 / 4^{\prime \prime}(133,4 \mathrm{~mm})$ high, $163 / 8^{\prime \prime}(416,0 \mathrm{~mm})$ deep, 163/4" ($425,5 \mathrm{~mm}$) wide.
Weight: (including RF section) $33 \mathrm{lbs}(15,0 \mathrm{~kg})$; shipping, 48 lbs $(21,8 \mathrm{~kg})$.

70 MHz IF Section Specifications

Frequency range: 47 to 100 MHz .
$\triangle \mathrm{F}$ sweep width range: 0 to 53 MHz .
Frequency accuracy ($25^{\circ} \mathrm{C}$): CW mode; $\pm 2 \mathrm{MHz}$; Cardinal markings every 5 MHz ; rear panel BNC counter monitor jack provided.
Residual FM.CW mode: $<1 \mathrm{kHz}$ peak.
Linearlty: $\Delta \mathrm{F}$ sweep mode, $\pm 2.5 \%$, as a $\%$ of sweep width.
Maximum leveled power output: $>+10 \mathrm{dBm}$; internally leveled.
Power output variation (internally levaled): 55 to 85 MHz : $<0.01 \mathrm{~dB}$ peak to peak; 47 to $100 \mathrm{MHz}:<0.025 \mathrm{~dB}$ peak to peak.
Power output slope adjustment range: $\pm 0.1 \mathrm{~dB}$ slope control. Spurious signals: (down from fundamental output at +10 dBm); harmonics, more than 40 dB : non-harmonics, more than 50 dB .
IF output: 75 ohm WECO 567 A jack; other connectors available.

Ordering information

Model 8605A Communicatlons Sweep Oscillator: price includes 70 MHz JF secrion and RF bands specified optionally below.
Optional RF bands (order only one option)

4 GHz band,	Option 001;	Price: \$3875
6 GHz band,	Option 002;	\$4450
11 GHz band,	Oprion 003;	$\$ 4650$
486 GHz bands,	Option 004;	\$5075
4 \& 11 GHtunds	Oprion 005:	\$6225
$6 \& 11 \mathrm{GHz}$ bands,	Option 006;	\$6425
4, $6 \& 11 \mathrm{GHz}$ bands,	Oprion 007;	\$6775
Other binds,	Reques! Hew	kard quotation

Connector and modulation optlons
Option 050: 75 -ahm BNC in place of WECO-567A for IF out pur; Price: no charge.
Option 070: external FA input for use as up-converter: rate, dc $108 \mathrm{M}(\mathrm{Hz}$; Price: add $\$ 250$.
Model 11675A Leveling Cable Assembly; Price: s so.
Model 784A Directional Detector; Price: 562s.

Muiti-band, RF (Microwave) Section Specifications

Band	Frequeray Range	Frequenay Acburasy CW-Mode	Linearlly $\%$ ol 5waep Widh	Max. Leveled Power Inol. 11675A \& 784A	Power Variation		Spurious Siprals down lrom lundamental		ExternalFM. Optlon 070:Rate
					$\begin{gathered} \text { Over } 30 \mathrm{MHz} \\ \text { Channel } \end{gathered}$	Over speelffed Band			
							Harmonio	Non- Harmonic	
4 GHz	$\begin{aligned} & 3.85 \mathrm{to} \\ & 4.25 \mathrm{GHz} \end{aligned}$	$\pm 5 \mathrm{MHz}$	$\pm 1.0 \%$	$\begin{aligned} & >+11 \mathrm{dBm} \\ & (>12.5 \mathrm{~mW}) \end{aligned}$	$< \pm 0.01 \mathrm{~dB}$	$<=0.15 \mathrm{~dB}$	$>-40 \mathrm{~dB}$	$>-60 \mathrm{~dB}$	DC 108 MHz
6 GHz	$\begin{aligned} & 5.9 \mathrm{to} \\ & 6.5 \mathrm{GHz} \end{aligned}$	$\pm 8 \mathrm{MH}_{2}$	$\pm 1.0 \%$	$\begin{aligned} & >+11 \mathrm{dBm} \\ & (>12.5 \mathrm{~mW}) \end{aligned}$	$<=0.01 \mathrm{~dB}$	$< \pm 0.15 \mathrm{d8}$	$>-40 \mathrm{~dB}$	$>-60 \mathrm{~dB}$	OC 108 MHz
11 GHz	10.7 to 11.7 GHz	$\pm 10 \mathrm{MHz}$	$\pm 2.0 \%$	$\begin{aligned} & >+5 \mathrm{dBm} \\ & (>3.1 \mathrm{mw}) \end{aligned}$	$< \pm 0.01 \mathrm{~dB}$	$< \pm 0.2 \mathrm{~dB}$	>-40 d8	$>-60 \mathrm{~dB}$	DC 108 MHz
Other	$\begin{aligned} & \text { Portion of } \\ & 1.7-13,25 \\ & G \mathrm{H}_{2} \end{aligned}$	$\pm 0.5 \%$ of band width	$\begin{aligned} & \pm 1.0 \% \\ & 10 \\ & \pm 2.0 \% \end{aligned}$	$\begin{aligned} & >+11 \mathrm{dBm} \\ & 10 \\ & >+5 \mathrm{dBm} \end{aligned}$	$<=0.01 \mathrm{~dB}$	depends on band	$\begin{aligned} & \text { depends } \\ & \text { on } \\ & \text { band } \end{aligned}$	$>-40 \mathrm{~d} 8$ typically	CC to 8 MHz

Description

The Microwave Link Analyzer is a combined baseband (BB) and Intermediare Frequency (IF) analyzer. Designed to satisfy international measurement requirements, the MLA permits rapid tuning and equalization of satellite and terrestrial radio relay links for realization of their full traffic potential.

The MLA allows the various forms of distortion occurring in a link to be identifed, measured and localized to $B B$ and IF devices and $B B / I F$ combination devices (eg, modulators and/or demodulators). From these measurements, it is also possible to deduce the radio frequency (RF) performance of the link. RF measurements however can be made directly with the aid of the Model 3730A Down Converter.

Inclusion of high frequency BB test signals corresponding to the upper BB frequency of the link, permits the detection of amplitude to phase modulation conversion effects. Optimization of the link differential gain and phase performance using these frequencies will generally give the best overall system performance as determined by white noise loading tests.

Features

Combined IF and $B B$ test set covering the IF (45 to 95 $\mathrm{M}\{\mathrm{zz}$) and BB (83.3 kHz to 8.2 MHz) frequency spectrum of 1800 Channel and Color TV Radio Relay links. Demodulation of BB frequencies up to 5.6 MHz .

Sweep width automatically compensated by chosen BB frequency to give constant sideband excursion.

AM facility $10 \%, 60 \mathrm{kHz}$ to 10 MHz , with low incidental PM ($0.15 \% 10 \%$) enables AM to PM conversion and AM suppression measurements to be made on limiters.

IF amplitude fatness $\pm 0.05 \mathrm{~dB}$ from 45 to 95 MHz using a PIN diode levelling circuit. IF frequency stability of $\pm 100 \mathrm{kHz}$ via a pulse count discriminator circuit. IF frequency markers of $70 \mathrm{MHz}, 2 \mathrm{MHz}$ 'comb' and sliding symmetrical pair.

Easy to use-distinctive front panel layout with slide rule scales' which give 'at a glance' test signal settingsno need to switch a meter sequentially. Front-panel cross checking facilities between the Transmitter and Receiver rapidly locate measurement problems.

BB frequencies switch selectable-no need to change a module wher changing BB frequency.

Receiver can be remote from Transmitter for between station measurements. 'Slave' facility for local display of remote measurements.

Inbuilt CRT display for ease of use, minimizing interconnections and more importantly eliminating ground loop problems which may be present in terminal stations. Dual display of interdependent link parameters. Constant X-axis CRT deflection independent of sweep width changes.

Comsat/Intelsat requirements met by optionally arailable sweep frequency and measurement bandwidth, appropriate to satellite link signal-to-noise conditions.
Western Electric compatibility with optional connectors, sweep and BB frequencies.

Measurements

Measurements can be either one way or loop. When one way measurements are made, the measurements at the receive end can be 'slaved' back for display at the transmit end with negligible additional distortion contributed by the return path of the microwave link. The measurements performed by the MLA are:

1 2	BB to BB
3	IF to BB
4	BB to IF
4	IF to IF

83.3 \mathrm{kHz} to 8.2 \mathrm{MHz} .

Using internal \mathrm{BB} frequencies

83.3 \mathrm{kHz} to 5.6 \mathrm{MHz} . Above 5.6 \mathrm{MHz}

an external demodulator can be used.\end{array}\right.\)

GROUP DELAY;
 LINEARITY

DIFFERENTIAL PHASE/ GAIN

AM TO PM CONVERSION AM SUPPRESSION
IF AMPLITUDE RESPONSE
SENSITIVITY

IF RETURN LOSS
BB RETURN LOSS
FREQUENCY SPECTRUM
POWER, GAIN.
ATTENUATION

Modularors and demodula. tors separately or in combinations; IF and BB d ε vices and through-link tests (loop or one way).
As for GROUP DELAY but using the higher BB frequencies including TV color subcarrier.
Limiters.
Limiters.
Modulators, IF devices and through-link tests.
Modulators and demodula. tors.
IF input ports.
BB injut ports.
IF signals.
IF and BB devices.

Transmitter

The Transmitter part of the MLA generates the signals required for testing and setting-up the IF, BB, IF/BB and BB/IF sections of a radio relay link. The Transmitter consists of a 3710 A IF/BB Transmitter mainframe, which embraces sweep and IF sections and a 3715A BB Transmitter or a 3716 A BB Transmitter plug-in, which contains the BB and $\mathrm{BB}+$ sweep sections.
The 3715A BB Transmitter offers BB frequencies of 83.3, 250 and 500 kHz and the 3716 A BB Transmitter offers, in addition to the 3715A frequencies, the higher BB frequencies of 2.4, 4.43, 5.6 and 8.2 MHz. Also incorporated in the 3716 A are the facilities of Auto Sweep Reduction and of Reduce BB Frequency indication, both relevant at the higher BB frequencies.

Receiver

The Receiver analyses signals from radio-relay-link IF, $\mathrm{BB}, \mathrm{IF} / \mathrm{BB}$ and $\mathrm{BB} / \mathrm{IF}$ sections. Frequency demodulation, power/linearity and dual trace CRT display circuits are contained in the $3702 \mathrm{BIF} / \mathrm{BB}$ Receiver mainframe and the phase detection circuitry is in the 3703B Group Delay Detector or 3705A Differential Phase Detector plug-in.

The 3703B Group Dejay Detector provides group delay measurements at BB frequencies of $83.3,250$ and 500 kHz and the 3705 A. Differentia! Phase Detector additionally gives differential phase measurements at BB frequencies of 2.4, 4.43, 5.6 and 8.2 MHz.

MLA System Price $\$ 9,000$ to $\$ 12,000$ dependent upon system configuration and options.

Model 3730A Down Converter

The Model 3730A Down Converter, equipped with one of three Oscillator plug-ins, forms a versatile RF to IF Converter for use in the design, testing, commissioning and maintenance of radio relay links. The Oscillator Plug-ins are Model 3732A, 5.925 to 6.525 GHz ; Model 3732A, 6.42 to 6.92 GHz ; and Model 3733A, 6.87 to 7.27 GHz .

The Converter is a valuable extension to the MLA, adding the capability to make measuremients from BB to RF , IF to RF, and, by using a suitably modulated generator, RF to RF, The Converter with the MLA thus allows rapid measurement and adjustment of individual RF sections and components by simultaneously displaying their amplitude response and group delay characteristics. This enhanced measurement capability ensures more rapid and direct fault localization and permits equalization at RF for better equipment bandwidth utilization.
3730A Price: $\$ 2640$.
3731A/3732A/3733A Price: $\$ 1305$ each.

Model 3750A Attenuator
The Model 3750A Attenuator is designed for use in a frequency range from $0(\mathrm{dc})$ to 100 MHz . Attenuation of 0 to $99 \mathrm{~dB}, 75 \Omega$ impedance, is provided in I dB steps by the operation of pushbutton switches. Cumulative accuracy ± 0.5 dB, BNC connectors, SWR <1.08, maximum power 250 $\mathrm{mW}(+24 \mathrm{dBm})$. Usable to 400 MHz with reduced specifcation.
3750A Price: $\$ 150$.

Model 15550A Accessory Kit

The Model 15550A Accessory Kit furnished with the MLA and also available separately contains: a BB hybrid, an IF hybrid, interconnecting cables, terminations, and a 17 dB standard mismatch. The hybrids while primarily intended for use in making return loss measurements can also be used as general purpose directional bridges and powes splitters.
15550A Price: $\$ 220$.

Network analysis

A fundamental problem facing engineers is to predice the behavior of a network that is stimulated by an asbitrary signal and connected to other arbitrary networks. A wiay to solve this problem is to complecely describe the network's behavior in the frequency domain. Network analysis accomplishes this for passive and active linear netroorks by mea. suring paramecers at the network's ports. Network analysis creates thus a data model representing the actual network behavior as a function of frequency. (For description of the behavior of noalinear devices see sections about Spectrum Ana. lyzers and Wave Analyzers).
The engineer designing multicomponent networks tries to predict the performance of the final circuir from a knowledge of the parameters of individual componeats. The production engineer responsible for the manufacture of each component must know the tolerances allowable on the components to ensure a finished product within specifcations. Network analysis helps these engineers to natrow the limits of uncertainty about network behavior.

Network behavior

It is possible, to a certain extent, to predict circuit performance by calculation. However, theoretical calculations often disagree with acnal measured values since a "perfect" network does not exist and since the elearical characteristics of a circuit may vary in a compli. cated way with frequeaty.

At frequencies above approximarely 1 MHz , a single lumped element becomes a "circuit" consisting of the basic element plus a number of parasitics like stray capacitance, lead inductance and unaccountable absocpuive losses, The magnitudes of these parasitics depend largely upon the construction of the device and are dificule or impossible to predict.
At frequencies above 1 GHz , the geometry of the components used in a circuit becomes comparable to the wavelength used. Lower frequency techniques and lumped-element theory are almost impossible to use for complete network characterization. To analyze the behavior of necworks al microwave frequencies, distributed-element theory, that is trans-mission-line theory, has to be applied.

A device or "black box" may behave like a resistor at very low frequencies, like an L.C circuit at RP frequencies, and like a transmission line at microwave frequencies. This circuit behavior is difficult

Phase and amplitude responses of an L-C network are traced on an oscilloscope readout. The display shows chariges in values of the dampling ratio parameter in real.time, resulting in a considerable soeedup of design work. The measurement setup includes the 676A Tracking Detector.

Magnitude and phase of the complex Impedance of a resonant circuit ars measured with the 8407A Network Analyzer using the 11655A Impedance Probe. The calculated parallel resonance is 5.2 MHz The unexpected series resonance at 60 MHz caussd by circult parasitics can be important information for clrcuit design.

The insertion loss and "nonlinear" portion of the phase shift of a PIN modulator are traced on the 8412A Phase Magnitude Display. The electrical length of the PIN modulator has been compensated by the line stretcher of the "transducer" used for tansmission measurements with the 8410A.

The amplitude responses of two nearly iveriftical filters are compared using the dual.channel capability of the 676A Tracking Detector and a dual-channel oscilloscope. The 676A can also measure and display the amplitude and phase difference betweer the two channels, a useful capability for production testing.
and impractical to predict by calcula. tions. Network analysis enables the engineer to accarately measure circuit behavior in a speedy and convenient way.

Network parameters

At lower frequencies, currents and voltages can readily be measured. Current and voltage transfer functions and in. pedance, the ratio of vollage to current, are widely used circuit parameters. In circuit design. b, y or z parameters are used. At microwase frequencies, how: ever, these parameters cannot be ac. curately measured because it is exiremely difficult to establish the required shorr and open circuit measucement conditions. Also, voltage and cucrent vary along the uransmission line causing measurements to become arbitsacy. Consequently, microwave phenomena are more commonly expressed in terms of power which is invariant along a lossless transmission line.

Parameters which descrite the energy fow within a perwork are the scatcering parameters or S-parameters. They are used at microwave frequencies because they are much easier to measure and design with than other kinds of parameters at these frequencies.
S-paramerers describe the ratios of reRecred and transmitted signals within a network.
S_{11} is the reflection coefficient at port 1 . $E_{r_{1}} / E_{12}$ if $E_{12}=0$ (port 2 is cerminated in its chacacteristic impedance). S_{21} is the transmission cocfficient $E_{r 2} / E_{11}$, if E_{12} $=0$. By reversing the ports, S_{22} and S_{12} can be defined. It is important to note that the netrork is always terminated in its characteristic impedance thus a voiding oscillation by acrive devices and other unwanted parasizic effects caused by open or short circuit terminations during measurements.
S-parameters completely characterize transistors, solid state devices and other active and passive linear oetworks. They are useful in the design of amplifiers, transistor circuits, and in flow graph analysis of multicomponent circuits.

Hewlett-Packard has developed a set of tutorials for measurement of and de. sign with Suparameters: Application Notes 95, $117.1,117.2$; videotapes "Basic Microwave Review-Part 1" \#800586, "S-pacarmeter Measurements" \#800504, "High Frequency Amplifer Design Using S-parameters" $\$ 800600$: calculator pro. grams "Microwave Circuit Design PAC, Vol. 1.": seminars on design techniques with S-parameters are also being offered.

With the increased use of microwave frequencies in communication systems and other new applications, S-parameter measurements become more and more important and are more generally used in design work. The accuracy and ease of S-parameter measurements are also available at RF frequencies. Since S-parameters completely characterize linear networks, they can mathematically be converted into any desired parameter set such as h, y and z parameters or return loss, impedance and transfer functions.

Hewlett-Packard helps the RF engineer with these parameter conversions, where desirable, by offering a variety of displays, display overlays, a reflectometer calculator and softwaie for HewlettPackard programmable calculators.

Network analyzers

Hewlett-Packard offers a complete line of network analyzers throughout the fre. quency tange 10 kHz to 40 GHz . Compared to other instrumentation that can be used for network characterization such as broadband volmeters, log ampliñers, oscilloscopes, crystal detectors and siotted lines, netwrosk analyzers offier the following advantages.

The insertion loss and phase shlft of a tunable 50 MHz bandpass filter are traced on the 8412A Phase-Magnitude Display used with the 8407 A Network Analyzer. The swept frequency display allows rapid adjustments for linear phase shift through the passband. Group delay can be computed from the phase information displayed.

The rellection coefficient $S_{\text {, }}$ of a transistor is measured over the frequency range 300 MHz to 700 NiHz . The measurements setup includes the 8410A Network Analyzer using the 8414A Polar Display. The Smith Chart overlay permits dlrect readings of complex impedance values.

Versatlity of measuraments

Hewlett-Packard network analyzers are capable of measuring or testing a large variety of parameters of numerous networks-passive, active and networks
with various characteristic impedances. A broad frequency coverage and the design of the network analyzers achieve this measurement versatility. As ratiometers, their performance is virtually in. dependent of the power level used to stimulate the device under test. Their dual-channel capability enabies measure. ment of various parameters through the use of "transducers": besides S-parameters, the ratio of voltage to current (impedance) or voltage and current transfer functions can be measured. Comparison measurements become possible. The variety of "transducers' allow's the user also to update his "mainframe" as measurement/test requirements change.

Accuracy of measurements

Hewlett-Packard network analyzers are built either as tracking receivers which convert the swept RF signal to a narrow-band constant IF signal or they use harmonic frequency conversion for obraining a constant If signal. In both cases, sensitive, low noise detection of the IF signal becomes possible. Furthermore, precision attenuators allow high resolution, accurate IF substitution mea. surements.

Speed of measurements

Hewlett-Packard network analyzers are capable of real-time swept displays (except for 8405 A Vector Voltmeter and 481sA RF Impedance Meter). Swept measurements entail a substantial increase in speed of measurements compared to $C W$ measurements. Also, they prevent oversights due to point-by-point techniques and make measurement results easier to interpret.

Network Analyzer Summary

Model	Frequenoy Ranse	Souroe	Measaramant Capabilitles
$\begin{aligned} & \text { Tracking Detector } \end{aligned}$	$10 \mathrm{kHz} \cdot 32 \mathrm{MHz}$	675A Swesping Signal Generator	- Transfer Functions, Impedance in $50 \Omega, 75 \Omega$ systems - Comparison Measurements of two networks in $50 \Omega, 75 \Omega$ systems - Complex Impedance, $0.3 \Omega \cdot 3 \mathrm{k} \Omega$
8407A Notwork Analyzer	$100 \mathrm{kHz}-110 \mathrm{MHz}$	8601A Generator/Sweeper 8690B/86988 Sweep Oscillator	- Transfer Functions, Impedance in $50 \Omega, 75 \Omega$ systems - Complex impedance 0.in to $>10 \mathrm{k} \Omega$ - High Impedance In.-Circuit Probing - High Resolution Comparison Measurements in $50 \Omega, 75 \Omega$ systems - S-parameters in 50n. 75 n systems
4815A Vector Impedance Meter	500 kHz .108 MHz (CW)	Internal (external possible)	- Complex Impedance, 1 s to $>100 \mathrm{k} \Omega$
8405A Vector Vollmeter	$\underset{\text { (CW) }}{\mathrm{MHZ} \cdot \mathrm{I}} \mathrm{GHz}$	608E, F Signal Generator. VHF 612A Signal Generator, UHF 32008 Oscillator, VHF 8654A Signal Generator, UHF	- Voltmeter - Transter Functions, Impedance in 50Ω systems - Group Delay, Amplítude Modulation Index - S.parameters in son systems
8410 A Network Analyzer	110 MHz .40 GHz	8620 Series Sweep Oscillator 8690 . Series Sweep Oscillator	- Transmission/Reflection Characteristics in 50Ω systerns - S-paramelers in 50Ω systems

676A

The 676A Tracking Detector tracks the 675A Sweeping Signal Generator from 10 kHz to 32 MHz . The dualchannel 676 A used with an oscilloscope or $\mathrm{X}-\mathrm{Y}$ recorder, will display log amplitude (80 dB dynamic range) and phase $\left(360^{\circ}\right)$ response of test devices. Comparison measurements of two devices are possible as well as absolute measurements of transfer functions (gain, insertion loss and phase shift). Complex impedance measurements over a 0.3Ω to 3 k Ω range can be made when using the 11138A Impedance Adaprer.

Applications are detailed in Application Notes 112.1 and $112 \cdot 2$, including techniques for getting extremely high resolution and Bode plots. Also, a videotape is available "Network Analysis" \#800338.

8407A

The 8407A Network Analyzer tracks the 8601A Generator/Sweeper (or $8690 \mathrm{~B} / 8698 \mathrm{~B}$ Sweeper) from 100 kHz to 110 MHz . The 8407 A achieves great versatility of measurements through a set of six different "transducers." Measure. ment capabilities include:

1) Transmission (gain, loss, phase shift) in 50Ω and 75Ω systems. Reflection (return loss, impedance) in sos? and 75Ω systems.

2) Complex impedance $|Z|$, © or $R \pm j X$ over the wide impedance range 0.1Ω $10>10 \mathrm{k} \Omega$.
3) Voltage and currear transfer func. tions (voltage or current gain, loss: phase shift).
4) High impedance in-circuit probing.
5) Visual comparison measurements with $0.01 \mathrm{~dB}, 0.2^{\circ}$ resolution in 50 ? and 75Ω systems.
6) S-parameter measurments of active and passive lineac networks (transistors) in 30Ω systems (also 75Ω systems for passive devices).
A rectangular and polar display and various CRT overlays permit direct readings of parameter values of interest. Applications are detailed in Application Notes 121-1, 121-2. Also, a videotape
"8407 Network Analyzer System" \#800475 is available.

4815A

To design a circuit for maximum power transfer and/or with desired frequency characteristics, engineers must know the impedance of the components they use. The 4815A RF Vector Impedance Merer provides direct readout of complex impedance values $|Z|$ and Θ on adjacent meters thus greatly simplifying the measurement of impedance compared to conventional methods. Operating range of the 481 SA is 1Ω to $100 \mathrm{~K} \Omega$ and 0° to 360° over the frequency range 500 kHz to 108 MHz .

These operating characteristics are very similar to the $8\{07 \mathrm{~A} / 11655 \mathrm{~A}$ impedance measuring system. The $8407 \mathrm{~A} /$ 11655A combination is superior to the 4815A with regard to accuracy (reactive probe parasitics of 11655 A can be cance)led out), and also speed (real-time swept displays). However, the 4815A is lower priced.

8405A

The 8405A Vector Voltmeter is a dual. channel RF millivoltmeter and phasemeter. It reads the absolute voltages on either of two channels and simultaneously derermines the phase relationship between them. CW measuremenrs are made over the frequency range 1 MHz to 1 GHz .

Besides its use as a voltmeter, applications of the 8405A include:

1) Transmission measurements (gain, loss. phase-shift) in 50Ω impedance systems. Reflection measurements (impedance, return loss) in 50 . systems.

2) Group Delay. Amplitude Modulation Index:
3) In-circuit probing
4) S-parameters in 50Ω systems

For detailed applications, Application Notes 77.1, $77.3,77.4$ and 91 are available.

8410A

The 8410A Network Analyzer System measures the rransmission and reflection characteristics, (S-parameters) of linear networks in the form of gain, attenuation, phase shift, reflection coefficient, normalized impedance in the frequency range 110 MHz to 40 GHz .

Harmonic frequency conversion from RF to a constant IF is accomplished by the 8-11A Harmonic Frequency Converter operating from 110 MHz to 12.4 GHz ; the 8411A Option H10 operates up to 18 GHz . In the frequency ranges 18.26.5 GHz (K-band) and $26.5 \cdot 40 \mathrm{GHz}$ (R-band), the K8747A and R8747A Re. flection/Transmission Test Units use crystal mixers and a local oscillator to hererodyne the signals down into the range of the $8410 \mathrm{~A} / 8411 \mathrm{~A}$. In this manner, waveguide components can be characterized for S-parameters from 18 to 40 GHz .

The 8410A is a ratiometer, like the 8407A Network Analyzer, using both a reference and a test signal inpur. Consequently, the power from the sweeper muse be split into two channels. This is accomplished by a "Test Set" whose orher major function can be to provide the switching required for making transmission and refection measurements with minimum or no changes in the measurement setup. Hewlett-Packard offers a total of twelve different test sets covering various frequency ranges and switching functions.

Another major instrument required in the 8410 measurement system is a unit for amplitude and phase detection and display. Hewletr-Packard offers three plug-ins for chis purpose: a phase-gain indicator with a meter readour for CW measurements, a phase-gain display for displaying log amplitude and phase versus frequency, and a polar display displaying amplitude and phase in polar coordinates.

The 8410A is capable of sweeping octave bands through 18 GHz . Betreen 18 GHz and $40 \mathrm{GHz}, 2 \mathrm{GHz}$ frequency windows can be viewed. Measurements of more than 60 dB of attenuation and 40 dB of gain are possible. Another im. portant facility is a line stretcher in the reference channel of the test sets, making possible equalization of electrical lengths in borh channeis for accurate differential phase measurements.

The variety of test sets, displays and accessories for measuring active devices makes the 8410A Network Analyzer adaprable to almost any measurement with regard to linear networks. For more detailed information, the videorape " 8410 Network Analyzex System" \#800473 is available.

NETWORK ANALYZER 80 dB amplitude response $/ 360^{\circ}$ phase Models 675A/676A

Network Analyzer, 675A \& 676A

This network analyzer provides swepr phase and amplitude information ovec the 10 kHz to 32 MHz frequency range. Boch laboratory and production oriented, the 675A Sweeping Signal Generator and 676A Phase/Amplitude Tracking Detector system provides an amplitude response with 80 dB dynamic range, accompanied by 360° (or multiples of) phase measurement capability.

Frequency

The 675A frequency can be manually positioned, automat. ically swept berreen tro preser limits, or swept about a center frequency in calibrated increments. A bypass marker system superimposes markers on all phase and amplitude channels for easy frequency identification and calibration. 100 kHz and 1 MHz comb markers and up to five individual single frequency markers are available in the 100 kHz to 32 MHz range.
When used with a low frequency oscilloscope or $\mathrm{X} \cdot \mathrm{Y}$ recorder, the netroork analyzer presents displays that can be calibrated in frequency, phase, and amplitude. Along with the low residual FM ($<70 \mathrm{~Hz}$ peak), low spurious response and low noise $(-85 \mathrm{~dB})$, these capabilities permit accurate measurements of devices with steep responses.

Amplitude and phase

The 676 A is a dual channel detector synchronously tuned to the sweep frequency. Four scope outputs ($A, B, A \cdot B$, PHASE A.B) are located on the front panel of the detector. A and B provide 80 dB of \log amplitude dynamic range ($50 \mathrm{mV} / \mathrm{dB}$) for each channel, and $\mathrm{A} \cdot \mathrm{B}$ is the log difference between the two channels. All three present information in linear dB. PHASE A-B is a dc voltage that is linearly proportional $(10 \mathrm{mV} / \mathrm{de}$ gree) to the phase difference betreen channels from 0° to 360°.
To make using an oscilloscope or recorder more convenient, a "CAL" is provided for the scope outputs to allow fine adjust. ment of the display. Phase is also conveniently calibrated using the 5° to 100° "PHASE CAL CHECK" buttons. Either pushbutton supplies a calibrated do offset to the vertical input of the oscilloscope allowing a quick check of phase and calibration of the display.

Specifications, (675A and 676A)"
Frequency range: 10 kHz tc 32 MHz in one range with StartStop. Manual, Center Frequency Sweep, and CW control. Digital drum readout, 1 kHz setrability, 20 kHz resolution.
RF output (Channels A and B); two equal-amplitude, in-phase outputs derived from 675A output through resistive power divider.
Leval (676A only): +2 dBm (0.28 V rms) into 50Ω with 675 A set to +13 dBm . Adjustable with 675 A attenuator. impedance: 50Ω (75Ω on request). NOTE: impedance independent of 675A. Impedance of 675A must match impedance of 676A.
Output Isolation: 16 dB between channels.
RF input (Channels A and B): identical inputs synchronously tuned to 675A output frequency.
Level: $+2 \mathrm{dBm} \max$ (not to exceed +13 dBm or 1 V mms). impedance: same as RF outpur.
Crosstalk: $>84 \mathrm{~dB}$ between channels,

Amplitude functions

Range: 0 to -80 dBm .
Accuracy
Using Channes A or B: output proportional ro log of input $\pm 1.5 \mathrm{~dB}$ over 80 dB dynamic range.

System flatness

Using Channel A or $\mathrm{B}: \pm 0.8 \mathrm{~dB}, 10 \mathrm{kHz}$ to $200 \mathrm{kHz}, 675 \mathrm{~A}$ unleveled; $\pm 0.8 \mathrm{~dB}, 200 \mathrm{kHz}$ to $32 \mathrm{MHz}, 675 \mathrm{~A}$ internally leveled.
Noise: $<-85 \mathrm{~dB}$ (50Ω source impedance).
Spurious responses: $<-85 \mathrm{~dB}$ (50n source impedance).
Channel A and B scope output: $50 \mathrm{mV} / \mathrm{dB}(+4.2 \mathrm{~V}$ dc for +2 dBm input level) adjustable with CAL control.

Phase function
Range: 0° to 360°. Display secycles every 360°, internal phase shifter allow's 0° to 360° continuous phase offset.
Accuracy
As a function of frequency: 100 kHz to $32 \mathrm{MHz}, \pm 1^{\circ} ; 10$ $\mathrm{kHz} 10100 \mathrm{kHz}, \pm 2^{\circ}$.
As a function of amplitude: $\pm 5^{\circ}$ over entire 80 dB dynamic range.
Calibrator accuracy: $100^{\circ} \pm 1.0^{\circ}, 5^{\circ}=0.2^{\circ}$.
Phase scope output: $10 \mathrm{mV} /{ }^{\circ}$ ($1.80 \mathrm{~V} d c \pm 1.80 \mathrm{~V}$ dc for 180° with phase control set to 0°). Adjustable with CAL control.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz .
Dimensions (675 A) : $163 / 4^{\prime \prime}$ "ide, $83 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425 $\times 221 \times 467 \mathrm{~mm}) ;(676 \mathrm{~A}): 163 / 4^{\prime \prime}$ ride, $3-15 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times 88 \times 467 \mathrm{~mm}$).
Total system weight: nec, 59 lbs ($26,3 \mathrm{~kg}$); shipping, 83 lbs $(37,4 \mathrm{~kg})$.
Total system power: 185 VA max
Price (must order 676A and 675A for network analyzer sys. tem): HP 676A, s1450; HP 675A, 52400 .
HP 675A Option 001 (includes 1 MHz harmonic comb marker), add \$75.
HP 675A Option 002 (includes 100 kHz harmonic comb marker), add \$75.
HP 675A Option 003 (includes 1 MHz and 100 kHz hacmonic comb markers), add \$12s.

[^57]
RF VECTOR IMPEDANCE METER
 Quickly, easily measure Z \& θ, .5 to 108 MHz Model 4815A

Advantages:

Direct reading of impedance and phase
Convenient probe for in-circuit measurements
Self calibration check provides measurement confidence
A nalog outputs for data recording
Low-level test signal minimizes circuit disturbance
The HP 4815A RF Vector Impedance Meter provides all of the convenience of "probe and read" measurements. In use, the probe is connected directly into the circuit to be evaluated, frequency is selected, and complex impedance is read. This type measurement allows a straightforward adaptation to various jigs and fixtures for special measurements. Where only component values are to be determined, a quick-mount adapter is provided to allow rapid measurements. For critical component applications, the unit to be evaluated may be mounted directly in its working circuit and its value determined in its actual environment, at the frequency of interest.

Specifications

Frequency

Range: 500 kHz to 108 MHz in five bands: 500 kHz to $1.5 \mathrm{MHz}, 1.5$ to $4.5 \mathrm{MHz}, 4.5$ to $14 \mathrm{MHz}, 14$ to 35 $\mathrm{MHz}, 35$ to 108 MHz .
Accuracy: $\pm 2 \%$ of reading, $\pm 1 \%$ of reading at 1.592 and 15.92 MHz .
RF monitor output: 150 mV minimum into 50 ohms.
Impedance magnitude measurement
Range: 1 ohm to 100 k ohms; full-scale ranges; 10,30 , $100,300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}$ ohms.

Accuracy: $\pm 4 \%$ of full scale $\pm\left(\frac{f}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{25 \mathrm{k} \text { ohms }}\right)$ \% of reading, where $f=$ frequency in MHz and Z is in ohms; reading includes probe residual impedance.
Calibration: finear meter scale with increments 2% of full scale.

Phase angle measurement

Range: 0 to 360° in two ranges: $0 \pm 90^{\circ}, 180^{\circ} \pm 90^{\circ}$. Accuracy: $\pm\left(3+\frac{£}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{50 \mathrm{k} \mathrm{ohms}}\right)$ degrees; where $\mathrm{f}=$ frequency in MHz and Z is in ohms.
Calibration: increments of 2°.
Adjustments: front panel screwdriver adjustments for Magnitude and Phase Zero.

Recorder outputs

Frequency: 0 to 1 volt from 0 to $l k$ ohm source, proportional to dial rotation.
Impedance magnitude: 0 to 1 volt from 1 k ohm source.
Phase angle: 0 ± 0.9 volt from 1 k ohm source.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 4^{\prime \prime}$ deep (426 x $185 \times 476 \mathrm{~mm}$).
Welght: net $39 \mathrm{lbs}(17,6 \mathrm{~kg})$, shipping $55 \mathrm{lbs}(24,8 \mathrm{~kg})$.
Power: 105 to 125 V or 210 to 250 V , 50 to $400 \mathrm{~Hz}, 50 \mathrm{~W}$.

Accessories furnished:

1. 00600A Probe Accessory Kit : contains BNC Type ' N "' adapter, Probe Socket, 00601 A Component Mounting Adapter, 2 probe center pins, probe ground assembly.
2. Rack Mount Kit.

Price: HP 4815A, \$2650.

VECTOR VOLTMETER Accurate voltage, phase measurements, $1-1000 \mathrm{MHz}$ Model 8405A

NETWORK ANALYZERS

Description

The 8405 A Vector Voltmeter measures voltage vectors described by both magnitude and phase. This capability makes the 8405A a unique instrument for about any design and test application in the frequency range 1 to 1000 MHz .

In addition to absolute voltage measurements, capabilities include insertion loss and group delay of passband-filters and other transmission devices, gain and phase margin of amplifiers, complex impedance of mixers, antennas, matching the electrical lengths of cables, s-parameters of transistors, amplitude modulation index, RF distoction measurements, and in. circuit probing.

The 8.405 A achieves this measurement versatility through its two-chamel capability enabling voltage magnitude measurements in either channel, thus allowing ratio measurements, and phase difference measurements between the wo channels. Gain or loss in excess of 90 dB and phase measurements with 0.1° resolution over a 360° phase range are possible.

Accuracy is achieved through the 1 kHz bandwidth entailing response only to the fundamental frequency of the input signal. Also, phase-locked coherent sampling to translate 1 to 1000 MHz RF signals to 20 kHz IF signals enables accurate detection of voltage magnitude and phase. Automatic phaselocked cuning makes it possible to select the one of 21 overlapping octave ranges which contains the input signal frequency by simply rotating a switch.

Isolation between channels: 1 to $300 \mathrm{MHz},>100 \mathrm{~dB} ; 300$ to $1,000 \mathrm{MHz},>80 \mathrm{~dB}$.
Maximum input: ac, 2 V peak; dc, $\pm 50 \mathrm{~V}$.
Voltage range (rms):

Channel	$1 \cdot 10 \mathrm{HHz}$	$10 \cdot 500 \mathrm{MHz}$	$500 \cdot 1000 \mathrm{MHz}$
A	$1.5 \mathrm{mV} \cdot 1.0 \mathrm{~V}$	$300 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$500 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$
B	$<20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$<20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$<20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$

Specifications

Frequency range: 1 MHz to 1 GHz in 21 overlapping octave bands: tuning automatic within each band.

11536A 50Ω Tee, with Type N RF fittings, for monitoring signals in 50Ω transmission line without terminating the line. $\$ 75$

11549A Power Splíter, all connectors Type N female (UG-28A/U).
 908A Termination, for terminating 50Ω coaxial systems in their characteristic impendence.

RF NETWORK ANALYZER Swept complete network characterization 8407 Family

System Description

The 8407A Network Analyzer System is a versatile measuring system for engineering and testing in the frequency range 100 kHz to 110 MHz ; the system is capable of ac. curate swept measurements of numerous magnitude and phase properties of attenuators, detectors, filters, cables, antennas, recording heads, amplifiers and many other passive and active linear networks.

Measurements include: gain, loss, phase shift (compute group delay), remun loss, complex reflection coefficient of networks with 50 or 75 -ohm characteristic impedance. Swept complex impedance, $\mid \mathrm{Zl}, \odot$ over the 0.1Ω to $>10 \mathrm{k} \Omega$ range and swept voltage and current transfer functions, also incircuit, can be measured with speed and accuracy. The system can also be used for high resolution visual comparison measurements and for making transistor s-parameter measurements with push-button ease. This measucement versatility is achieved through the modular construction of the system.

Basic instruments are: the HP 8601A Generator/Sweeper providing the RF stimulus for the device under test and the VTO output required by the network analyzer; the HP 8407A Network Analyzer which is a ratio meter using both a TEST and a REFERENCE channel input; the HP 8412A Phase-Magnitude display or the 8414 A Polar Display for detecting and displaying amplitude and phase as a flinction of frequency. These instruments have to be combined with the one of six different "iransducers" that corresponds to the measurement of network parameters desired.

This modular construction makes the system easily adaptable to new measurement/test requirements-addible at small incremencal costs. Thus, system utilization is optimized and obsolescence avoided. Accuracy, speed and Bexibility of measurements combine to make the 8407 Network Analyzer System an extremely useful tool for design and development work as well as in production testing.

Instrument Description

RF Stimulus

The HP 8601A Generator/Sweeper is the signal source that provides the RF stimulus to the device under test and the VTO for the local oscillator of the 8407A Network Analyzers. The 8601 A is a 0.1 to 110 MHz CW or swept source. Sweep is in two ranges from 0.1 to 11 MHz and 1 to 110 MHz .

The HP 8690B/86986 Sveep Oscillator is the other signal source that can be used with the 8407 A Network Analyzer. Swreep is in two ranges from 0.4 to 11 MHz and from 4 to 110 MHz . The 8690 B also accepts plug. ins from 100 MHz to 40 GHz .

The HP 8600 A Digital Marker is an optional complement to the 8601 A or $8690 \mathrm{~B} / 8698 \mathrm{~B}$ signal sources. The 8600 A provides five independent, continuously variable markers which may be placed on a display while making swept mea-

surements. A marker displayed on a counter readout, while sweeping, is useful for very accurately determining frequency values of interest.

Network Analyzer

The 8407 A Network Analyzer is a ratio meter using both a TEST and a REFERENCE channel input. The 8407A forms the magnitude ratio and phase difference between these two input signals after their conversion to a constant intermediate frequency. The resultant signals are routed to a display for detection and display. Dynamic range is 80 dB with the 8412A Phase-Magnitude Display, measurement range is from +90 dB to $\mathbf{- 1 0 0} \mathrm{dB}$. Input power to the device under test can be from -10 dBm to -85 dBm . Display REFERENCE attenuators provide 89 dB of accurate test channel offset permitting high resolution measurements by using IF substitution techniques. Residual magnitude and phase responses versus frequency are typically less than ± 0.1 $a B$ and $\pm 2^{\circ}$ from I to 110 MHz .

Displays

The 8412A Pbase-Magnitude Display is an accurare oscilloscope readout displaying amplitude and phase versus frequency either separately or simultaneously. It has 80 dB and $\pm 180^{\circ}$ display range. Measurements with 0.05 dB and 0.2° resolution are possible.

The 8414 A Polar Display has a measurement sange of 30 $d B$ and 360°. For reflection measurements, the 8414 A displays reflection coefficient as a function of frequency. Smith Chart overlays permit readings of normalized complex impedance values. A rectangular overlay permits readings of $R \pm j \mathrm{X}$ for impedance measurements over the range 0.1 ? to $>10 \mathrm{k}$?

Transducers

The 11652A Reflection/Transmistion Kit contains a porver splitter and two phase-matched low leakage cables permitting accurate swept measurements of gain, loss and phase shift. It also contains a directional bridge (8721A) with $>40 \mathrm{~dB}$ directivity, a calibration short and a precision termination for measurements of return loss and reflection coefficient (complex impedance) in 50 or 75 -ohm systems.

The 11655 A Impedance Probe makes possible swept accurate complex impedance measurements over the wide impedance range 0.1Ω to $>10 \mathrm{k} \Omega$. The 11655A's design allows effective elimination of all reactive parasitics of the probe so that open circuit impedance appears simply as a $10 \mathrm{k} \Omega$ resistor. This feature and a built-in $100 \mathrm{~N}, 0^{\circ} \mathrm{cali}-$ brator make it possible to measure true values of unknown impedance.

The 11654 A Passive Probe Kit includes two each of probe cables and cucrent probe tips and a wide variety of accessories for grounding and gerting at those "difficult to measure" circuits. Voltage or current transfer functions can be measured with a pair of voltage or current probes. By using one voltage probe and one curtent probe, complex impedance or admittance can accurately be measured at frequancies below $11 \mathrm{MHz}^{2}$.

The $1121 A$ AC Probe is an active probe biased through the PROBE PWR jacks on the front panel of the 8407A. The probe has a $100 \mathrm{k} \Omega, 3 \mathrm{pF}$ input impedance. Voltage transfer functions can thus be measured in low level signal circuits with minimum circuit disturbance or in circuits whose characteristic impedance is radically different from 50 ohms.
The 8728A Netriork Comparator adds the capability for making swept visual comparison measurements with the 8407 A. The transmission characteristics of a test network and of a known standard ase traced separarely on a highly sensitive large-screen oscilloscope for visual comparison. Level differences of $0.01 \mathrm{~dB}, 0.2^{\circ}$ are easily discernable. The 8728 A provides the switching required to accomplish the substitution comparison between the two networks.
The 85404 B S-Parametor Test Set provides all the switch. ing necessary for measuring with push-button ease the four s-parameters of passive and active linear networks with 50 or 75 -ohm characteristic impedance (HP 85428A Mín Loss Pads for 75 -ohm systems). Transistors can easily be measured by using, in conjunction with the test set, the HP 8717B Transistor Bias Supply and the HP 11600B or 11602B Transistor Fixture which plugs into the HP 85426A Bias Inserrion Network (2 each required).

8407A
Frequency range: 0.1 to 110 MHz .
Measurement range: gain +90 dB , loss -100 dB .
Impedance: 50§, Option 008: 75ת. VSWR <1.08.
Amplitude accuracy:
Frequency response (may be callbrated out): $\pm 0.2 \mathrm{~dB}, 0.1$ to $110 \mathrm{MHz} ; \pm 0.05 \mathrm{~dB}$ over any 10 MHz portion.
Display reference: $<0.05 \mathrm{~dB} / 1 \mathrm{~dB}$ step, total error $<0.1 \mathrm{~dB}$; $<0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step, total error $<0.25 \mathrm{~dB}$.
Phase accuracy:
Frequency response (may be calibrated out): $\pm 5^{\circ}, 0.1$ to 110 MHz ; \mathbf{I}° over any 10 MHz portion.
Display reference: $<0.5^{\circ} / 10 \mathrm{~dB}$ step, total error $<3^{\circ}$
Power: 65 watts, $50.60 \mathrm{~Hz}, 115 / 230 \mathrm{~V}+10 \%$.
Weight: net, $32 \mathrm{lb}(14,6 \mathrm{~kg})$; shipping $39 \mathrm{lb}(17,8 \mathrm{~kg})$.
Dimensions: $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep, $163 / 4^{\prime \prime}$ wide.
Price: 8407A, \$2950; Option 008, 75ת, add \$110.

11658A

General: 50 to 75 -ohm matching resistor for 8407A.
Insertion loss: 3.5 dB . Return loss: $>40 \mathrm{~dB}$.
Weight: net,) oz. Price: $\$ 30$.
8412A
General: plug.in CRT display for 8407A.
Amplitude accuracy: display, $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen.
Phase accuracy:
Dlsplay: $0.065^{\circ} /$ degree from midscreen.
Phase offset: $0.3^{\circ} / 20$ degree step, not to exceed total error of 3° for 360° of change, positive or negative direccion.
Vs. displayed amplitude: $<1^{\circ} / 10 \mathrm{~dB}$, toral error for 80 dB $<6^{\circ}$.
Power: 23 watts, supplied by 8407A.
Weight: net, $17 \mathrm{lb}(7,8 \mathrm{~kg})$; shipping $22 \mathrm{lb}(10 \mathrm{~kg})$
Price: $8412 \mathrm{~A}, \$ 1,575$.

8414A

General: plug.in normalized polar coordinate display for 8407A: magnitude calibration is in 0.2 of full scale grada. tions, full scale determined by DISPLAY REFERENCE secting on 8407 A . Phase calibration is in 10° increments over a 360° range.
Accuracy: all erfors in amplirude and phase due to the dis. play are contained within a circle of 3 mm about the mea. surcment point.
Power: 35 watts, supplied by 8407A.
Weight: net, $13 \mathrm{lb}(5,9 \mathrm{~kg})$; shipping $171 / 2 \mathrm{lb}(7,8 \mathrm{~kg})$.
Price: $8414 \mathrm{~A}, \mathrm{\$ 1,300}$.

11652A

General: reflectiontransmission kit contaíns poner splitter, 8721 A directional bridge, a precision 505 termination, calibrating short, BNC adapters and matched, low-leakage cables.
Directional bridge: 8721A: 6 dB coupling in main and auxiliary arm. Frequency response is $\pm 0.5 \mathrm{~dB}, 0.1$ to 110 MHz . Directivity is $>40 \mathrm{~dB}$, i to 110 MHz . Return loss at LOAD port is $>30 \mathrm{~dB}$. Price: $8721 \mathrm{~A}, \$ 150$; Option 008, 759 , add $\$ 10$.
Power splitter: 6 dB loss through each arm
50Ω termination: return loss is $>43 \mathrm{~dB}$.
Weight: net, $1.5 \mathrm{lb}(0,7 \mathrm{~kg})$; shipping $2.5 \mathrm{lb}(1,2 \mathrm{~kg})$
Price: 11652A, \$325; Option 008, 75ת, add \$50.

11654A
General: passive probe kit contains a pair each of six resistive divider probes $(1: 1,5: 1,10: 1,20: 1,50: 1,100: 1)$ current probes, and variety of adapters.
Weight: net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Price: 11654A, $\$ 400$.
11655A
General: impedance probe, mounts directly onto 8407A. Contains a component mounting adapter, a probe ro BNC adapter, a probe to type N adapter and various ground assem. blies.
Frequency range: 0.5 to 110 MHz .
Measurement range: amplitude, 0.1Ω to $>10 \mathrm{k} \Omega$; phase, 0° $\pm 90^{\circ}$.
Interna) callbrator: amplitude $100 \Omega \pm 0.5 \%$: phase $0^{\circ} \pm 2^{\circ}$.
CW accuracy: amplitude $\pm 5 \%$: phase $\pm 5^{\circ}$ for $/ Z />3.16 \Omega$.
Swept frequency accuracy: typically $\pm 5 \%$ in amplitude, $\pm 5^{\circ}$ in pirase from $3-110 \mathrm{MHz}$; accuracy is decreasing below 3 MHz .
Weight: ner, 5.63 lb .
Price: $11655 \mathrm{~A}, \$ 750$.

1121A

General: $1: 1$ active probe furnished with $10: 1$ and $100: 1 \mathrm{di}$. vider and BNC adapter.
Frequency response: 1 kHz to $100 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}, \pm 2^{c}$.
Input impedance: $100 \mathrm{k} \Omega$, shunt capacitance 3 pF at 100 MHz ; with 10:1 or 100:1 divider, 1 Mn , shunt capacitance 1 pP at 100 MHz .
Output impedance: 50Ω nominal.
Power: supplied by 8407A chrough PROBE PWR jacks.
Weight: net, $1.5 \mathrm{lb}(0,7 \mathrm{~kg})$; shipping $2.5 \mathrm{lb}(1,2 \mathrm{~kg})$.
Dimensions: $3^{\prime \prime}$ high, $8^{\prime \prime}$ deep, $101 / 2^{\prime \prime}$ wide.
Price: \$395.

8728A

Frequency range: DC to 250 MHz .
Repeatability: 0.003 dB at 3 sigma. VSWR: <1.05.
Channel isloation: $>90 \mathrm{~dB}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4$ "high, $211 / 4$ " deep.
Power: 20 m atts, $50.60 \mathrm{~Hz}, 1 \mathrm{k} / 230 \mathrm{~V} \pm 10 \%$.
Weight: net, 30 Ib .
Price: 8728A, $\$ 2950$; Option 006, 75Ω WECO connectors, add $\$ 850$; Option 008, 75Ω BNC connectors, add $\$ 800$.

85404B

Frequency range: 0.1 to 110 MHz .
Repeatability: <0.001 dB. VSWR: <1.2.
Connectors: $50 \Omega \mathrm{APC} .7$: min loss pads (85428A) for 75Ω.
Power: 85 watts, $50.60 \mathrm{~Hz}, 115 / 230 \mathrm{~V} \pm 10 \%$.
Dimensions: $7^{\prime \prime}$ high, $193 / 8^{\prime \prime}$ deep, $163 / 4^{\prime \prime}$ wide.
Weight: 38 lbs. Price; $\$ 5000$.
85426A
General: bias insertion network for 854048 .
Frequency range: 0.1 to 500 MHz ,
Insertion loss: $<0.2 \mathrm{~dB}$. Return loss: $>30 \mathrm{~dB}$.
Max bias current: 750 mA , max bias voitage: 30 V
Connectors: BNC for biasing; APC-7 for RF.
Price: $\$ 300$.
85428A
General: min loss pad (758) for 85404 B .
Insertion loss: 5.7 dB . VSWR: <1.05.
Price: 85428A (50几 SMA, 75Ω BNC), $\$ 200$; Option 001 (50n APC-7, 75Ω GR900), add $\$ 150$.

All 8410 S Systems measure transmission and reflection parameters of coaxial and waveguide components in the form of gain, attenuation, phase, reflection coefficient or impedance. Each option has been confgured either for making general measurements within a frequency range or for pushbutton S-parameter measurements on semiconductor devices in a variety of package styles. In addition to selected transducer and accessory items, each option contains the 8410 Network Analyzer, 8411A Harmonic Frequency Converter, two plug-in displays (the 8412 Phase Magnitude Display and 8414 A Polar Display), and the 11609 Cable Kit. All systems come complete with necessary accessories and interconnecting cables. Overall system accuracy is specified for easier error analysis. Individual instruments which make up the system can also be ordered separately for updating existing network analyzer equipment.

Sweeps over octave bands

Swept displays for efficient real time testing over fullband. Rapid sweep for dynamic CRT display-make adjustments to devices while viewing overall effects.

Wide dynamic range-high resolution $60 \cdot \mathrm{~dB}$ amplitude and 360° phase displays: use precise offset controls to read amplitude and phase to 0.1 dB and 0.1 degree resolution. No phase ambiguity-meter indicates
 phase sense directiy.

8410S Network Analyzer Systems

		TARNSDUCER UNIYS										
Frequanoy range	$\left\lvert\, \begin{gathered} 8410 s^{\prime} \\ \text { Option No. } \end{gathered}\right.$						13602 B				Price	Use
$110 \mathrm{MHz} \cdot 2 \mathrm{GHz}$	110*									-	\$12,760	General purpose - low frequency
$110 \mathrm{MHz} \cdot 2 \mathrm{GHz}$	400				\square	\square					13,170	Characterize semiconductors with TO. 18 ar T0.72 packages
$110 \mathrm{MHz}-2 \mathrm{GHz}$	401						\square				13,170	Characterize semiconductors with TO-5 or TO. 12 packages
$2-12.4 \mathrm{GHz}$	210*										11,970	General gurpose - high frequency
.5-12.4 GHz	500										14,670	Characterize stripline semiconductors with Tl-Line packages
. $5-12.4 \mathrm{GH}_{2}$	501										14,670	Characterize stripline semiconductors with K.disk packages
$110 \mathrm{MHz} \cdot 12.4 \mathrm{CHz}$	310*	-						\square			16,235	General purpose-complete f́requency coverage

[^58]
8410S Specifications

Function: All systems measure transmission and reflection parameters on either a swept-frequency or CW basis in the form of attenuation, gain, phase shift, reflection coefficient, return loss, or impedance depending on readout display.
Display unlts: Choice of 8412A phase magnitude display, 8413 phase-gain indicator, or 8414A polar display. 8412A and 8414A accept intensity marker and blanking signals from Hewlett-Packard sweep oscillators.
Measurement range: full 60 dB dynamic range.
RF input: 20 dB range between -21 dBm and +7 dBm between $.11-2 \mathrm{GHz}$ or -14 dBm and +14 dBm between $2-12.4 \mathrm{GHz} .20 . \mathrm{dB}$ variation causes less than 1.5 dB and 4° change amplitude and phase readings.
Transmission measurement accuracy: Accuracy curves below show overall system uncertainty when measuring amplitude and phase. Sources of error included are IF gain control, meter accuracy, phase offset, system noise, and crosstalk. System frequency response is specifed separately and is not included in accuracy curves.

Transmission amplikude uncertainty.

Transmission phase uncertainty.

Frequency response

Transmission: typically $<+0.35 \mathrm{~dB}$ amplitude and $< \pm 3^{\circ}$ phase for .11 to $2 \mathrm{GHz},< \pm 0.5 \mathrm{~dB}$ amplitude and $< \pm 5^{\circ}$ phase for 2 to 12.4 GHz .
Rellection: magnitude typically $< \pm 0.06$; phase $< \pm 5^{\circ}$.11 to 2 GHz , and $< \pm 7^{\circ} 2$ to 12.4 GHz ; as read on the 8414 A with a short on the unknown port.
Transmission reflection selectlon: manual by front panel lighted pushbuttons; remore by contact closure or saturated tcansistors through 36 -pin connector contacts.
Reflection measurement accuracy: Accuracy curves show overall system uncertainty when measuring refection coefficient. Sources of error included are directivity, source match, and polar display accuracy. System frequency response is specified separately and is not included in the accuracy curves.

Reflection coefficient uncertainty.

Reflection phase uncertainty.

[^59]

Transistor S.Parameter Measurements

100 MHz to 2 GHz

The 8745A S-parameter test set combined with the 11600 B or 11602 B Transistor Fixtures make accurate transistor characterization as easy as pushing a button. Transistors are conveniently biased with the new 8717B Transistor Bias Supply by a simple cable connection to a rear panel connector of the 8745 A . The $8745 \mathrm{~A}, 8717 \mathrm{~B}, 116008$ and 11602 B are capable of making useful S -paramerer measurements from 40 MHz to 2 GHz and can be used with either the 8405A Vector Volmeter, 8407A Network Analyzer, or 8410A Network Analyzer.

Models 11600B and 11602B Transistor Fixtures
Function: used with or without the 8745 A to measure transistors and other semiconductor devices. Mounts directly on the 8745A. A Calibration short and thru are included with the fixtures.
Model 11600B; for TO.18/TO.72 or similar transistor packages. It has four snap-on dials, two for bipolars and two for EET's.
Model 11602B: for TO-5/TO-12 or similar transistor pack. ages. It has two snap-on dials for bipolars.
Frequency: dc to 2 GHz .
Lead lengths: accepts leads up to 1.5 inches long.
Lead dlameters : 0.016 to 0.019 inch.
Impedance: $50 \Omega \pm 2 \Omega$.
Connectors: APC-7 precision connectors,
Option 001: precision type N connectors.
Dimensions: $45 / 8^{\prime \prime} \times 6^{\prime \prime} \times 11 / 2^{\prime \prime}(119 \times 152 \times 38 \mathrm{~mm})$.
Weight: 38 OZ, ($1,1 \mathrm{~kg}$).
Price: $11600 \mathrm{~B}, \$ 600$; $11602 \mathrm{~B}, \$ 600$.
Option 010: includes 50 -ohm calibration load, add $\$ 50$.

500 MHz to 12.4 GHz
The 8746 B S-parameter Test Ser combined with the 11608A. Transistor Fixture permit complete characterization of TO. 51 and K-disc packaged stripline transistors. The 8717B Transistor Bias Supply conveniently attaches to the 8746 B Bias Networks with a rear panel connector cable. With the 8717 B it is possible to make frequency swept measurements of all four S-parameters as a function of load current and voltage with pushbutton ease. The $8746 B$, 11608 A , and 8717 B can be used with either the 8405 A Vector Voltmeter or 8410 Network Analyzer.

Model 11608A Transistor Fixtures
Function: used with the 8746 B for completely characterizing stripline transistors. Mounts directly on 8746 B . A calibration short and a through are included with Options 002 and 003.
Frequency range: $D C$ to 12.4 GHz .
VSWR: (measured with thru-line calibration unit inserted and one end of the fixture terminated in a 50 ohm load). <1.10 to 4 GHz .
$<1.15,4 \mathrm{GHz}$ to 8 GHz .
$<1.25,8 \mathrm{GHz}$ to 12.4 GHz ,
Striplines: $0.031^{\prime \prime}$ thick (P.P.O.) ; 0.080" wide.
impedance: 50Ω.
Dimensions: $55 / 8^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}(143 \times 89 \times 25 \mathrm{~mm})$.
Weight: $16 \mathrm{oz}(.45 \mathrm{~kg})$.
Prices: Model 11608A-APC-7 Hybrid Connectors Option 001: machinable for custom packages, $\$ 375$. Option 002: TO- 51 (0.250 inch diameter), $\$ 400$. Option 003: K-disc (0.205 inch diameter), $\$ 400$. With type N (female) connectors, Opt. 100, less $\$ 30$.

8717B Transistor Bias Supply

The 8717 B Transistor Bias Supply is an ideal power sup. ply for manual or programmable transistor testing. It is particularly useful with the $11600 \mathrm{~B}, 11602 \mathrm{~B}$, and 11608 A Transistor Fixtures. The 87178 has two meters for independently monitoring current and voltage on any of the three leads of a transistor under test. Bias connections are conveniently selected for all transistor configurations (EBC,
$B E C, B C E)$ with a front panel switch. Special circuitry prorects sensitive (expensive) devices from excessive current transients which commonly occur in less sophisticated sup. plies during accidental loss of line power or when applying or removing bias.

Specifications, 8717 B
Voltage ranges: $1,3,10,30,100 \mathrm{~V}$.
Current ranges: $0.1,0.3,1,3,10,30,100,300,1000 \mathrm{~mA}$. Accuracy: 4% of meter full scale for both current and voltage.
Dimensions: $163 / 4^{\prime \prime} \times 33 / 8^{\prime \prime} \times 131 / 2^{\prime \prime}(425 \times 86 \times 336 \mathrm{~mm})$. Weight: net, $20 \mathrm{lbs}(9,0 \mathrm{~kg}$); shipping, $25 \mathrm{lbs}(11,0 \mathrm{~kg}$). Price: $8717 \mathrm{~B}, \$ 1600$.

Option 001 : programmable D/A converter, $\$ 550$.

Network analyzer

 8410A Network Analyzer, 8411A Frequency ConverterFunction: 8411A Harmonic Erequency Converter converts RF signals to IF signals for processing in 8410 A Mainframe. 8410A is the mainframe for display plug-in units. Mainframe inciudes tuning circuits, IF amplifiers, and precision IF attenuator.
Price: Model $8410 \mathrm{~A}, \$ 2100$; Option 005 (compatible with 8418A), add \$100; Model 8411A, \$2600.

Display units

8412A Phase-Magnitude Display
Function: plug-in CRT display unit for 8410 A or 8407 A . Displays relative amplitude in dB and/or relative phase in degrees between reference and test channel inputs versus frequency.
Price: Model 8412A, \$1575.

8413A Phase-Gain Indicator

Function: plug-in meter display unit for 8410 A or 8407 A . Displays relative amplitude in dB between reference and test channel inpurs or relative phase in degrees. Pushbutton selection of meter function and range.
Price: Model 8413A, \$1300.

8414A Polar Display

Function: plug-in CRT display unit for 8410A or 8407A. Displays amplitude and phase data in polar coordinates on $5^{\prime \prime}$ cathode ray tube.
Price: Model 8414A, \$1300.

8418A Auxiliary Power Supply

Function: provides power for operation of the 8412A PhaseMagnitude Display, the 8413A Phase-Gain Indicator or the $8414 A$ Polar Display Unit. Used in conjunction with the Option 0058410 A Network Analyzer, it provides the capability of viewing amplitude and phase readout in both rectangular and polar coordinates simultaneously.
Price: Model 8418 A, $\$ 800$.

Accessories

11587A, 11650A Accessory Kits

Function: 11650A contains accessories normally used for transmission and reflection tests with the 8745 A and 8743A. 11587A contains accessories normally used for transmission and reflection measurements with the 8740 A , 8741A and 8742A.
Weight: net, $4 \mathrm{lbs}(1,34 \mathrm{~kg})$; shipping, $5 \mathrm{lbs}(2,2 \mathrm{~kg})$.
Price: $11587 \mathrm{~A}, 5975 ; 11650 \mathrm{~A}, \$ 775$.

11589A and 11590A Blas Networks

Function: provides dc bias and bias sensing on 50Ω systems.
Frequency range: 11589A; $10-3 \mathrm{GHz} .11590 \mathrm{~A} ; 1-12.4 \mathrm{GHz}$.
VSWR: <1.2.
Insertion loss: $<0.8 \mathrm{~dB}$.
Connectors: Type N.
Price: Models 11589A, $\$ 275$ or 11590A, $\$ 325$. Option 001: APC-7 connectors, add $\$ 30$.

Transducers

8740A Transmission Test Unit

Function: RF power splitter and calibrated line stretcher for traasmission measurement with network analyzer.
Frequency range: $\mathrm{dc} \cdot 12.4 \mathrm{GHz}$.
Price: Model 8740A, $\$ 1600$.
8741A and 8742A Reflection Test Units
Function: wideband refecrometer, phase-balanced for sweptor single frequency impedance rests with 8410 A . Calibrated adjustable reference plane.
Frequency range: $0.11-2.0 \mathrm{GHz}(8741 \mathrm{~A}) ; 2.0-12.4 \mathrm{GHz}$ (8742A).
Price: Model 8741A, 51700 ; Model 8742A, $\$ 1800$. 8745A S.Parameter Test Set
Function: wideband RF power splitter and refiectomerer with calibrated line stretcher. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: $0.1-2 \mathrm{GHz}$.
Price: Model 8745A, $\$ 3300$; Option 001 (type N female connectors on outputs to 8411 A), no additional charge. 11599A Quick Connect Adapter
Function: quickly connects and disconnects the 8745 A and the transistor fixtures or 11604A Universal Extension.
Dimensions: $3^{\prime \prime} \times 5^{\prime \prime} \times 41 / 4^{\prime \prime}(76 \times 127 \times 108 \mathrm{~mm})$.
Weight: net, 14 oz (397 gm) ; shipping, 2 lbs (652 gm).
Price: Model 11599A, $\$ 90$.
11604A Unlversal Extenslon
Function: mounts on front of 8745 A ; connects to device under test. Rotary air lines and rotary joints connect to any two-port geometry.
Weight: net, $4 \mathrm{lbs}(1,9 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,5 \mathrm{~kg})$.
Dimensions: $101 / 2^{\prime \prime} \times 5^{\prime \prime} \times 114^{\prime \prime}(267 \times 127 \times 31,6 \mathrm{~mm})$.
Price: Model 11604A, $\$ 925$.

11607A Small SIgnal Adapter

Function: used with the Hewlett-Packard Model 8745A SParameter Test Set, It permits measurements with Model 8410A Network Analyzer with incident signal levels to the test device in the -20 to -40 dBm range.
Frequency range: $0.11-2.0 \mathrm{GHz}$.
Price: $\$ 600$.

8743A Reflection/Transmission Test Units

Function: wideband RF power splitter and reflectometer with calibrated line stretcher. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: $2-12.4 \mathrm{GHz}$.
Price: Model 8743A, \$2675.
11605A Flexible Arm
Function: mounts on front of 8743 A ; connects to device under test. Rotary aic lines and rotary joints connect any toro-port geometry.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping. $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Length: $10.1^{\prime \prime}(256.3 \mathrm{~mm})$ closed, $25.5^{\prime \prime}(647.7 \mathrm{~mm})$ extended.
Price: Model 11605A, 5800 .

8746B S-Parameter Test Set

Function: rideband RF power divider and reflectometer with calibrated line stretcher and a selectable $0-70 \mathrm{~dB}$ incident signal attenuator. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: 0.5 to 12.4 GHz .
Price: $\$ 5000$.

P,X 9747 Reflection/Transmission Test Unlts
Function: waveguide setup for measuring reflection and transmission parameters of waveguide devices with the netpork analyzer.
Frequency range: X8747A: 8.2-12.4 GHz; P8747A: 12.4-18 GHz.
Prica: Model X8747A, \$1950; P8747A, \$1950.

K,R 8747A Reflection/Transmission Test Units

Functlon: waveguide sctup for measuring reflection and iransmission parameters of waveguide devices with the network analyzer; down-converts with built-in mixers to the frequency range of the 8411 A .
Frequency range: $\mathrm{K} 8747 \mathrm{~A}: 18-26.5 \mathrm{GHz}$; P8747A: 26.5 .40 GHz.
Price: Model K8747A, $\$ 5650$; R8747A, $\$ 6300$.

Hewlett-Packard Automatic Nerwork Analyzers combine the amplitude and phase measurement capability of the network analyzer with the control and computational capability of a smail computer to produce a series of versatile measurement systems tailored to applications in production testing, calibration metrology and design.

A feature of all such systems is the ability to measure and store a set of complex error coefficients which effectively define the measurement errors introduced by the system. During each measurement, these error terms are automatically applied to the network analyzer readings to greatly increase the final accuracy.

The combination of compiete amplitude and phase char. acterization and mathematical capability allows the error corrected readings to be converted directly to more meaningful forms such as VSWR, rewrn loss, impedance, gain or loss, group delay and h, y, z or S-parameters. Similarly, measured data may be entered directly into programs for Computer Aided Design or statistical analysis.

Since the measurement process is digitally controlled, data collection and interpretation are more rapid than with manual methods and production test personnel can perform complex tests which would otherwise be infeasible or non-cost effective.

Automated systems are available to cover the frequency range from 100 kHz to 18.0 GHz and are designed to be modular in both hardware and software. The cost of an initial purchase may be optimized to satisfy a current measurement problem or capital cost restriction with the fexibility to expand the capability at some future dare.

Systems are available to attach to a timeshare terminal thus minimizing the investment in computer hardware while giving access to large computing power.

Systems are fully supported by modular applications software using a version of BASIC, which provides an interpre. tive language for program generation and modification. FORTRAN routines are also supplied to suit some applications.

Flexible operator interaction and data output formats are provided by options for standard computer peripherals such as the teleprinter, X-Y recorder, and lineprinter, while high speed data and program storage are provided by a magneric tape cassette input/output unit.

For on-line graphic and alpha-numeric display, the System Console provides a solid-state keyboard, 30 character per second printer and large screen CRT together with the hardware and software required to produce sophisticated interactive graphics. For production test applications, the System Console can rapidly present instructions to the operator or display concise graphical and alpha-numeric data for decision making.

In the design laboratory, the combination of network analysis, computation and interactive graphic display provides an exceptionally powerful tool for analysis, optimization and design.

To satisfy the need for production tests which require measurements other than those based on amplitude and phase, oprional hardware and software modules may be integrated into a system to measure such parameters as power, frequency and voltage or to provide additional stimuli, such as DC voltage, for biassing active devices.

On-going customer support for automated systems is provided by Sysrems Analysts operating in the field, while service support and service contracts are available from worldwide field service centers.

For more detailed information and application assistance, contact your local Hewlett-Packard Systems Field Engineer.

An electrical signal is a voltage or current representing a time-varying phenomenon. It may be the output of a transducer measuring a parameter of the environment, or it may be used to carry information, effect of other intelligence in communications. The output of 3 radio transmitter, of an elecrrode implanted in the human skull, or of an accelerometer mounted on the axle of an automobile are examples of useful sig. nals.

Any instrument which takes an elec. trical signal and measures some function of that signal is a signal analyzer. A simple example is a voltmeter, which measures one parameter of a signal. To extract mort information from a signal, further analysis may be required. For example, an oscilloscope may be used to display the variation of amplitude with time.

The signal analyzers described on this and the following pages are those which transform the signal in certain ways to extract information from it. Some filter the input signal and measure the results. Others sample the signal, digitize it, and perform computations on the resulting data. Included are wave analyzers, distortion analyzers, spectrum analyzers, signal averagers, correlators, and powerful computer-based Fourier analyzers.

Frequency-domain Analysis

Time-varying signals can often be represented as the sum of a number of frequency components. These compo. nents are sinusoids of different frequencies having appropriare amplizude and phase relationships. It's possible, therefore, and often quite useful, to describe signais in the frequency domain, with the horizoncal axis representing frequency and the vertical axis representing amplitude. Wave and spectrum analyzers produce this kind of representation by filtering the signal.

Wave Analyzers

If a voltmeter is preceded by a band. pass filter, the meter reading will corre. spond to the voltage of the signal passing through the filter. If the filter center frequency is runed and the meter read. ing recorded at each fiter frequency, the result is a frequency spectrum, showing signal amplitude as a function of fre. quency. As the filier bandwidth gets nar. rower, the voltmeter responds to a smaller portion of the frequency spectrum and thus can resolve frequencies
which are closer together. This tuned. voltmeter concept is the basis of the wave analyzer. Modern wave analyzers offer features such as auromatic sweeping. extremely high resolution, large dynamic range, high sensitivity, and automatic frequency control. They are widely used for measuring harmonic distortion and intermodulation products especially when signal density is high.

Distortion Analyzers

Distortion analyzers are the inverse of nave analyzers. They remove only the fundamental frequency component and measure everything else in the signal. They are used for fast quantitative measurements of total harmonic distortion and noise.

Spectrum Analyzers

A spectrum analyzer, like a wave analyzer, is basically a swept fiter or receiver. However, it has a CRT display which shows at a glance how the energy in a signal is distributed as a function of frequency. Spectrum analyzers start at audio frequencies and are the primary rools for signal analysis at RF and microwave frequencies. Latest models have absolute amplitude calibration, 70 dB display range, high sensitivity, ease of operation, and great versatility, Their many uses include spectrum monitoring and measucements of distortion, spectral purity, and modulation index. Used with a tracking generator, a spectrum analyzer can characterize the frequency response of filters or other networks.

Real-time Audio Spectrum Analyzer

Acoustic or vibration signals, such as machine noise, are usually analyzed in the frequency domain. Swept frequency analysis, however, is limited at very low frequencies by the time needed to sweep a filer across the selected frequency range. The real-time audio spectrum analyzer resolves this problem by dividing the spec. trum between 2 Hz and 40 kHz into 24 , 30 , or 36 discrete $1 / 3$-octave bands, each having its own filter. The outputs of these filters are displayed on a CRT which shows the distribution of signal energy in all the frequency bands simul. taneously.

Computers and Spectrum Analyzers

Spectrum analyzers and real-time audio spectrum analyzers can be inter. faced to a computer for additional signal analysis, These systems are especially useful for automatic spectrum and noise monitoring.

Digital Analysis

There are many applicarions where signals can be analyzed most efficiently or completely if fed directly to a digital processor. Digital analyzers accept analog signals and have internal analog-to-digital converters and digital processors to perform mathematical operacions. For ex. ample, they can compute the spectrum of a signal, determine the crosscorrelation between two signals, analyze the staristics of random signals, and perform many other operations which are difficult if not impossible with analog instru. ments. Hewlett-Packard's expanding line of digital analyzers consists of a com-puter-based Fourier analyzer, Fourier analysis peripherals for Hewlett-Packard and other computers, a special-purpose correlator with spectrum display, and a hardwired signal averager. These can be used 10 analyze very-low-frequency signals or signals which are random or obscured by noise. Application areas include neurophysiology, stcuctural vibra. tions, aerodynamics, servomechanism analysis, underwater acoustics, and many others.

Fourler Analyzers

The Fourier analyzer is a powerful keyboard-controlled instrument which uses a minicomputer to perform fast uansforms and other computations on input signals or data. Because it's a digital system it can do spectrum analysis to dc. It can do averaging, compute magnitude and phase, compute transfer functions, and do all kinds of statistical analysis. There's a calibrated CRT display. The built-in minicomputer can be used separately as a general-purpose computer.

Signal Averager

The signal averager is a special-pur. pose digital analyzer. It computes a time average of noisy reperitive signals to improve signal-to-noise ratio by as much as 60 dB . Computer interface and correlator plug-in are oprions.

Correlator

The correlator is also a special-purpose digital analyzer. It computes autocorrelation and crosscorrelation functions and, with a ner' spectrum display, converts them to frequency spectra. It also has some averaging capability.

For Mare Information

Detailed descriptions and specifications on this complete line of signal analyzers are on the pages that follow.

DISTORTION ANALYZERS

Distortion analyzers

The goal of audio and communications equipment is to reproduce input signals faichfully at the output. System nonlinearity distorts the waveshape of the signals. Poor reproduction brought about by distortion will appear to the user of audio equipment as a change in the quality or as noise; to the user of com. munications gear, it appears as channel crosstalk.

Distortion in amplifiers, created by nonlinear circuits, consists of components present in the output that are not contained in the input signal, An ac signal that appears to be a pure sine wave as viewed on an oscilloscope (Figure 1) may have some harmonic distortion. The total of these frequency components present in the signal, in addition to the fundamental frequency, can be measured quickly and easily with Hewlert-Packard distortion analyzers.

Onc type of distottion analyzer con. tains a narrow band rejection filter which. when properly tuned, removes the funda. mental frequency so that the amplitude of the remaining components can be measured simultaneously. Hewlert-Packard distortion analyzers are used for fast quantitative measurements of total harmonic distortion and noise.

Total harmonic distortion analysis

This measurement technique compares the amplitude of the harmonics to that of the original signal at the output where the original signal becomes the fundamental frequency of the harmonics. The detining equation is:
(1) lotal harmonic distortion $=$

$$
\frac{\sqrt{\sum(\text { harmonics })^{2}}}{\text { fundamental }}
$$

A frequency-selective voltmeter is needed to measure the fundamental, and either a selective voltmeter with a wide dynamic range or a frequency rejection circuit with a true rms detector is needed to measure the harmonics. The frequency
rejection circuit nulls the fundamental and passes its harmonics to the detector with no attenuation so that the ratio between the fundamental and harmonics can be determined.

A less expensive way to measure the total harmonic distortion, however, is to use a rejection filter and a broadband detector. Since the fundamental is not directly measured, the equation becomes (2) THD $=$

$\sqrt{\Sigma(\text { harmonics })^{2}}$

$$
\sqrt{(\text { fundamental })^{2}+{\text { (harmonics })^{2}}^{2}}
$$

If the distortion is less than 10%, the denominator of equation 2 will be within $1 / 2 \%$ of the denominator in equation 1 , which is as accurate as any frequency selecrive voltmeter.

There are two difficulties in making total harmonic distortion measurements. First, to get a measurement within the desired accuracy, the harmonic content of the rest signal must not be more than a third of the distortion expected to be caused by the system. Second. the chore of nulling the fundamental can be timeconsuming. Oscillators that meer the distortion requirements and nulling equipment, which has recently become available, can overcome the difficulties.

Automatic nusl

Since the nulling of the fundamenta! is normally the time-consuming portion of total harmonic distortion measurement, great savings can be realized, especially in production line testing with an analyzer which automatically rejects the fundamental. The time saved is as much as 25 seconds of a 30 -second measurement. With automatic nulling, the accuracy of the null achieved is so longer a function of operator training, manual dexterity, or signal source frequency drife.

The analyzer will maintain a null even though there is a slow drift in the input frequency. This ability to "pull" the null has opened the door to a number of ap-
plications where the total harmonic distortion measurements were not readily applied in the past. Among them are:

1. Single-frequency production line resting of such components as integratedcircuit amplifiers or transformers. As long as the long term drift of the signal source is less than $+1 \%$, a good null will be achieved.
2. Optimizing the performance of an oscillator. Hese, any variation in the parameters causes the frequency to shift slightly. The automatic nulling of the analyzer allows the oscillator perfor. mance to be improved on a continuous basis rather than by relying on a point. to-point check which may or may not find the optimum point.
3. Correcting distortion in signal generators which produce sine waves by mixing or by nonlinear shaping. The small frequency shifts would cause the loss of the null if it were not for the automatic null feature.

Selecting an analyzer

Distortion analyzers may be regarded as the inverse of wave analyzers. Distortion analyzers remove any signal component to which they are tuned, having the rest of the signal for measurement. In practice, distortion analyzers are tuned to the fundamental frequency and, by measuring the amplitude of the remaining harmonic components all at once, they provide an indication of percentage total harmonic distortion. Distortion analyzers do not provide information about individual distortion products-wave analyzers (see page 374) and spectrum analyzers (see page 379) do this job, but they do not provide fast readings of the signal's total departure from sine wave purity.

Table 1 describes the models and features of Hewletr-Packard distortion analyzers.
Option 001, for each model, features VU meter characteristics conforming to FCC requirements.

Model No.	Auto Nulling	Hi-Prss Filzer	Lo-Pass Filter	AM Detector	Gear Feduction Tuning
331A					X
332A				X	X
332A Opt. H05			X	X	X
333A	X	X			
334A	X	X		X	
$334 A$ Opt. H05	X		X	X	

Optional, for each model, features VU meter characteristics conforming to
FCC requirements.

Specifications (All Models)*

Distortion measurement range: any fundamental frequency, 5 Hz to 600 kHz . Distortion levels of $0.1 \% \cdot 100 \%$ are measured full scale in 7 ranges.
Harmonlc distortion measurement accuracy (full scale):
Fundamental Inpur Less Than 30 V

Range	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \%-0.3 \%$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$10 \mathrm{~Hz}-3 \mathrm{MHz}$	
0.1%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHz}$

Fundamental Inpur Greater Than 30 V

Range	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \% \cdot 0.3 \%$	$10 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 500 \mathrm{KHz}$	$10 \mathrm{~Hz}-3 \mathrm{MHz}$
0.1%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot \mathrm{l} .2 \mathrm{MHz}$

Elimination characteristics
Fundamental rejection: $>80 \mathrm{~dB}$.
Second harmonic accuracy for fundamentals of SHz to 600 Hz : better than -3 to +1 dB depending upon frequency range.
Distortion 1ntroduced by instrument: $<0,03 \%$ from 5 Hz to $200 \mathrm{kHz} ;<0.06 \%$ from 200 kHz to 600 kHz . Meter indication is proportional to the average value of a sine wave.
Frequency calibration accuracy
Better than $\pm 5 \%$ from 5 Hz to 300 kHz .
Better than $\pm 10 \%$ from 300 kHz to 600 kHz .
Input impedance: distortion mode. $1 \mathrm{Me} \pm 5 \%$ shunced by $<70 \mathrm{pF}$ ($10 \mathrm{M} \Omega$ shunted by $<10 \mathrm{pF}$ with HP 10001A 10:1 Divider Probe); voltmeter mode: $1 \mathrm{M} \Omega \pm 5 \%$ shunted by $<35 \mathrm{pF} 1$ to $300 \mathrm{~V} \mathrm{~ms} ; 1 \mathrm{M} \Omega \pm 5 \%$ shunted by $<70 \mathrm{pF}$. $300 \mu \mathrm{~V}$ to 0.3 V rms.
Input ievel for distortion measurements: 0.3 V rms for 100% set level or 0.245 V for 0 dB set level (up to 300 V may be attenuated to ser-level reference).
DC isolation: signal ground may be $\pm 400 \mathrm{~V}$ dc from external chassis.
Voltmeter range: $300 \mu \mathrm{~V}$ to 300 V rms full scale (13 ranges) 10 dB per range.
Voltmeter accuracy: (using front panei input terminals) $\pm 2 \%$ and $\pm 5 \%$ depending upon frequency and input range).
Output: $0.1 \pm=0.01 \mathrm{~V}$ ems open circuit and $0.05 \pm 0.005 \mathrm{~V}$ rms into 2 k ? for full scale meter deflection.
Output impedance: $2 \mathrm{k} \Omega$.

AM detector (Models 332A and 334A oniy): high impedance de restoring peak detector with semiconductor diode operares from 550 kHz to $>65 \mathrm{MHz}$. Broadband inpur, no tuning is required: maximum input: $40 \mathrm{~V} p \cdot \mathrm{p}$ ac or 40 V peak transient; distortion introduced by detector: carrier fre. quency: $550 \mathrm{kHz}-1.6 \mathrm{MHz}:<50 \mathrm{~dB}(0.3 \%)$ for 3.8 V rms carriers modulated 30%.
Automatic nulting mode (Moders 333A and 334A only)
Set level: at leasr 0.2 V rms.
Frequency ranges: X1, manual null runed to $<3 \%$ of set level: total frequency hold-in $\pm 0.5 \%$ about true manual null. X 10 through X 10 k , manual null tuned to $<10 \%$ of set level; total frequency hold $-\mathrm{in}=1 \%$ abour rrue manual null: automatic null accuracy: 5 Hz to 100 Hz ; meter reading within 0 to +3 dB of manual null. 100 Hz to 600 kHz ; meter reading within 0 to +1.5 dB of manual null.
Htgh-pass fitter (Models 333A and 334A only)
3 dB point ar 400 Hz with 18 dB per octave roll off. 60 Hz rejection $>40 \mathrm{~dB}$. Normally used only with fundamental frequencies $>1 \mathrm{kHz}$.
Low-pass filter: 332A Option H05 and 334A Option H05 (4 pole, 3 dB down at 30 kHz).

General

Weight: net $17 \frac{1}{4} \mathrm{lbs}(8 \mathrm{~kg})$; shipping $25 \mathrm{lbs}(11,3 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $s^{\prime \prime}$ high (without removable feet), $131 / 4^{\prime \prime}$ deep ($426 \times 126 \times 337 \mathrm{~mm}$).
Accessories furnished; rack mounting kit for $19^{\prime \prime}$ rack.
Power supply: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $140 \mathrm{~Hz} ; 331 \mathrm{~A}$ and 332A 6 VA max., 333A and 334 A 13 VA max. Terminals are provided for external batrery supply. Positive and negative voltages betreen 30 V and 50 V are required. Current drain from each supply is 40 mA . (80 mA for models 333 A and 334 A).
Price: HP 331A, \$680; HP 332A, \$710; HP 333A, 5920; HP 334A, \$950. 332A option HOS, add $\$ 110 ; 334 \mathrm{~A}$ option H05, add $\$ 85$: option 001, indicating meter has VU characteristics conforming to FCC requirements for $\mathrm{AM} / \mathrm{FM}$ and TV broadcasting: add $\$ 15$ for 331 A and 332 A : add $\$ 20$ for 333 A and 334A.

- Refer to data sheet for complete specifications.

WAVE ANALYZERS

What is a wave analyzer?

Wave Analyzer, Frequency Selective Voltmeter. Carrier Frequency Voltmeter, Tuned Voltmeter . . . they're all the same thing, just different names.

A wave analyzer can be thought of as a finite bandwidth window filter which can be tuned throughout a pacticular fre. quency range.

Figure 1. Wave Analyzer Tunable Filter.
Signals located on the frequency spec. trum will be selectively measured as they are framed by the windor:. Thus, for a particular signal, the wave analyzer can indicate its frequency (window position) and amplitude. Amplitede is read on an analog meter; frequency is read on either a mechanical or electronic readout, It has the advantage of accuracy, resolution, ease of operation and low cost.

The uses of wave analyzers can be categorized intio three broad ateas: 1) Amplitude measurement of a single component of a complex frequency spectrum, 2) Amplitude measurement in the presence of noise and interfering signals and, 3) Measurement of signal energy appearing in a specified, well defined bandwidth.

The selecrion checklist provides a guide for comparing features and choosing an instrument suitable for the task ar hand.

Wave analyzer considerations Frequency characteristics

Range: should be selected with the future in mind as well as present requirements.

Accuracy and resolution: should be consistent with available bandwidths. Narron bandwidtlis require frequency dial accuracy to place the narrow window in the proper position for measurement. Accuracy of instcuments with selectable bandwidths is determined by the basic center-frequency accuracy of the IF bandwidth filters in addition to the local oscillator frequency accuracy. Accuracy is usually specified as a fixed frequenc: error at any point on the dial meaning
poorer percentage accuracy at the low frequency settings.

Readout: usually a frequency dial bus newer instruments use a frequency counter as a dial. Athough digital readour is more expensive, its accuracy and ease of use outweigh the increased cost.

Stability: frequency stability is impor. tant when using narrow bandwidths and for long term signal monitoring. Stability is achieved by phase locking and frequency counters but the best stability is with automatic frequency control. ($\triangle F C$). AFC locks the local osciliator to the incoming signal and eliminates any relative drift between the two. It serves as a turing aid to pull the signal ro within the passband eliminating peaking the frequency control. The AFC always tunes to the same spor in the pass. band improving accuracy on repetitive measurements.

Sreeep: some instruments are equipped with a srreep arcangement to allow use as a spectrum analyzer. Readour is a CRT or $\mathrm{X}-\mathrm{Y}$ recorder Some instruments sweep the local oscillator while others use an external spectrum analyzer to soreep a broadband IF.

Amplitude characteristics

Range: the amplitude range is determined by the imput attenuator and the internal noise of the instrument. Sensitivity is defined as the lowest measurable signal level equal to the noise level for a unity signal-to-noise ratio (often called tangential sensitivity). Sensitivity will vary with bandwidrh and input imped. ance.

Dynamic range: defined as the dB ratio of the largest and smallest signals that can be simultaneously accommodated without causing an error in the measurement of the smaller.

Attenuators: the amplitude range switch is an attenuator in the input and IF srages. Instruments are available with a single control which switches input and IF range in prederermined steps or with two switches for independent control of input and IF range. Intermodulation dis. tortion is lowest when the input amplifier has the minimurn signal applied and the IF gain is greatest. Conversely the internal noise, important when making sensitive measurements, is lowest with maximum input signal and lon'est IF gain. The mo attenator instruments allow this transfer of gain between input and IF to he accomplisleed easily.

Accuracy: amplitude accuracy is 2
function of frequency, input attenuator response, IF attenuator performance, calibrâtion oscillator srability and accuracy. and meter tracking. Often specifications are broken up to separately describe each contributor.

Readout: amplitude readout is usually a meter calibrated in $d B$ and/or volts. Linear voltage meters are used to allow the user to see down into the noise at the bottom of the scale. Digital readouts are not used because of their slow response and lack of directional and positional information. This is important since the readout is used as a tuning indicator to show presence of a signal in the passband and when it has reached a peak. Expanded scale meters allowing expansion of any 1 or 2 dB portion of the scale into a full scale presentation allow resolution of input level changes of a few hundredths of a dB . This is useful when the wave analyzer is used as a sensitive indicator in bridge or comparison measurements. The expanded scale meter is included in some instruments and is an external accessory on others.

Input characteristics

Impedance: may be high impedance bridging input of terminating impedance to match standard transmission lines. High frequency measurements require matched systems to avoid error-produc. ing standing waves on interconnecting cables. The measure of impedance accuracy is usually return loss or reflection coefficient $(\mathrm{RL}=20 \log \mathrm{p})$. In lower frequency instruments, percent accucacy is used. High input impedance instruments are usually poorer in frequency and noise performance and are usually low frequency instruments. High impedance at high frequencies is accomplished by using a bridging probe to place the impedance at the point of measurement. The probe may be active with unity gain or passive with $20-30 \mathrm{~dB}$ insertion loss.

Input arrangement: input may be bal. anced-to-ground or unbalanced. Communications system usage typically requires balanced input. Standard 600 and 135/150n balanced inputs are limited in frequency to less than $1 \mathrm{M} / \mathrm{Hz}$ and $12 \cdot \mathrm{~s} \Omega$ balanced to less than 10 MHz in most instruments. The impedance may be balanced to ground with the center point grounded or may be completely isolated from ground. Unbalanced inpurs do not Lave frequency range limitations.

Miscellaneous characteristics

IF bandwidths: this determines the basic bandwidth and selectivity of the instrument. Shape factor, defined as the ratio of the 60 to 3 or 6 dB attenuation bandwidths of the bandpass curve, is im. portant as it determines how well closetogether signals can be resolved. A low numerical ratio implies a more selective bandpass.

Demodulation: many instruments are provided with circuits to perform AM envelope and single-sideband demodula. tion of signals. Single-sideband sup-pressed-carrier signals require that the instrument reinsert the cartiec. This also requires that the instrument be tuned above or below the carrier frequency. Frequency accuracy and resolution are im. portant here. A bandwidth of at least 3 kHz is required for understandable voice signal demodulation.

Physical characteristics: occasional field
use requires portability and battery operation which is usually limited to the lower frequency instruments. Instruments with narrow bandwidth crystal filters axe somewhat susceptible to vibration and shock. Active filters eliminate this problem.

Tracking generator: tracking generators whose frequency is slaved to the wave analyzer's tuning are useful for frequency response measurements. For higher frequency instruments, the generator is usually a separate instrument which can be slave tuned or separately tuned. Separate rusing with the same accuracy and resolution as the wave analyzer meter is necessary when making harmonic analysis or measuring systems with frequency translation. Lower fre. quency instruments typically have a builr-in generator referred to as a BFO output. This output is slave tuned only.

Outputs: DC outpue proportional to
meter indication is useful for recording. This type of output is usually limited in dynamic range to $20-40 \mathrm{~dB}$. AC outpur at the IP frequency for external recorders and indicators will operate over the complete dynamic range. One recent model uses a unique \log converter technique to place the entise dynamic range on the meter and its ds output. AC output for earphone monitoring of demodulated in. put signals is usually provided. Most instruments in the lower frequency range are equipped with a BFO and restored output. BFO output is a constant ampli. ude, levelled output whose frequency is the same as that to which the instrument is tuned. Restored output is an amplified, filtered replica of the input signal. Its frequency is the same as the inpur signal and it is band-limited or filtered by the instrument's bandwidth. Lecal oscillator inputs and outputs are occasionally provided for sla ving instruments together.

Table 1. HP wave analyzers.

HP wayd amalyzare	Frequenoy rango	Seteotive bandpassot	$\begin{gathered} \text { Dynam } \\ \text { Absolute } \end{gathered}$	Aelative	$\begin{gathered} \text { Freq } \\ \text { raadouts } \end{gathered}$	Type of Inputs	Type af outputs	Modes of operatlon
$\begin{aligned} & 302 \mathrm{~A} \\ & \text { (p. } 378) \end{aligned}$	20 Hz to 50 kHz	6 Hz	$\begin{aligned} & 30 \mu \mathrm{~V}-300 \mathrm{~V} \\ & \text { full scale } \end{aligned}$	$>75 \mathrm{~dB}$	dial	banana jacks	rec: 1 mA de into 1000Ω full scale BFO: 2 V open circuit, meter at full scale	AFC, normal, BFO
$\begin{aligned} & 3590 \mathrm{~A} / \\ & 3594 \mathrm{~A} \\ & (\mathrm{p} .376) \end{aligned}$	20 Hz to 620 kHz		$3 \mu \mathrm{~V}-30 \mathrm{~V}$ full scale	>85 d8	5. place digital	8NC unbalanced	rec: X and Y axes log and linear. BFO: to 1 V ims. L.0.: ($1.28 \mathrm{MHz}-1.9 \mathrm{MHz}$) 0.65 V rms.	AFC, restored 8FO, USB, LSB, AM sweep
$\begin{aligned} & 310 \mathrm{~A} \\ & \text { (p.378) } \end{aligned}$	1 kHz to 1.5 MHz	$\begin{array}{r} 200 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} \end{array}$ $3000 \mathrm{~Hz}$	$\begin{aligned} & 10 \mu \mathrm{~V}-100 \mathrm{~V} \\ & \text { fuli scale } \end{aligned}$	$>75 d 8$	dial	banana jacks	rec: 1 mA de into 1500 n full scale BFO:0.5V into 135Ω meter at full scale output Impedance $135 \AA$	AFC, normal BFO, USB, LSB AM
$\begin{aligned} & 312 \mathrm{~A} / \\ & 313^{*} \\ & (\mathrm{p} .350) \end{aligned}$	1 kHz to 18 MHz 18 ranges	$\begin{array}{r} 200 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} \\ 3100 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 3 \mathrm{y} V-3 V \\ & \text { full scale or } \\ & -97 \text { to }+23 \\ & -107 \text { to }+13 \\ & (6008 \text { only }) \end{aligned}$	$>72 \mathrm{~dB}$	7-place decade counter	 plobe 11530A bridged/ terminatad balanced or unbalanced	rec: 1 V de full scale 1 ks source aux: $1 \mathrm{MHz}(1 \vee \mathrm{p}-\mathrm{p})$ $30 \mathrm{MHz}(40-70 \mathrm{mV}) \mathrm{ims}$ L.O. ($30-48 \mathrm{MHz}$) 80 to 90 mV ms audio: $>0.5 \mathrm{~V}$ into $10 \mathrm{k} \Omega$ 313A: Track or tuned 75Ω unbalanced, -99.9 to $+10 d \mathrm{dm}$	AFC, AM, beat LSB, USB
$\begin{aligned} & 3591 \text { A/3594A } \\ & (\text { p. } 352) \end{aligned}$		Same as 3590A/3594A except input bridged/terminated bal. or unbal. and modified input circuitry.						
312A/313A Op. H01 (p. 350)		Same as 312A except 1 KHz 1022 MHz and WE-4778 input unbatanced.						
312A/313A Op. H05		Same as 312A Option HOL except 50Ω onbalanced input with BNC connector.						

3592A

3590A/3594A

3593A

Description

The Hewlett-Packard Model 3590A Wave Analyzer offers automatic, state-of-the-art detection of signal amplitude and frequency information. Over a frequency range of 20 Hz to 620 kHz , the analyzer can separate frequency components of an input signal to locate the fundamental, harmonics, intermodulation products, or any other signals present in the spectrum. Selecrable bandwidths of $10,100,1000$ and 3100 Hz permit easy location of signals and separation of closely spaced components. Operation has been greatly simplifed by automatic amplitude ranging and electronic sweeping. X.Y recorder outputs permit frequency spectrum recordings to be made covering the entire frequency sange with a linear dB amplitude display of 90 dB .

Recorder outputs

Both X and Y secorder outputs are available at the rear panel of the 3590A. These outpurs produce either logarithmically or linear varying dc voltages. Any combination of X and $\mathrm{Y} \log$ or Iinear outpurs (Lin-lin, lin-log, log.lin, or log-log) can be chosen to provide maximun fexibility. Recordings can also be nade on standard semi-log graph paper to produce direct plots.
Y-axis \log and linear outputs occur simultaneously, but the X -axis output is switched to choose the output function. When the switch is in LINEAR (RAMP ONLY), the dc offset produced by the start frequency location is blocked out. This
permits wide expansion of a narrow sweep segment without having to buck out the offset voltage.

A contact closure drops the pen during the sweep. During setrace and standby, the pen is lifted.

Plug-ins

3592A Auxiliary Plug-in

The 3592A is made for the situation where two or more main frames are slave tuned. This situation occurs when two signals ane to be analyzed simultareously. An example of this is reading X and Y axis sensors in a vibration test. The other plug-ins can also be slave tuned.

3593A/4A/5A Sweeping Local Oscillator

The 3593A was designed for fast sweeping for short periods of time. It represents a price savings over the other sweeping plug-ins.

The 3504A has a nixie tube readout for accurate setting of start frequencies and readout of erequencies during sneep. The 5 -digit r eadout represents an order of magnitude improvement in resolution over the mechanical readours of the other plug-ins.

The 3595 A ras designed to fulfill the requirement of slow sweeping for long periods of time. Using the $2 \mathrm{~Hz} / \mathrm{s}$ sweep speed the 3595A can sweep the entire audio spectrum (20 Hz . $20,000 \mathrm{~Hz}$) with a 10 Hz bandridth. It is also possible to sweep a baseband signal from 312 kHz to 552 kHz with a 1000 Hz bandwidth. These longtime sw'eeps can be made automatically with no resetting or manual ranging.

Specifications

3590A Wave Analyzer

Frequency range: 20 Hz to 620 kHz .
Frequency accuracy: refer to plugtin specs.
Amplitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 16 tanges.
Amplitude accuracy (meter switch in normal position)
Overall accuracy: $\pm 0.5 \mathrm{~dB}$ or $\pm 5 \%$ of reading, including the following: frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$ total deviation; meter racking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 dB indication.

Amplitude accuracy (meter switch in linear dB position)
Overall accuracy: $\pm 1 \mathrm{~dB}$; internal calibrator: frequency: $100 \mathrm{kHz} \pm 10 \mathrm{~Hz}$; amplitude: full scale on 0 dB range in CAL mode; amplitude accuracy: $\pm 0.1 \mathrm{~dB}$ ($\pm 1 \%$) with 90 day calibration cycle.
Dynamic range (IM and harmonic distortion products)
$>85 \mathrm{~dB}$ below zero dB reference level when ABSOLUTE measurements are being made ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz). $>80 \mathrm{~dB}$ below zero dB reference level when RELATTVE adjustment is used ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz) ; (residual responses) : $>80 \mathrm{~dB}$ below zero reference ($>70 \mathrm{~dB}$ for 20 Hz to 50 Hz).
Noise level (on . O1V max input voltage range at 20 kHz)

Bandwidths	Input Noise Leval (800Ω Source Impedance)
10 Hz and 100 Hz	$<0.3 \mu \mathrm{~V}$
	or at least 90 dB below 0 dB reference
$\mathbf{1 k H z}$ and 3.1 kHz	$<1.0 \mu \mathrm{~V}$
	or at least 8008 below 0 dB reference

Selectivity (shape factor)
Bandwidths

Rejection	10 Hz	100 Hz	1 kHz	3.1 kHz
-3 dB Point	10 Hz	100 Hz	1 kHz	3.1 kHz
-60 dB Point				
(Frequency accuracy at .3 Hz and $-60+10 \%$)				

Automatic frequency control: caprure threshold: is dB below
0 dB reference, AFC will lock on trace signal; dynamic hold-in range: >3 bandwidths. Tracking rate proportional to bandwidth.
Input impedance
Reslstance: 100 kS all ranges.
Capacitance: $<50 \mathrm{pF}$ for $10 \mathrm{mV}, 30 \mathrm{mV}$ ranges $<30 \mathrm{pF}$ for 100 mV to 30 V ranges.
Automatic ranging: 8 ranges, 0 dB to -70 dB . Ranging rate proportional to bandwidth.
Mode outputs: amplitude: adjustable 0 to 1 V ims open cir-
cuit; BFO frequency flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$; resistance: 600Ω, BFO frequency is equal to tuned frequency.

L.O. output

Frequency: 1.28 MHz to 1.90 MHz ($1.28 \mathrm{MHz}+$ tuned frequency); amplitude: 0.65 V ms $\pm 20 \%$ open circuit; resistance: 2500 .

Recorder outputs

X.A	Plug-in Frequancy Rangas	
(3593A/3594A only)	62 kHz	620 kHz
X.axis linear output: (1 kn source resistance)	$\begin{aligned} & 0 \mathrm{to-12.4V} \\ & (200 \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{aligned}$	$\begin{aligned} & 010 \cdot 12.4 \mathrm{~V} \\ & (20 \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{aligned}$
X.axis log output: (1 kn source resistance)	$\begin{aligned} & 5 \mathrm{~V} / \text { decade } \pm 5 \% \\ & (20 \mathrm{~Hz} \cdot 62 \mathrm{~Hz}) \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \mathrm{~V} / \text { decade } i 5 \% \\ (600 \mathrm{~Hz}-520 \mathrm{kHz}) \\ \hline \end{array}$

Y -axis: linear Y axis output: $+5 \mathrm{~V} \mathrm{dc} \pm 4 \%$ for full scale meter indication, $2.5 \mathrm{k} \Omega$ source resistance; $\log Y$ axis output: +1 V to $+10 \mathrm{~V} d \mathrm{c}, \pm 0.1 \mathrm{~V}$ proportional to linear dB meter indication (-90 to $0 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB}$) $1 \mathrm{k} \Omega$ source resistance.
Pen lift: contact closure during sweep, open during reset (3593A/3594A only).
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 115 \mathrm{VA}$ (includes plug-in).
Dimensions: $163 / 4^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high. $163 / 8^{\prime \prime}$ deep ($425 \times 221 \times$ $(16 \mathrm{~mm})$.
Welght: net 38 lbs ($17,2 \mathrm{~kg}$); shipping, $55 \mathrm{lbs}(24,9 \mathrm{~kg}$).
Accessorles furnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 3590A, \$3280.

Specifications

Model 3592A Auxlllary Plug-in

External L.O. Input: $0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ rms, 1.28 to 1.90 MHz ($1.28 \mathrm{MHz}+$ tuned frequency).
Weight: net, 2 lbs (. 9 kg); shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Dimensions: $8^{\prime \prime}$ high, $4.5^{\prime \prime}$ wide, $11^{\prime \prime}$ deep ($20 \times 11 \times 28 \mathrm{~cm}$).
Price: HP 3592A, $\$ 80$.

	MODELS 3593A and 3594A		MODEL 3595A	
Ranges:	20 Hz to 62 kHz	500 Hz to 620 kHz	20 Hz to 62 kHz	500 Hz to 620 kHz
Frequency Accuracy:	$\begin{gathered} 3593 \mathrm{~A}: \pm(1 \% \%+20 \mathrm{~Hz}) \\ \text { of dial setting } \\ 3594 \mathrm{~A}: \pm(1 \mathrm{~Hz}+\mathrm{time} \\ \text { base accuracy }) \end{gathered}$	$\begin{aligned} 3593 \mathrm{~A}: & \pm(1 \%+200 \mathrm{~Hz}) \\ & \text { of dial setting } \\ 3594 \mathrm{~A}: & \pm(10 \mathrm{~Hz}+\text { time } \\ & \text { base accuracy }) \end{aligned}$	$\begin{aligned} & \pm(1 \%+20 \mathrm{~Hz}) \\ & \text { of dial setting } \end{aligned}$	$\begin{aligned} & \pm(1 \%+200 \mathrm{~Hz}) \\ & \text { of dizl secting } \end{aligned}$
Frequency Resolution:	3593A. 10Hz/minor div. 3594A:1Hz/minor div.	3593A: $100 \mathrm{~Hz} / \mathrm{minor}$ div. 3594A: $10 \mathrm{~Hz} /$ minor div.	$10 \mathrm{~Hz} / \mathrm{min}$ or div.	$100 \mathrm{~Hz} / \mathrm{minordiv}$.
Ext. Freq. Control:	$\begin{gathered} 0 \mathrm{ro} 15.5 \mathrm{~V}(250 \\ \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{gathered}$	$\begin{aligned} & 0 \text { to } 15.5 \mathrm{~V}(25 \mathrm{mV}) \\ & \mathrm{kHz} \pm 5 \%) \end{aligned}$	$\begin{aligned} & 01015.5 \mathrm{~V} \\ & (250 \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{aligned}$	$\begin{aligned} & 01015.5 \mathrm{~V} \\ & 125 \mathrm{mV} / \mathrm{kHz} \pm 5 \% 1 \end{aligned}$
Bandwidth Specifled:	$\begin{gathered} 10,100,1000 \\ 3100 \mathrm{~Hz} \end{gathered}$	$100,1000,3100 \mathrm{~Hz}$	$\begin{gathered} 10,100,1000 \\ 3100 \mathrm{~Hz} \end{gathered}$	100, 1000, 3100 Hz
X-axis Recorder Output:	Linear output. 0 to -12.4 V			
	$200 \mathrm{mV} / \mathrm{kHz} \pm 5 \%$	$20 \mathrm{mV} / \mathrm{kHz} \pm 5 \%$	Same as 3593A/94A	
	Log outpur: $5 \mathrm{~V} / \mathrm{decade} \pm 5 \%$			
	50 Hz carib. point	500 Hz callb. point	20 Hz colit. point	200 Hz calib, point
Y-axis:	Refer to main frame specifications			
Swaep Rates:	1, 10, 100, $1000,3100 \mathrm{Mz} / \mathrm{s}$.		1, 2, 10, $100,1000 \mathrm{~Hz} / \mathrm{s}$.	
Sweep Ramp Linearity:	$\pm 1 \%$ of final value		$\begin{aligned} & \pm 2,5 \% \text { of tinal value for first } \\ & 10,000 \mathrm{~s} . \end{aligned}$	
Max Swoep Time:	$6205 \pm 15 \%$		60,000 5.	
Start Freq:	determined by trequency setting			
Pen Lift:	contact closure during sweep, open during reset.			
External L. O . input:	$0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ rms, 1.28 to $1.90 \mathrm{MHz}(1.28 \mathrm{MHz}+$ tuned frequency).			
Dimensions:	$8^{\prime \prime}$ high, 4.5" wide, $11^{\prime \prime}$ deep ($20 \times 11 \times 28 \mathrm{~cm}$).		net $9.5 \mathrm{lbs}(4,3 \mathrm{~kg})$; shipping $14 \mathrm{lbs}(6,3 \mathrm{~kg}$)	
Weight:	net $7.5 \mathrm{los}(3,4 \mathrm{kgl}$; shipping 12 lbs (5.5 kg$)$.			
Price:	HP 3593A, \$1130; HP 3594A, 51840.		HP 3695A, \$1250	

FREQUENCY DOMAIN MEASUREMENT

Spectrum Analyzers

Basically a spectrum analyzer is a swept receiver that provides a CRT display of amplitude versus frequency. It shows how energy is distributed as a function of frequency, displaying the Fourier components of a given waveform. With it you can measure frequency response; characterize mixers, doublers, and other frequency conversion devices. You can measure signal purity or see directly the bandwidrh needed to pass a given signal.

CW Signal. This is a calibrated display of a -30 dBm CW signal at 60 MHz . The zero frequency indicator appears at the far lefr of the display; the horizontal scan is $10 \mathrm{MHz} /$ div. The \log reference level (top graticule line of the display) is 0 dBm .

Oscillators

Oscillator spectral purity. The spectrum analyzer may be used to measure the spectral purity of oscillators. Above, a 70 MHz carrier has line related sidebands (60 Hz) which are 65 dB down. These sidebands may be the result of ripple on the porver supply. The spectrum analyzer scan is 50 Hz per division, and a 10 Hz bandwidth was used to allow resolution of the close in sidebands.

Mixer. Driving a double-balanced mixes with an L.O. of 50 MHz at 0 dBm and with a $5 \mathrm{MHz},-30 \mathrm{dBm}$ sig. nal, results in the output shown. The \log reference level is -10 dBm and the frequency scan is 10 MHz division cen. rered at 50 MHz . The two sidebands at 45 MHz and 55 MHz have a conversion loss of $6 \mathrm{~dB}(6 \mathrm{~dB}$ below the $-30 \mathrm{dBm}$ graticule line). The local oscillator (50 MHz signal) has 50 dB isolation. 5 MHz signal leak-through is at -71 dBm , i.e., 41 dB isolation. Second order distortion products at 40 and 60 MHz are 40 dB down.

Modulators

A

8

50 percent AM. Figure A show's a time domain photograph of an amplitude modulated carrier. The percent moduLation is: $M=(6-2) /(6+2)=$ $4 / 8=50 \%$. (Scope calibration 0.1 msec) division, $50 \mathrm{mV} /$ division.) The same waveform is measured in the frequency domain in " B " since the carrier and sidebands differ by $12 \mathrm{~dB}, \mathrm{M}=50 \%$. Fre. quency scan is 10 kHz /div centered at 60 MHz , and the \log reference level is +10 dBm . You can also measure the 2nd and 3rd harmonic distortion on this waveform. 2nd harmonic sidebands at $\mathrm{f} \mathrm{c} \pm 2 \mathrm{fm}$ ate 28 dB down.

Amplifiers

日

Harmonic distortion. Overdriving an amplifier results in a severely distorted waveform easily observed with the oscilloscope; however, quantitative measurements of distortion levels are difficult to obrain. The scope calibration is 0.05 volt/ division vertical, $0.1 \mu \mathrm{sec} /$ division horizontal. The spectum analyzer easily gives quantitative information about the distortion of the two signals. The fre quency scale is 5 MHz /division centered at 25 MHz , and the \log reference level is 0 dBm .

Filters

Filter frequency response. Using a track. ing signal source and a spectrum analyzer, filter frequency response is easily measured and recorded. In this case, an audio filter used in a communications system is being measured. The spectrum analyzer scan is 0 to 10 kHz . The log reference level is -10 dBV , and the input to the filter was at -13 dBV . Therefore, the insertion loss at 2.4 kHz is 4 dB . Extremely high.Q devices can be measured with this system.

Spectrum Analyzer Capabilities

To be useful in making measurements in the frequency domain, the analyzer must be capable of making quantitative measurements. To make quantitative measurements, an analyzer must:

1) make absolute frequency measurements
2) make absolute amplitude measurements
3) operate over a large dynamic range
4) have frequency and amplitude high resolution capability
5) have higin sensitivity
6) provide means of observing signals at the slow sweep rate high resolurion scans i.e. variable persistence.
Hewletr-Packard spectrum analyzers excel in these six measures of performance.

Let us consider each of these performance standards in greater detail.

Asolute frequency measurements

There are two ways to measure absolute frequency with an Hewlett-Packard spectrum analyzer. The absolute frequency can be read off the slide-ruie type of frequency dial. Accuracy in this case is approximately 1% of full scale. It is also possible to use a counter and tracking generator to measure the frequency of signals on the CRT to much better accuracy.

The tracking generator is a source that tracks the spectrum analyzer tuning response. Hence, the tracking generator frequency is equal to the frequency the spectrum analyzer is tuned to. Counting the tracking generator frequency results in precision frequency measurements.

Absolute amplitude measurements

All Hewletr-Packard spectrum ana. lyzers are absolutely calibrated for am. plitude measurements. This means the spectrum analyzer indicates to the user what the \log ref level or linear sensitivity is regardless of control settings. In addition, a warning light is available to signal any combination of control settings that leads to an uncalibrated condition. This makes operation of the analyzer easy and foolproof.

Dynamic range

The dynamic range of a spectrum ana. lyzer is defined as the difference between the inpur signal level and the average noise level or distortion products whichever is greater. Hence, dyoamic range
can be either distortion limited or noise limited.

Frequency and amplitude resolution

Prequency resolution is the ability of the analyzer to separate signals closely spaced in frequency. The frequency resolution of an analyzer is a function of three factors:

1) minimum IF bandwidth
2) IF filter factor
3) spectrum analyzer stability

The minimum IF bandwidth ranges from 10 Hz to 300 Hz on Hewlett. Packard spectrum analyzers.

IF filter factor is the ratio of 3 dB bandwidth to 60 dB bandwidth. Filter factor specifies the selectivity of the IF filter. Heorlett-Packard spectrum analyzers have IF filter factors as low as 11 :?

Analyzer frequency stability also limits resolution. The residual FM (short term stability) should be less than the narrowest JF bandwidth. If not, the signal would drift in and out of the IF pass band. Hewlett-Packard analyzers have excellent stability. The residual FM ranges from $<1 \mathrm{~Hz}$ at low frequency, to $<100 \mathrm{~Hz}$ at microwave frequencies. The scabilization circuitry is completely automatic and foolproof. No signal recentering, phase-lock loop manual search, or checking is required.

Amplitude resolution is a function of the vertical scale calibration. HewlettPackard analyzers offer boch log calibra. tion for observing large amplitude variations ($10 \mathrm{~dB} /$ div and $2 \mathrm{~dB} / \mathrm{div}$) and Linear calibration for observing small am. plitude variations.

Sansitivity

Sensitivity is a measure of an analyzer's ability to derect small signals, and is often defined as the point where the signal level is equal to the noise level. Since noise level decreases as the bandwidth is decreased. sensitivity is a function of bandwidth. The maximum attainable sensitivity ranges from - 140 dBm to - -125 dBm with Hervlett-Packard analyzers.

Variable persistence

High resolution and sensitivity both require narrow bandwidths and consequently slow sweep rates. Because of these slow sweeps, variable persistence is virtually indispensable in providing a bright, steady, flicker-free trace. (In effect, variable persistence allows one to
vary the length of time a trace remains on the CRT.)

Tracking preselector

Spurious responses are generated when the analyzer is over-driven. In addition if an analyzer utilizes harmonic mixing. multiple and image responses can occur.

The only way to simultaneously avoid spurious, multiple, harmonic and image responses, is to filter the RF signal through a tracking preselector. This is an elecronically tuned bandpass filter that automatically tracks the analyzer's tuning. A preselector improves the dynamic range of the analyzer from 70 aB to 100 dB .

Tracking generator

A tracking generator is a tracking sig. na! source which tracks the tuning response of a spectrum analyzer. The tracking generator expands the measurement capability of the spectrum analyzer.

A tracking generator/spectrum analyzer is ideal for frequency response and return loss measurements. Inserting a test device between the rracking genera. tor and analyzer resules in a display of the insertion loss versus frequency or frequency response of the device. Return loss measurements versus frequency are also possible with a directional couples or hybrid. The rracking generator also makes precision frequency measurements possible as described in "Absolute Frequency Measurements" above. in addition, the tracking generator is an excellent stable sweeping signal generator. The residual FM ranges from $\pm 1 \mathrm{~Hz}$ for low frequency tracking generators to ± 400 Hz for microwave tracking generators.

Wave analyzers

Wave analyzers offer another method of measuring both the amplitude and frequency of an input signal's component. A wave analyzer is similar to a spectrum analyzer. However, the characteristics of a wave analyzer are optimized for low frequency narror band measurements.

The electronic sweeping and amplitude aucoranging of the new HP 3590 A wave analyzer permit $X \cdot Y$ and strip chart plors of amplitude versus frequency over a frequency range of 20 Hz to 620 kHz and a dynamic range of more than 85 dB .

A BFO output is available with Hew. lett-Packard wave analyzers. This output corresponds to a tracking generator output in a spectrum analyzer. With a 8 FO output swept frequency response neasurements are possible.

Representative 8580~ System Tailored for High Speed Surveillance of VHF, UHF Bands .01 .500 MHz

Description

The 8580A Automatic Spectrum Analyzers are flexible measurement systems for applications in surveillance and network characterization from 10 kHz to 18 GHz . These systems consist of a variety of programmable instruments that are controlled from a small instrumentation computer. The measurement heart is a calibrated receiver with pro. grammable tuning and bandwidth. This receiver can be tuned from 10 kHz to 18 GHz by simple one line statements in BASIC of FORTRAN measurement programs. Receiver bandwidth is selectable from 10 Hz to 300 kHz . Other programmable system functions include input selection (up to 8 ports) and sensitivity (down to -130 dBm).

Optional signal sources expand the capability of the 8580 systems. Precision RF sources, with programmable level and frequency, supply signals required to excite test devices for network analysis measurements. Programmable de power supplies are arailable for bias or to control ports of test devices.

Applications

The 8580A Automatic Spectrum Analyzers are valuable tools for gathering spectral density data on signals present in complex electronic equipment or in a geographic region. RFI testing, for example, is enhanced by the automatic system's ability to correct for sensor transfer functions and compare measured data against specification limits. Performance
of a complex communication network can be continually monitored to report network performance on a regular basis. Similarly, radiation in a particular locale can be surveyed to gather statistics on avaidable spectrum or unauthorized transmissions. These applications emphasize an important feature of the Automatic Spectrum Analyzer; totally unattended operation. The 8580 may be programmed to measure, analyze, and record results, and hence run without human intervention, for long periods. This makes comprehensive monitoring a practical tool for spectrum management.
Network characterization is also greatly advanced through use of an Automatic Spectrum Analyzer. An 8580 can measure the magnitude of reflection and transmission coefficients of linear networks, as well as the distortion parameters (harmonic, intermodulation, ccoss-modulation) of non-linear devices such as amplifiers. Frequency translators such as mixers, modulators, and frequency multipliers are also readily characterized. Additionally, oscillators can be evaluated for output level, distortion, and spurious output signals.

For both surveillance and network characterization applications, the 8580 's absolute calibration (frequency and power), broad frequency coverage, high frequency accuracy, wide measurement range, speed, and ease of programming, combined with the flexible hardware option list, offer a measurement system that can be tailored to your application. Contact your local Hewlett-Packard office for complete technical information.

The high value Spectrum Analyzer Family . . .

- Cover 20 Hz to 40 GHz with just a change of tuning section.
- Select a system from a wide choice of configurations.
- Add measucement capability to your system as it is needed.
- Enjoy the advantages of a fully calibrated solid state system.

Your Choice of . . .
tuning sections... and companion instruments.
three display sections...

two IF sections . . .

85528
High Resolution JF

The Family Features ...

The Țuning Sections ...

$8556 \mathrm{~A}-20 \mathrm{~Hz}$ to 300 kHz

- Absolute Amplitude Accuracy to $\pm 0.6 \mathrm{~dB}$.
- 20 Nanovolt Sensitivity ($-142 \mathrm{dBm} 50 \Omega$).
- High Resolution 10 Hz Bandwidth $<1 \mathrm{~Hz}$ Residual FM (with 8552B).
- Selectable Scan Widths-Preset from 0 or Symmetrical About Center Frequency.
- Built-in 0.01% Crystal Markers for Fsequency Accuracy.
- Tro Frequency Scales Selecrable ($0.30 \mathrm{kHz}, 0.300 \mathrm{kHz}$).
- Fully Isolated High Impedance Input Useful with Compensated. Oscilloscope Probes.
- Built-in Tracking Generator for Swept Frequency Response. Measurements Over 120 dB Range.
- Counter Output for Precision Frequency Measurements.
- Price: $\$ 1.690$.

8553 B — 1 kHz to 110 MHz

- Absolute Amplitude Accuracy to $\pm 0.8 \mathrm{~dB}$.
- Maximum Sensitivity - 140 dBm (10 Hz Bandwidth).
- 10 Hz Resolution to See 60 Hz Sidebands 60 dB Down (with 8552B).
- Scan Widths from 200 Hz to 100 MHz .
- Frequency Accuracy $\pm 10 \mathrm{~Hz}$ with Tracking Generator.
- Two Frequency Scales Selectable ($0-11 \mathrm{MHz}, 0-110 \mathrm{MHz}$).
- Probe Power Provided for Use with High Impedance Active Probes.
- All Distortion Products 70 dB Down with -40 dBm to Mixer.
- Price: $\$ 2,200$.

8554 L - 500 kHz to 1250 MHz

- Absolute Amplitude Accuracy to $\pm 1.6 \mathrm{~dB}$.
- Sensitivity to -117 dBm (300 Hz Bandwidth).
- Residua! FM Less Than 300 Hz .
- Scan Widths from 20 kHz to 1250 MHz .
- Frequency Accuracy $\pm 10 \mathrm{MHz}$.
- All Disrortion Products 65 dB Down with -40 dBm to Mixer.
- Price: $\$ 3,500$.

$8555 \mathrm{~A}-10 \mathrm{MHz}$ to 40 GHz

- Absolure Amplitude Accuracy to $\pm 1.6 \mathrm{~dB}$.
- Direct Coax Input to 18 GHz .
- Maximum Sensitiviry - 125 dBm (Fundamental Mixing, 100 Hz Bandwidth).
- High Resolution 100 Hz Bandwidth (30 Hz First LO Residual FM).
- Full Scans of $2,4,6$, and 8 GHz Free of Unwanted Responses with Preselection.
- Frequency Accuracy $\pm 15 \mathrm{MHz}$ (Fundamental Mixing).
- Price: $\$ 5,975$.

8552B-High Resolution

- 11:1 IF Filter Factor (5 -Stage Crystal Filter).
- 10 Hz Minimum Bandwidth.
- $10 \mathrm{~dB} /$ Div Log, $2 \mathrm{~dB} /$ Div Log, and Linear Displays.
- Video Filter $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz Positions.
- Calibrated Logarithmic and Linear Display Sensitivity Controls.
- Base Line Clipper for Better Viewing of Display.
- Price: \$2,900.

8552A-Economy

- 25:1 IF Filter Factor.
- 50 Hz Minimum Bandwidth.
- Log and Linear Displays (Log is $10 \mathrm{~dB} /$ Div).
- Video Filter 10 kHz and 100 Hz Positions.
- Calibrated Logarithmic and Linear Display Sensitivity Controls.
- Base Line Clipper for Better Viewing of Display.
- Price: \$2,200.

The Display Sections

141T-Variable Persistence

- Variable Persistence for Those High Resolution Slow Scans.
- Storage for Signal Comparison and Study.
- Conventional Standard Persistence Operation Available.
- Internal Graticule to Eliminate Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug-ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Section.
- 8.Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 1,800$.

140T-Standard Persistence

- Standard Persistence P.7 Phosphor.
- Internal Graticule to Eliminate Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug-ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Section.
- 8-Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 950$.

143S-Large Screen

- Large Screen Viewing for Demonstration, Lecrures, Etc.
- Internal Graticule to Eliminate Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug-ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Section.
- 8-Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 1,700$.

Tracking Generators

$100 \mathrm{kHz} \cdot 110 \mathrm{MHz}$

With the 8443, the 8553 B system becomes a:

- SWEPT FREQUENCY RESPONSE MEASUREMENT SYSTEM

Frequency Resolution $<10 \mathrm{~Hz}$
Amplitude Resolution 0.1 dB
Dynamic Range $\quad>120 \mathrm{~dB}$

- SWEEP GENERATOR

Residual FM	$<1 \mathrm{~Hz}$ peak-to-peak
Callbrated Ourput	-120 dBm to +10 dBm
Ourput Flatness	$\pm 0.5 \mathrm{~dB}(8443 \mathrm{~A}$ only' $)$
Frequency Accuracy	10 Hz

- SELECTIVE FREQUENCY COUNTER (8443A ONLY)
Sensitivity $\quad 25 \mathrm{nV}(-140 \mathrm{dBm})$
Selectivity $\quad 10 \mathrm{~Hz}$

Resolution $\quad 10 \mathrm{~Hz}$
With the B444A (use with 8554L or 8555A), the spectrum analyzer system becomes a:

- SWEPT FREQUENCY RESPONSE MEASUREMENT SYSTEM
Frequency Resolution 1 kHz
Amplitude Resolution 0.1 dB
Dynamic Range $\quad>90 \mathrm{~dB}$
- SWEEP GENERATOR

Residual FM	400 Hz peak.co-peak (8554L)
	$200 \mathrm{~Hz}(8555 \mathrm{~A})$
Calibrated output	0 dBm to -10 dBm
Flatness	$\pm .75 \mathrm{~dB}$

Perform precision frequency measurements:

- EXTERNAL COUNTER OUTPLIT
Unknown signals $\quad \pm 10 \mathrm{kHz}$ accuracy

Frequency response $\pm 400 \mathrm{~Hz}$

Automatic Preselectors

8445A
$10 \mathrm{MHz} \cdot 18 \mathrm{GHz}$, Standard $1.8 \mathrm{GHz} \cdot 18 \mathrm{GHz}, \mathrm{Opt} .010$

Price: Standard, $\$ 2,000$; Opt. 010, $\$ 1,400$
8445A
10 MHz . 18 GHz , Opt. 020 1.8 GHz .18 GHz , Opt. 030

Price: Opt. 020, $\$ 2,200$; Opt. 30, $\$ 1,600$

With the 8555A tuning section, the 8445A preselector:

- ELIMINATES ALL UNWANTED RESPONSES.
- IMPROVES DYNAMIC RANGE by Eliminating Harmonic Distortion Producrs.
- IMPROVES ANALYZER INTERMODULATION DIS. TORTION Characreristics for Signals Spaced Down to 50 MHz .
- Prevents Analyzer LO Power from Interfering with Sensitive Circuitry.
- Allows Use of 2, 4, 6, AND 8 GHZ SCANS for Signal Measurement Not Just Observation.
- Completely AUTOMATIC OPERATION Leaves User Free to Concentrate on Measurement Itself.
- DISCONNECTS FROM ANALYZER for Critical Measurements So That Maximum Analyzer Sensitivity and Best Frequency Response Are Available.

High Impedance Probes
For making signal measurements without disturbing circuitry. (See Pages 363 and 140.)

Passive Filters
To improve the performance of the analyzer by eliminating unwanted responses. (See Page 338.)

External Mixer

To extend the frequency range of the analyzer to 40 GHz . Taper sections for $12.4-18 \mathrm{GHz}$ (11518A), 18-26.5 GHz (1I519A) or $26.5-40 \mathrm{GHz}$ (1I520A) bands are required.
Prlce: $\$ 200$ (Mixer only).
$\$ 125$ (Taper sections each).

Dlrectional Bridge
For making return loss measurements from 100 kHz to 110 MHz . (See Page 364.)

Preamplifiers

Improve noise figures of $8553 \mathrm{~B}, 8554 \mathrm{~L}$ and 8555 A by 16 dB and more. (See Page 31.)

Camb Generator

For precision frequency measurements to $.01 \%$ accuracy. Usable up to 5 GHz .
Price: $\$ 675$.

10020A

11517A

8447 Series

- Analyze frequencies down to dc.
- Completely characterize random signals.
- Peform statistical analysis on-line.
- Get accurate results, using digital techniques.

These ace some of the unique characteristics of the Hewlett. Packard line of Digital Signal Analyzers. These instrsments are finding extensive use in situations where low frequency signals (below about 250 kHz) need to be analyzed in detail, on line, at a reasonable cost. The Digiral Signal Analyzers are described on the following pages, 389.394 .

What is DSA?

The signal analyzers described on the preceeding pages are ideally suited to characterizing coherent or relatively noise-free signals. There are certain measurement problems, however, which they cannot solve. "Traditional" instrumencation typically is incapable of:

Analyzing random signals or signals obscured by noise.

Measuring the joint properties of two or more signals.

Computing complex statistical func. tions of a signal.

Analyzing very low frequency signals (below about 20 Hz).
In the past, these problems could be tackled only by a general purpose digizal compurer which was usually off-line and expensive, and required special training to operate. The DSA line offers the advantages of digital computation without these drambacks, at considerably less cost than custom built systems.

Figure 1 shows the basic functional components of a Digital Signal Analyzer. One or more inputs are sampled at regular intervals. Δt. A number of sampled amplitude values are converted to digital form and fed to the memory. The desired function is computed in the arithmetic unit using a series of input samples, and the result is again stored in memory. The contents of the memory can be read out to a display, allowing observation of the results during analysis. The whole opera. tion is overseen by a controller.

Advantages

The use of digital techniques gives these analyzers several advantages over analog instruments. They are able to

analyze very low frequency signals, down to $d c$, with high accuracy and stability. They are also flexible, being able to compure many different statistical functions with a wide variety of averaging times.

Equally important, digital signal analyzers are easy to use. They can be operated without special programming, and they have built-in, calibrated CRT displays for easy interpresation of results. Outputs to X.Y recorders for hard copy are standard, and each analyzer can be easily interfaced to a computer for fusther analysis of data.

These advantages have opened up sev. eral new applications for signal analysis, many of them in felds which are not raditional users of elecrronic instrumen. tation.

Applications

Here are just a few applications in which the benefits of digital signal analysis are particularly significant.
Bearing fault detection: Local vibrations of a beating are detecred using an accelerometes mounted on the bearing housing. The ourput of the accelerometer is fed to a Fourier Analyzer which can identify spectral "signatures" of the vibration signal. Such quantities as roughness, out of round, or lack of centering can modify the signature of a good bear. ing. Interpreting these signatures may require complex manipulation of the spectra; this is greatly simplified by use of the Fourier Analyzer's computer.

Certain localized faults, such as cracks or pirs in the bearing surface, emit "clicks" each time they pass the point of contact. These are best detected by time averaging, which separates vibrations which are synchronous with shaft rota-
tion from those which are not. This averaging can be periormed best by the s480S Signal Analyzer which is a special purpose signal averager. The user therefore has a choice between the low cost unit for this specific operation, of the general purpose Fouries Analyzer, which can perform more complex analysis in addition to signal averaging.

Study of aerodynamic turbulence: Researchers in this area are very familiar with the advantages of statistical analysis for extracting information from low frequency random signals. In particular, the cross-correlation function between the ourputs of two transducers down stream from a model in a wind tunnel can measure the way in which turbulence decays as it progresses down the stream. Model 3721 A Correlator can measure this correlation function much more rapidly and conveniently than an off-line computer.
Measurement of dynamic system response: New techniques of testing such systems as aircraft servos. process conrol systems, and voice communication channels involve the use of noise as a rest signal. The advantages of noise are thar it contains all frequencies in the band of incerest, and it simulates the kind of signals which perturb these systems during normal operation. Measurement of the cross-correlation, transfer, and coherence functions between the noise inpur and the output of these sysrems can characterize them very sapidly tven during normal operation, in the presence of other signals.
There are many other areas in which DSA is proving a useful measurement tool. Further information is available in the form of application notes for each instrument in the line.

Application areas:
 - Vibrations
 - Underaiater sound
 - Communications
 - Biomedicine
 - Many others

Features:

- DC to 25 kHz frequency range
- 80 dB dynamic range
- Real time analysis-three speeds to choose from
- Relocatable software
- Keyboard control-no sofrware knowledge needed

Description

The S4SIA Fourier Analyzer can provide the complete ansner to low frequency signal analysis problems. The latest in a highly successful line of Fourier analyzers, the $3451 A$ employs powerful mathe. matical techniques such as the Fourier Transform and statistical averaging to obtain information from even the most obscure, noisy signals. Completely digital operation assures maximum accuracy with system Aexibility. Real time analysis is a standard feature. The optional 5470A Fast Fourier Processor and 5471A FFI Arithmetic Unit give the system three processing speeds. A controlling, measurement oriented keyboard controls all operations. Complete measure. ment routines are available at the touch of a bution. Incoming signals and results of all computations are displayed on the inte. grated CRT and display plug-ín. The dual chanel analog-to-digital converter completes the system and provides simultaneous sampling

of two or more sigoals for calculation of transfer and coherence functions, cross correlation, etc.

For complete information on pricing, options and technical performance consulc your local Hewletr-Packard sales office.

System prices start at about $\$ 35,000$.

5471A Arithmetic Unit Low cost, hardwired fourler transform arithmetic unit

Features

- Fourier Transform (1024 point) in 160 mosec
- Low cost
- 4 to 2048 point unansforms
- In place averaging

Description

The s471A Fast Fourier Transform Arithmetic Unit acts as an expanded EAU to increase processing speeds of the 5451A by a factor of six. In addicion, this arithmetic unit may be plugged into any HP 2100 Series Computer to give hardwired Fourier Trans. form capability. The 5471A is supplied with an Assembly or Forran callable driver for stand alone use and is integrated into the 5451 A software for system use, In addition to Fourier transforms of 4 to 2048 points, the 5471A performs block multiplication, addition, conjugate multiplication, scaling and HANNING. Double precision is selectable on some operations.
Price: \$4500.

- with 2100A

5470A Fast Fourier Processor
 High speed signal analysis at an attractive cost

Features:

- Fourier Transform (1024 poines) in 15.2 msec
- Internal 4K memory, 8K optional
- Parallel processing with host computer
- Two may be paralleled for super last processing

Description

The 3470 A Fast Fourier Processor is a high speed processor designed to increase processing speeds of a 5451A System or any HP 2100 Series Computer. Its internal memory allows parallel processing with the host computer. Operations include 64 to 2048 point Fourier transforms (4096 optional), block multiplication. addition, conjugate multiplication, block scaling and HANNING. Double precision is selectable on some operations. The 5470A interfaces through two I/O slots and may be used with any HewlettPackard computer with its Assembly or Fortran callable driver. Prices start at $\$ 25,000$.

SIGNAL ANALYZERS

5480 S Signal Analyzer
Signal averaging provides an unparalleled method of recovering a signal buried in background noise. Featuring true and weighted averaging, real time variance, and the ability to measure correlation functions and histograms, the 5480 S brings a new dimension to the analysis of noisy signals.

True averaging: Display always represents true average calibrated in volts per centimeter: the display does not "grow" as in conventional summation but remains stable as the noise disappears.

Fllcker \{res: Continuous display for all sweep speeds allows viewing the accumulated data while acquisition takes place.

Variance: The statistical variance is a measure of the variability of a signal. The s480S gives you, point by point, real time variance which allows you to spot variations in your signal or tells you exactly when the display represents the true a verage.

Weighted avaraging: A time varying signal may be observed in this mode which exponentially de-emphasizes old information in favor of new.

Multiple inputs, correlation: The 5485A Two Channel Input and the 5487A Four Channel Inpur plug.ins offer multiple channel capability. The 5488A Correlation/Average Input permits auto and cross-correlation of signals as well as two input channels for averaging.

Input fittering: Each 5480S System includes the 5489A Two Channel Input Filter; in addition to removing high frequency noise to reduce averaging time, the X 10 gain provided by the 5489A increases resolution (page 393).

Histograms: The 5480 S provides frequency and time interval histograms, and multichannel sealing. This capability can be extended with the H15.5326B, to include trend analysis, such as post stimulus histograms and dreell and latency histograms.

H15-5326B Counter; A modified 5326B (catalog page 222). this unit can set precise threshold levels for dwell and latency histograms, and provides a gated outpur for time interval trend analysis.

5494A Digital Output Control

The 5494 A interfaces the 5480 S to a HP 5050 B or 5055 A Digital Recorder. for print-out. The S494A converts binary data from the analyzer into Binary Coded Decimal ($B C D$). and controls "handshaking" between the instruments. Any number of points may be selected for output, the amplitude (in cm) of each selected point being printed together with the point's address for identification.
The 5494 A output is also compatible with the BCD input card of the $2570 \mathrm{~A} / 2575 \mathrm{~A}$ couplers. Through the coupler, data can be transferred directly to. for example, a desk top calculator, (Model $9100 \mathrm{~A} / \mathrm{B}$). for on-line data manipulation.

5481A Signal Analyzer System

Combining the 5480 S with the HP 2100A Digital Computer, the 5481A Signal Analyzer System permits extensive on-line analysis of gathered data. Fourier transforms, power spectra, curve integration, smoothing, and differentiation, and many other data manipulating functions are possible. Or the 5481 A System may be used for automating your other instrumentation providing you with multiplexed analog to digital conversion, display outpur on built-in 5480 oscilloscope, a 1000 word buffer memory, and controlling software.

Prices

All 54805 Signal Analyzer Systems include the 1024 word, 24 bit Memory/Display mainicame, the 5486 B Control Plug.in, and the 5489 A Two Channel Low.Pass Filter/Amplifier: the digitizing plug-in is chosen by oprion.

5480S Signal Analyzer	$\$ 9950$
Opt 01 5485A Tro Channel Input	N.C.
Opt 02 5487A Four Channel Inpur	$+\$ 375$
Opt 03 5488A Correlation/Average Input	$+\$ 475$
5489A Low Pass Filter	$\$ 425$
5494A Digital Output Control	$\$ 1750$

The basic S481A Signal Analyzer System includes the 5480S, the 2100A Digital Computer, the 2752A Teleprinter, and the 10625A Interface with complete software.

5481A Signal Analyzer System

\$26,200
Complete specifications available on the 5480B Technical Data Sheet. Consult ordering information guide for pricing details. SIGNAL ANALYZERS

3721A Correlator

The Model 3721A Correlator is a digital staristical signal analyzer covering the range dc to 250 kHz . It computes autocorrelation, crosscorrelation, and amplitude probability functions. In addition, a signal recovery facility uses signal averaging to improve the signal-to-noise ratio of a repetitive signal buried in noise. The resultant functions are displayed on a built-in CRT.

The versatile analysis and averaging capabilities combined with portability, automatic calibration, built-in CRT and real-time operation make the 3721A an ideal analyzer for both laboratory and field use.

Major Specifications

Input signal bandwidth: de to 250 kHz .
Input range: $\mathbf{4 0} \mathrm{mV}$ rms to 4 V rms.
Functions: Autocorrelation. Crosscorrelation, Probability (Density and Integral), Signal Recovery.
Number of points: 100 points computed and displayed for each function.
Sampling interval: 1 s to $\mathrm{I} \mu \mathrm{s}$ (1 Hz to 1 MHz sampling rates). External clock facility allow's any interval $\geq 1 \mu$ s to be selected. In Correlation and Signal Recovery the time between displayed points is equal to the sampling interval.
Averaging: two modes are provided:
Summation: computation automatically stopped after a fixed number of samples has been taken. Nurber of samples selectable from 128 to 128×1024.
Exponential: continuous averaging with time constant selectable from 36 ms to over 10° seconds.
Calibration: vertical calibration is automatically displayed on an illuminated panel (except Probability).
Outputs:
All computed functions are displayed on the built in CRT.
Analog outputs are provided for use with an $\mathrm{X} \cdot \mathrm{Y}$ recorder and external oscilioscope.
Digital outputs allow the transfer of computed data to any hp digital computer or hp paper tape punch (2753A, 2895A or 8100). Extra plug-in assemblies are required, rype depending on the peripheral used.
Price: Model 3721A $\$ 7,600$.

3720A Spectrum Display

The 3720A Spectrum Display is an unique add-on unit for the Correlator, to complement and extend its capability by Fourier transforming any time display on the 3721 A and presenting its equivalent frequency function on a built-in display.

The 3720A performs the Real and/or Complex transformation of autocorrelation and crosscorrelation functions to produce the Power and Cross Spectral Density functions respectively, and converts signal recovered data into frequency information.

Together the 3721A Correlator and 3720A Spectrum Display, each with its own CRT display, form an analysis system giving both time and frequency information simultaneously.

Major Specifications

Input data: digital data is transferred from the Correlaror and held in either of two stores, labelled 1 and 2.
Computed transforms: either the Real or Complex rransform can be computed of the contents of the store 1 , the contents of store 2 , or the contents of stores 1 and 2 togerher.
Frequency range: 0.005 Hz to 250 kHz using internal 3721 A clock. Extendable down to de with external clock.
Displayed frequency range: rwo decades of frequency ate displayed, the highest frequency being $1 / 2 \Delta t \mathrm{~Hz}$ (Δt is the 3721A Timescale setting).
Dynamic range: ratio of full scale signal to noise level, for fixed integrator gain, is better than 50 dB . Vatiable over a 40 dB range by integrator gain control.
Integrator gain: continuously variable over a 2 decade range in seven discrete steps, with intermediate vernier.
Windows: two choices are available:
OFF-natural window, nominal bandwidth $1 / 200 \Delta t$.
ON-triangular window, nominal bandiwdth $1 / 100 \Delta t$.
Interpolation: two modes available:
MANUAL-computes and displays 100 frequency points. Frequencies of all 100 points can be simultaneously and equally varied over a frequency incerval, $1 / 200 \Delta t$.
AUTO-automates the manual interpolation, calculating 10 equispaced points across each frequency interval.
Transform presentation: all combinations of the following axes are available for display.
Vertical axis-Phase, Log Mod, Modulus. Imaginary, Real. Horizontal axis-Frequency, Log Freq, Real, Phase.
CRT display: built-in variable persistence CRT with storage facilisy.
X-Y recorder: separate horizontal and vertical analog outputs corresponding to the CRT display.
Price: to be announced.

3722A
The Model 3722A Noise Generator uses digital techniques to synthesize binary and Gaussian noise patterns. These 'pseudo-random' pattems, which are of known content and duration, are repeated over and over without interruption. Since one pattern is identical with the next, each pattern has the same effect on the system under rest: for this reason, pseudo-random noise signals cause no staristical variance in test results. The Model 3722A also generates truly random binary and Gaussian noise.

The basis of the Model 3722A is a binary waveform gen-erator-a shift register which operates under the control of either a feedback mechanism (pseudo-random mode) or a random noise source (random mode). The shift register is clock triggered, with the result that transitions between output levels of the binary waveform can occur only in time with beats of the clock-although whether or not a transition occurs on a given beat is determined by the feedback mechanism or random noise source. The binary outpur has a ($\sin x / x)^{2}$ shaped spectrum and the Gaussiantoutput, which is derived from the binary signal by precision low-pass filtering, has an almost rectangular spectrum. Both binary and Gaussian outputs are controllable in bandwidth, but the output power remains constant regardless of selected bandwidth -a particularly useful feature, of importance in applications where usable noise power must be made available in a very eestricted frequency band. The frequency of the first null in the binary spectrum is selectable from 0.003 Hz to 1 MHz , and the bandwidth (at -3 dB point) of the Gaussian noise is selectable from 0.00015 Hz to 50 kHz .

Outpurs from the Model 3722A are available at fixed amplitades of $\pm 10 \mathrm{~V}$ (binary) and 3.16 V mss (Gaussian), and a precision amplitude control provides a variable output of either signal ranging from 0.1 V tms up to the level of the fixed outputs.

Specifications
Binary output (fixed amplitude)
Amplitude: $\pm 10 \mathrm{~V}$.
Output impedance: <10n.
Load Impedance: 1 kr minimum.
RIse time: <100 ns.
Power density: approximately equal to (clock period x 200) $\mathrm{V}^{2} / \mathrm{Hz}$ at low frequency end of spectrum.
Power spectrum: $(\sin x / x)^{2}$ form: first null occurs at clock frequency, and - -3 dB point occurs at $0.45 \times$ clock frequency.

Gausslan output (flxed amplitude)

Amplitude: 3.16 V ims.
Output impedance: $<1 \Omega$.
Load impedance: 600n minimum.
Zero drift: <s mV change in zero level in any $10^{\circ} \mathrm{C}$ range from $0^{\circ} 10+55^{\circ} \mathrm{C}$.
Power density: approximately equal to (clock period $\times 200$) $\mathrm{V}=/ \mathrm{Hz}$ at low frequency end of specirum.
Power spectrum: rectangular, low-pass: nominal upper frequency f_{0} (-3 dB point) equal to $1 / 20$ th of clock frequency. Spectrum is flat within $\pm 0.3 \mathrm{~dB}$ up to $1 / 2 \mathrm{f}_{0}$, and more than 25 dB down at $2 f_{0}$.
Crest factor: up to 3.75, dependent on sequence length.
Variable output (Binary or Gaussian)
Amplitude (open clrcuit)
Binary: 4 ranges: $\pm 1 \mathrm{~V}, \pm 3 \mathrm{~V}, \pm 3.16 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$, with ten steps in each range, from $\times 0.1$ to $\times 1.0$.
Gaussian: 3 ranges: 1 V rms, 3 V rms and 3.16 V rms, with ten steps in each range, from $\times 0.1$ to $\times 1.0$,
Output impedance: $600 \Omega \pm 1 \%$.

Maln controls

Sequence length switch: furst H_{7} positions select different pseudo-random sequence lengets: final position selects random mode of operation (INFINITE sequence length). Se. quence length (N) is number of clock periods in sequence: possible values of N are 15, 31, 63, 227, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575.
$\mathrm{N}=2^{\mathrm{n}}-1$, where n is the range 4 through 20 .
Clock period switch: selects 18 frequencies from intermal clock:

Clock perlod	Clack frequaney	Oaumian nolse bandwldth
333 s	0.003 Hz	0.00015 Hz
100 s	0.01 Hz	0.0005 Hz
33.3 s	0.03 Hz	0.0015 Hz
10 s	0.1 Hz	0.005 Hz
$3.33 \mu \mathrm{~s}$	$30 \mathrm{~Hz}_{\mathrm{KHz}}$	15 kHz
$1 \mu \mathrm{~s}$	1 MHz	50 kHz

Internal clock
Crystal frequency: 3 MHz nominal.
Frequency stability: < ± 25 ppm over ambient remperature range 0° to $+55^{\circ} \mathrm{C}$.
Outputt +12.5 V rectangular wave, period as selected by CLOCK PERIOD switch.

External clock

Input frequency: usable BINARY output (pseudo-random on1y) with external clock frequencies up to 1 MHz .
Input level: negative-going signal from +5 V to +3 V initiates clock pulse.
Maximum input: $\pm 20 \mathrm{~V}$.

Secondary outputs

Sync: negarive-going pulse (+12 V to +1.5 V) occurring once per pseudorandom sequence; duration of pulse equal to selected clock period.
Gate: gate signal indicates start and completion of selected number of pseudo-random sequences ($1,2,4$ or 8 , selected by front panel control). Two outputs are provided:

1. Logic signal: output normally +12.5 V , falls to +1 V at start of gate interval and returns to +12.5 V at end of interval.
2. Relay changeover contacts: gate relay switching is synchronous with logic signal.
Binary relay; relay changeover contacts operate in sync with binary output signal.

Remote control

Contral inputs: remote control inputs for RUN, HOLD, RE. SET and GATE RESET functions are connected to 36 -way receptacle on rear panel.
Sequence length indication: 18 pins plus one common pin on the 36 -way receptacle are used for remote signalling of selected sequence length (contact closure between common pin and any one of the 18 pins).

General

Dimensions: $163 / 4$ in, wide, $57 / 32$ in, high, $163 / 8$ in. deep $(425 \times 132.6 \times 416 \mathrm{~mm})$.
Weight: net $23 \mathrm{lbs}(10,5 \mathrm{~kg})$; shipping, $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Price: Mode! 3722A, \$2,755.

Option 001

Zero moment optlon: shifts relative position of sync pulse and pseudo-random binary sequence such that Grst time moment of sequence, taken with respect to sync pulse, is zero (sequence shift mechanism is operative only when selected sequence length is ≤ 1023): option 001 also provides facility for inverting binary output signal. ADD $\$ 58$.

Model 3722A Option HO1

Model 3722A Option HO1 is a standard Model 3722A Noise Generator modified to provide a second binary output which can be delayed by a selectable number of clock periods with respect to the main binary output. The delayed binary output is available only when the instrument is in the pseudo-random mode, that is, generating repeated noise patterns.

The delay introduced between the two binary outputs is selected by three decade switches on the front panel. These switches, which are set according to a conversion table supplied with the instrument, provide almost all possible delays ranging from zero to the number of bits (N) in the sequence in use.

Specisications

Delayed binary output

Typical performance figures for the delayed output are:
Amplitude: switches berween +1.5 V and +12 V .
Maximum sink current at 1.5 V level: 10 mA .
Rise time: $<50 \mathrm{~ns}$.
Fall time: <20 ns.
Prlce: Model 3722A Option H01, $\$ 3,015$.

The model 5489 A is a high quality two channel filter of remarkably small size and low cost. It is intended for general purpose use, and is recommended for use with all the analyzers described in this section of the catalog.

Variable bandwidth and gain

The 5489A has a low pass Butterworth response, having an attenuation slope of 12 dB /octave above the cut-off frequency. The bandwidth of each channel is selectable from DC-1 Hz to $\mathrm{DC}-30 \mathrm{KHz}$ in 10 steps. In addition, the gain of each channel may be set to either X1 or X10, allowing simultaneous amplification and filtering. Both channels may be cascaded to increase the gain to X100 and steepen the attenuation slope to 24 dB /octave.

Specifications
 Genera:

Cutoff Frequency (3 dB attenuation): 1 Hz to $30,000 \mathrm{~Hz}$. Selectable in 1, 3, 10 steps and OUT (by-pass). Frequency accuracy $\pm 10 \%$ except $30,000 \mathrm{~Hz}$ setting.
Maximum Attenuation: 80 dB .
Passband Galn: X1 (0 dB) $\pm 1 \%$ or $\mathrm{X} 10(20 \mathrm{~dB}) \pm 3 \%$.
Nolse and Hum (Referred to inpur, with 1 Ks source impedance) : $100 \mu \mathrm{~V}$ rms in 50 kHz band. $250 \mu \mathrm{~V}$ cms in 500 kHz band.
DC Ottset Drift (Referred to inpur with $1 \mathrm{~K} \Omega$ source impedance) : $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Input:
Range: ± 10 Volt P-P on X1 gain, ± 1 Voir P-P on X10 gain.
Protection: Protected to ± 30 Volts.
impedance: I megohm shunted by 75 pF . Single-ended.

Output:

Level: ± 10 Volts, maximum, at $\pm 5 \mathrm{~mA}, \mathrm{DC}$ through 10 kHz . Slew Rate: $0.6 \mathrm{~V} / \mu \mathrm{s}$, maximum.
Protection: May be shorted to ground indefinitely.
Overload Recovery: 50μ for 100% overioad.
Output impedance: 50 ohms, nominal, single-ended.

Physical:

Environmental: Operating Range, 0 to $55^{\circ} \mathrm{C}$.
Power: $115 / 230 \mathrm{~V} \mathrm{ac}, 50.400 \mathrm{~Hz}, 10$ Watts.
Weight: Net $2 \mathrm{lbs}, 4$ oz. ($1, \mathrm{~L} \mathrm{~kg}$).
Slze: $11 / 2^{\prime \prime}$ high $\times 51 / 8^{\prime \prime}$ wide $\times 6^{\prime \prime}$ long ($3.8 \times 1.3 \times 15.2 \mathrm{~cm}$).
Price: 5489 A

The 8064A Real Time Audio Spectrum Analyzer measures low frequency (under 50 kHz) phenomena continuously as they occur: real-time.

In a real-time measurement, data must be presented in usable form at essentially the same time the event occurs, and the delay in presenting the data must be smail enough to allow a correctuve action to be taken if required. An ad. vantage of measucing in real time is that the effects of external adjustments or changes in measurement parameter can be seen immediately and acted upon if necessary. Measurements that previously took many hours to complete can now be performed in a few seconds with the HewlettPackard 8064A.
Electrical signals from a suitable transducer or other source are inpur to the analyzer where they are fed wia a preamplifier to a parailel bank of active filters. These filters divide the spectrum into 24 channels each one-third octave wide. Up to 12 additional channels are available in the 8065A Real Time Analyzer Module giving a totai of 36 parallel channels. These filter channels can be chosen within the frequency band of 2 Hz to 40 kHz . Each filter feeds an RMS detector which provides a choice of two time constants within 50 ms to 10 sec range to suit the kind of measurement to be made. The intensities at the detector outputs are sampled in turn, converted into signals which are displayed altogether on a CRT. The signals displayed can be read directly in dB with the aid of a scaling bas projected on the CRT screen. The scaling bar shifts as the user shifts the 60 dB display within the total 140 dB measurement range. An
overload light flashes to warn of signals that overload the preamplifier or the filter inputs.
In addition to providing a choice of time-constants, there is a storage facility behind the detectors so that the dispiay can be held a any instant, or indicate the maximum value obtained during a series of measurements. The level of any desired channel can be displayed digitally, with a resolution of 0.1 dB while the selected channel will be intensified on the CRT. The CRT display also can be recorded on an X.Y recorder. The analyzer can be operated as a self-contained instrument or as a part of a data acquisition recording or processing system. For system operation the following facilities are provided: a) Two digital outputs with scanning rate of 1 ms per channel (independent of the CRT display). This scan can be controlled by computer or other remote device. The digital outputs comprise channel identification and indication of overioad and overrange or underrange, and whether there is a pre-weighting network switched in. Thus, it is possible to operate two separate peripherais at the same time, e.g. computer and digital printer or other digital peripheral. It is possible to operate a tape punch ria intefface card which can be plugged into the 8064A. b) Remote control of range, time constants, display mode and scanning mode by computer or other programming device.

Applications

The 8064A's broad application areas are mainly measurement sounds that affect the human ear in some way. Channels with a one.third octave bandwidth have been shown through scientific research to be optimum for this kind of measurement: a finer resolution does not yield any additional useful data. These broad application areas involve:

1) Product noise control. Evaluation and qualiry control of noisy products, for example, tire noise analysis or diesel engine production control.
b) Noise abatement. Questions like how' to build a quieter building or how to make a quieter car.
c) Acoustic research, for example, in anechoic chambers.

Supplementary equipment

The following output devices can be connected directly to the HP 8064A:
5055A Digital Printer
7035B X.Y Recorder
1300A X.Y Display
680 M Strip Chart Recorder
8100A Tape Punch + 15197A Interface
15189A Computer Interface Kit for 2100 series computer, allow's computer controlled data acquisition and remote programming of the 8064 A .

The Hewlett-Packard 80500A Aircraft Noise Monitoring System monitors sound at a number of locations (terminals) in or around an airport. The sound levels detected at the various noise monitoring terminals are transmitted to a central processing unit which stores sound level data, makes audible and visible signals in response to "excessive" noise levels, provides immediate printed violation reports and prints statistical data either periodically or on request.

In the event of a noise level violation, the immediate availability of data enables authorities to identify the offending aircraft while still in the vicinity of the airport. Thus corrective action such as instructing the pilot to alter his flight route or scheduling an inspection of the aircraft can be initiated at the time of violation.

The 80500A Aircraft Noise Monitoring System, in addition to detecting excessively noisy aircraft, provides a record of noise events which is essential in airport noise abatement studies.

Measurements originating from each terminal are processed in the computer. Flexible software enables the sound level to be averaged on an energy basis over short or long periods of time. Weighting factors which take the time of day or night into consideration can easily be included. Other methods of evaluation based on the dB (A) of $\mathrm{dB}(\mathrm{D})$ sound level data are possible: Noise Number Index, Communiry Noise Exposure Level, Total Noise Exposure Level, ctc.

Under control of a standard Hewlett-Packard program the system constantly monitors sound levels in the range of 70 to 120 dB (A). Events exceeding 80 dB are reported on a teleprinter, and if the sound level at one of the monitoring terminals exceeds a limit (ser individually by the operator for each terminal), the system gives a visual and audible alarm.

The system consists of the following two basic sub-systems: a central processing unit (CPU) and a noise monitoring terminal (NMT). The CPU consists of: A computer for real time data acquisition and off-line compilation of statistics.

A data acquisition sub-system to scan telephone lines under computer control and to convert frequency modulated signals from NMT's into digital data for further processing.

An analog recording sub-system (optional) to record sound level of manually selected NMT's on a strip chart recorder.

A tape reader for program loading and data input.
A tape punch for data storage.
Teleprinters for printed reports and ryping in program parameters.

The noise monitoring terminals (four of them may be enough for a small airport, 24 may be appropriate for a larger airport) consists basically of:

An outdoor microphone to convert sound pressure into analog signal.

A sound level detector that provides a linear volts per decibel signal.

An analog-to-frequency converter to provide signals that can be sent to the CPU via telephone lines.

Miscellaneous-power supply, telephone line matching transformer. control unit for remote calibrating and testing.

The whole system, even the ourdoor microphones, meets the requirement of ICAO recommendations $1 / 2,1 / 3$, and $1 / 4$ as well as IEC recommendation 179.

For complete system information or a quotation on an 80500A Aircraft Noise Monitoring System designed to meet the special requirements at your airport, call your local Hewlett-Packard field engineer, System prices rary with the number of Noise Monitoring Terminals, optional instrumentation, and computer peripheral equipment options.

Model 8057a Precision Noise Generator

The Hewlett-Packard 8057A Precision Noise Generator is an audio frequency noise generator producing pseudorandom signals, avajlable at binary and Gaussian distribution outputs. These signals are repeated noise patterns of known content and duration. Boch white and pink noise with an equal rms value can be selected by pushbuttons. By producing a defined ums value, the high stability of the output level allows the use of a directly calibrated attenuator with $0.1 d B$ resolution. This makes the 8057d a highly accurate noise source. The frequency spectrum goes from dc to 26 kHz . White and pink noise is pushbutton selectable as well as output impedance $50 n$ or 600 .

8056A Filter Set

The HP Model 8056A Filter Set comprises twenty-four $1 / 3$ octave wide filters with center frequencies in the range 2 Hz to 40 kHz (the standard version covers the range from 50 Hz to 10 kHz). Octave filters and broadband weighting networks A, B, C, D are available on special order. The unit has front panel controls for continuously adjustable spectrum shaping of $\pm 20 \mathrm{~dB}$ in each channel. Parallel and summing outputs are built in.

Transducers, Accessories

High quality pick-ups for sound and vibration
Model $15119 \mathrm{C} 1 / 2$-inch Condenser Microphone, consisting of cartridge, preamplifier, and 10 -foot cable is the stan-
dard rool for making acoustical measurements. The 15119D $1 / 2$-inch Condenser Microphone offers high precision measurements with closer tolerances than with the 15119 C . Both versions have a smooch, slender, cylindrical construction to ensure a virtually negligible disturbance of the sound field by the microphone itself.

Hewlett-Packard also offers a 1 -inch Condenser Microphone Model 151098 for measuring extremely low sound levels. The 15109 B is 10 dB more sensitive than the $1 / 2$-inch microphones.

15118A and 15108A Preamplifiers

The 15118A and 15108A preamplifiers are microphone assemblies without cartridge. The built-in preamplifiers are all solid state with source-follower FET input stages: input impedance greater than $1000 \mathrm{M} \Omega$ in parallel with 2 pF . With essentially unity gain, the preamplifiers make excellent impedance converters for vibration pick-ups (accelerometers).

15114A Microphone Power Supply

The 15114A Power Supply permits the use of HewlettPackard Microphone Assemblies and Preamplifiers with instruments which do not provide the necessary voluge or connector. The 15114 A can be operated for at least eight hours from four standard 1.5 volt cells.

15127A Cable Amplifler

The 15127A Cable Amplifier permits Hewlett-Packard Microphones and Preamplifers to be operated at a distance of up to 330 feet (100 meters). The unity gain may be changed to 10 dB by a simple wiring change.

15117A Sound Level Callbrator

The 15117 A is a precision acoustic signal source foc field calibration of acoustic instrumentation which uses HewlettPackard 1 -inch or $1 / 2$-inch microphones. The calibrator produces a 1 kHz sound at sound levels selectable between 94 dB and 124 dB , as weil as a 1 V ms , 1 kHz electrical sine. wave signal.

Direct calibration of sound-measuring equipment withour using a microphone is also possible with the 15117 A , since the 1000 Hz electrical signal is available from a telephone jack in the side of the instrument. This source provides 1 rolt rms (120 dB above $1 \mu \mathrm{~V}$) into an open circuit, with an accuracy of $\pm 0.1 \mathrm{~dB}$, independent of the acoustic signal level setting.

H51-180A Oscilloscope with 54318 Display Plug-in

5422B Digital Processor

5416日 Analog.to Digital Converter in 5410A Power Supply/Interiace

5401B Multichannel Analyzer

- Performs Pulse Height Analysis, Sampled Voltage Analysis, and Multichannel Scaling.
- 8192 Channel Analog-to-Digital Converter, 200 MHz Clock
- ADC has precision upper and iower discriminators, de input offset capability, base line monitor, coincidence and anticoincidence gating, dead time and count rate meter, various output channel and digital offset ranges.
- Standard memory sizes of 1024,4096 , and 8192 channels available.
- $10 \mathrm{MHz} \mathrm{U}_{\mathrm{P}} / \mathrm{U}_{\mathrm{P}}$ and $\mathrm{U}_{\mathrm{p}} /$ Down Multichannel Scaling.
- Interfaces to Various Peripherals, including Parallel Printer, Teletype, Tape Punch, Tape Reader, Incremental Magnetic Tape, HP 9100A/B Calculator, 2575A Coupler/Controller, HP 2100 Computers.
- s586A Spectrum Stabilizer available to compensate for gain and baseline drifts.
- Application Note 138 available which describes applications of Mulrichannel Analyzers.

Other nuclear products

5586A Spectrum Stabilizer-to compensate for gain and baseline drifts of nuclear systems. Application Note 139 describes how the spectrum stabilizer is used. Price: $\$ 2400$.

5554A Preamplifler-charge-sensitive preamplifer with selectable sensitivity and voltage gain, is combination preamp and amplifier. Price: $\$ 360$.
5580B NIM Power Supply-mprovides the output voltages required by the AEC-NBS Standards (TID-20893). Price: $\$ 1150$.
5582A Linear Amplifier-amplifier with variable pulse shaping capability and suitable for scintillation and gas-flow nuclear derectors, NIM unit. Price: \$750.
5583A SIngle Channel Analyzer-operates in Single Channel Analyzer Mode or Dual Integral Mode, NIM unit. Price: $\$ 650$.
5584A Dual Timing Pickoff-has two independent channels which produce timing pulses based on leading edge or zero crossing of inpur pulses. Price: $\$ 900$.
5585A Fast Coincidence Module-accepts up to four input signals, three inputs are for coincidence sigrals, one for anti. coincidence, NIM unit. Price: $\$ 900$.
5590A Scaler-Tlmer Module-contains two separate registers for scaling and timing, has six digiral readout tubes, NIM unit. Price: \$1875.
5201L Scaler-Timer-combines a single channel analyzer with a preset pulse counter, 19 -inch rack-mouatable unit. Price: $\$ 2095$.
For complere data sheers, prices, etc., please consult your local Hewletr-Packard office.

SIGNAL ANALYZERS

NUCLEAR ANALYZER SYSTEMS
Calculator and Computer-Controlled Models 5402A, 5403A, 5406B

5402A MCA/BASIC System

A Multichannel Analyzer (MCA) System with control and data reduction by 8 K 16-bit HP 2100A Compurer. Operates in Hewlen-Packard's BaSIC, a computer language that's powerful yer very easy to learn. The versatile general purpose computer can be used alone for other tasks too.

Programmable oprations
Erase, Accumulare, Display, Parallel Output, Serial Output, Serial Inpur, Transfer (Region A to Region B), Start, Stop, MCA/Computer Data Transfer, MCA Status Check, Computer Paper Tape Input/Output, Teleprinter Input/Output, Computer Magnetic Tape Input/Output.
This system is ideal for the investigator who has a unique dara reduction job to do and who wishes to have the computer system output formatted reports, without requiring the services of a professional programmer. Hewletr-Packard provides a starter set of BASIC-language applications programs, including peak analysis. radioassay, spectum smoothing, peak search, specrum stripping. log conversion.

5403A MCA/Calculator System

Performs computer-type functions withour computer-type costs. Automates data accumulation and reduction with programs you can learn to write is an afterboon (or use ours). The Multichannel Analyzer (MCA) and highly versatile Hew. lett-Packard calculator can be used independently. Includes 3401 B MCA, 2575A Coupler/Controller, 9100A Calcularor (9100B optional), 10622A Interface.

5406B Nuclear Analyzer System

- Computer-Based Nuclear System
- Single Parameter, Multiplex Single Parameter, and Multiparameter Analyzer
- Multiparameter Analyzer Operations Include Digital Gating. List (Address) Recording with Magnetic Tape, and De-layed-Time Totalizing
- Analog-to-Digital Converter and Display Subsystem Conned Directly to 2100A Computer
- DMI, DMA, and Program Conkrol ADC-to-Memory Data Transfer Modes
- Up to 32,00016 -Bit Words of Memory Available in 2100 A Computer
- Data Channel Size Can Be 16, 20, 24, or 32 Bits
- Wide Range of Peripheral Devices
- Complerc Operating System
- Execulive Software that Controls: Analyzer Functions Programmed Automatic Operations Foreground, Background, and Interrupt Operations Data Reduction
- Modular Harduare and Softrare Design
- Data display in shce isometric, and contour modes
- Single Parameter Peak Analysis, Spectrom Stripping, Back. ground Subtraction, Spectrum Smoothing, and Two Param. eter Peak Analysis Subroutines Available rith the Srandard 5406B 5ystem
- Extremely Easy to Incorporate User-Written Subroutines into 5.406 B
For complete data sheers, prices, etc., please consult your local Hewlett-Packard office.

MINICOMPUTER
 General-purpose digital computer Model 2100A

COMPUTERS \& PERIPHERALS

The Thoroughly Modeyn Mini
The Hewlett-Packard 2100 A is a general-purpose digiral computer designed for a wide range of small computer applications.
Features built into the 2100 A include extended arithmetic instructions, power fail interrupt with automatic restart, memory parity check with interrupt and memory protect. Besides the standard built-in features, dual-channel Direct Memory Access (DMA) and Floating Point Hardware is also available. Linder DMA control, data can be transferred to or from com. puter memory at rates greater than one million 16 bit words per second. Floating Point Hardware provides a typical cenfold speed increase for scientific, compute bound algorithms.
A minimum 2100A provides 4096 words of core memory, self-contained power supply and 14 input/output channels.

You can select a wide range of memory sizes up to 32 K words, all in mainframe. By including an HP 2155A Extender, you add another 31 input/output channels and power supply.
The 2100 A automatically inherits a comprehensive range of proven software packages, including assemblers, compilers, operating systems and subroutines, A complete line of standard computer peripherals and I/O interface kits are also available, permitting complete systems to be tailored around the 2100A. Added to these capabilities, you can also depend on the Hew. lett-Packard reputation for high quality and worldwide cuscomer support. The resule is a cosi-effective computer that can meet your data processing problems roday and continue meeting them as your needs expand.

Memory

Type: folded planar core.
Word size: 16 bit with 17th parity bit.
Page size: 102 f words.
Direct addressing: 2 pages.
Indirect addressing: all pages.
Modular sizes: 4 K and 8 K word memory modules provide 4.
8. 12, 16, 24 and 32 K configurations all in the 2100 A main-
frame without additional power supply or cabinerry.
Cycie time: 980 nsec.
Loader protection: switch prorects last 6 th words.
Registers
Accumulators: two (A and B). 16 bits each. Directly addressable.
Memory control: three (T, P, M), 16 bits each.
Supplementary: two (Overflow and Extend), one bit each.
Manual data: one 16. bit switch register.

Floating Point Hardware Execution Times (Optional)

	Minimum	Maximum
Add:	$23.5 \mu \mathrm{sec}$	$59.8 \mu \mathrm{sec}$
Subtract:	$24.5 \mu \mathrm{sec}$	$60.8 \mu \mathrm{sec}$
Multiply:	$33.3 \mu \mathrm{sec}$	$41.1 \mu \mathrm{sec}$
Divide:	$51.9 \mu \mathrm{sec}$	$55.9 \mu \mathrm{sec}$
Fix:	$5.9 \mu \mathrm{sec}$	$8.8 \mu \mathrm{sec}$
Float:	$9.8 \mu \mathrm{sec}$	$24.5 \mu \mathrm{sec}$

Input/Output
Multilevel automatle priority Interrupt: determined by interface location.
1/O channels In 2100A Computar: 14.
1/0 channels In 2100A Computer plus 2155A Extender: 45.
I/O compatiblity: HP 2114/2115/2116.

Memory Parity Check WIth Interrupt (Standard)

Priority: second highest priority interrupt (shared with Memory protect).
Operation: monitors all words read from Memory.
interrupt: to trap cell for user written routine when parity error is detected.
Vlolation register: contains memory address where error occurred.

Memory Protect (Standard)

Priority: second highest priority interrupt (shared with Memory Parity).
Operation: initiared under program control; protects any amount of memory.
Fence register: set under program control; memory below fence is protected.
Violation reglster: contains memory addeess of violating instruction.

Physical*

Dimensions

Width: $163 / 4$ " with adaptors for mounting in $19^{\prime \prime}$ rack. Helght: $121 / 4^{\prime \prime}$ (rack mounted).
Depth: 2100A-26" ($23^{\prime \prime}$ behind rack mounting ears); 2155A-231/2" (23" behind rack mounting ears)
Weight
Minimum: $91 \mathrm{lbs}(41 \mathrm{~kg}$).
Maximum: 111 lbs (50 kg).

Electrical ${ }^{8}$

Power requirements: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%$. 47.5 to $66 \mathrm{~Hz}, 800$ watts maximum.
Current avaliable to 1/0:

2100 A	2155 A
Mainframe	Exrender
16.8 A	45.8 A
7 A	19.5 A
3 A	5 A
3 A	5 A

Environmental*
Operating temperature: 0° to $55^{\circ} \mathrm{C}\left(+32^{\circ}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$.
Relative humldity: to 95% at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
Ventilation
Intake: rear panel.
Exhaust: sides of front panel and cabinet. Heat dissipation: $2700 \mathrm{BTU} / \mathrm{hr}$. maxinum.

- Except as noted, applles to both the 2100A Computer and the 2155A 1/0 Exiender.

DISC DRIVE
 Moving-head dual-disc 7900A

The Model 7900A Disc Drive is a random-access moving. head dual-dise memory device, compactly designed for use as a peripheral unit in small and medium sized computer systems. It uses a permanent disc and a removable disc cartridge, both with a packing density of 2200 birs/inch. Each disc surface contains 203 tracks, divided into 24 sectors, and each sector is capable of stosing approximately 6,000 data bytes. With four disc surfaces, data capacity totals approximately 5 million byres. And using removable cartridges provides an unlimited amount of shelf storage.

A photo-optical positioning system, working in conjunction with a velocity transducer and a ponerful voice-coil-driven actuator, provides exceptionally fast and precise head position. ing. In fact, the actuator moves the head-carriage assembly from rack to track in less than 10 milliseconds, and completely across all the tracks on the disc in less than 55 milliseconds. Average access time is less than 35 milliseconds.

The fixed-removable configuration, plus very rapid cartridge changing and a fast data transfer rate, provides a capability for making a backup copy of an on-line data base or system. The large on-line capacity allows storing and maintaining large data or program files.

The accuracy of positioning allows collecting or producing files on a disc cartridge on one 7900A Disc Drive and then reading these files on any other 7900A, even if it is operating in a totally different environment.

Other significant standard features of the 7900A Disc Drive include Write Protection on either disc and use of up to four drives per controller. It also has an absolute air filtration system that minimizes environmental contamination and maintains positive pressure in the drive enclosure during cartridge changing

Operating power for the 7900A is supplied by the Model 13215A Disc Power Supply. It provides three regulated, constant de voltages; two unreguiated dc voltages; and the ac voltage to operate the disc drive ac motors.

To rapidly check out the 7900 A during servicing, the Model 13219A Disc Service Unit (DSU) was developed. It is a small, portable, attache-case enclosed unit designed as an aid to on-site troubleshooting of the 7900A. Through a single connector, the DSU applies simulated controller signals to the disc drive and processes the drive responses for display.

For use with HP computers

Interface equipment and cabling are available to install the 7900A in a Hewletr-Packard computer system. A movinghead disc operating system (DOS.M), complete with disc drive, magnetic tape unit, computer, and all peripheral devices, is shown on page 407.

For the OEM

OEM configurations and quantity discounts are available. Contact your local Hervlett-Packard sales and service office.

Specifications

Access times

Head positioning (includes settling): Track-to-track: < 10 milliseconds. Average move (67 tracks) : <35 milliseconds.
Maximum move (203 rracks): < 55 milliseconds.
Rotational delay
Average ($1 / 2$ revolution): 12.5 milliseconds.
Maximum (1 revolution): 25.0 milliseconds.
Data transfer rate: 2.5 million bits/second (312,0008 -bit byit second.

Genera! specifications

Power requirements: see HP 13215A Power Supply, below.
Dimensions: $101 / 2^{\prime \prime} \mathrm{H}, 19^{\prime \prime} \mathrm{W}, 25 / 8^{\prime \prime} \mathrm{D}(267 \times 483 \times 651 \mathrm{~mm})$.
Depth from mounting surface: $22-15 / 16^{\prime \prime}(583 \mathrm{~mm})$.
Weight: 117 pounds ($53,1 \mathrm{~kg}$).
Enulronment: operates within specifications over the following ranges:
Temperature: operating: $+90^{\circ}$ to $+104^{\circ} \mathrm{F}\left(+10^{\circ}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$; nonoperating: -4° to $+149^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $+65^{\circ} \mathrm{C}$).
Humidity: up to 95%, noncondensing.
Vibration: 10 to 50 Hz ar $0.01^{\prime \prime}$ peak-to-peak excursion.
Atyitude (pitch and roll): accuracy of positioning is not affected by the attitude of the drive.
Air filtration: absolute air filter; volume is 65 CFM
HP 13215A Power Supply
Power requirements (all single phase):
$110 / 120 \mathrm{~V} \pm 10 \%$, $60 \mathrm{~Hz} \pm 2 \%, 3.4 \mathrm{~A}(4,1 \mathrm{~A} @ 50 \mathrm{~Hz}$ $\pm 2 \%$).
$220 / 240 \mathrm{~V} \pm 10 \%$, $60 \mathrm{~Hz} \pm 2 \%, 1.7 \mathrm{~A}(2.0 \mathrm{~A} @ 50 \mathrm{~Hz}$ $\pm 2 \%$)
Dimenslons: $7^{\prime \prime} \mathrm{H}, 163 /$ " $^{\prime \prime}$ W, $193 / 4 " \mathrm{D}(178 \times 425 \times 502$ mm)

Weight: 55 pounds (25 kg).
Accessories avallable: 9164.0045 Disc Cartridge; 13211A Rack Mounting Kit; 13219A Disc Service Unit.
Price: $\$ 9975$, including 13215A Power Supply and 9164.0045 Disc Cartridge. (OEM discounts available.)

DIGITAL TAPE RECORDER
 OEM, On-Line, and Off-Line Applications
 7970 Series

5
 COMPUTERS \& PERIPHERALS

The 7970 Series Digital Magnetic Tape Units provide 800 , 556, or 200 cpi NRZI and 1600 cpi phase-encoded electronics with the same superior operational and reliability characteristics usually associated with higher priced and more complex digital recorders. The 7970 was especially designed as a modular unit to enhance serviceability and reliability. All major transport assemblies are easily accessible for service and/or replacement, when required. The complete data electronics assembly is made up of plug-in type cards, neatly packaged in card cages within the 24 inch transport.

For the OEM
Model 7970B/C option configuration table (NRZI only)

Speed	8 Trask			7 Traok			$\begin{aligned} & 7 / 9 \\ & \text { Track } \\ & \text { R/R } \end{aligned}$
	RAW	R/0	BASE	RAW	R/0	BASE	
10-20.L ips	121	122	123	130	131	132	139
21-37.5 ips	Std	125	126	133	134	135	140
37.6-45 ips	127	128	129	136	137	138	141

Model 7970E option conflguration table

$\begin{gathered} \text { 8peed } \\ \text { (ips) } \end{gathered}$	9 Traok						7/9 Traok PE/NRZI	
	PE Onfy			PE/NRZI				
	RAW Slave	RAW Masler	R/O Slave	$\begin{array}{\|c\|} \hline \text { R/O } \\ \text { Master } \end{array}$	$\begin{aligned} & \text { R/O } \\ & \text { Slave } \end{aligned}$	R/O Mastay	$\begin{aligned} & \text { R/O } \\ & \text { Slave } \end{aligned}$	$\begin{gathered} \text { R/O } \\ \text { Master } \end{gathered}$
12.5018	142	143	144	145	154	155	156	157
25 or 37.5	146	Std	148	149	158	159	160	161
45	150	151	152	153	162	163	164	165
$\begin{aligned} & \text { lps = Inche } \\ & \text { NRZI }=800 \\ & \text { RAW }=\text { Aead } \\ & \text { Master }=\text { In } \\ & \text { Base }=\text { tran } \end{aligned}$		ond 200 cpl rlte unlt dos data e	$\begin{array}{r} \text { cPI = } \mathrm{c} \\ \mathrm{PE} \\ \mathrm{R} / \mathrm{O}= \\ \text { Slave }= \\ \text { lectronl } \end{array}$	haracters $=1600 \mathrm{cD}$ Read Only additlona	per in al PE	$R / R=R e a c$	/Read	

For use with HP computers
For Hewlett-Packard computer users, the 7970 with interface kit and software kit may be used as a peripheral to configure a magnetic tape operating system. Systems available are listed below. (See also page 407.)

NRZI (800-CPI 9-Track; 800, 556, 200 CPI 7-Track)
7970B-200: 9-Track RAW, 25 or 37.5 ips
-202: 9-Track RAW, 45 ips
-204: 7-Track RAW, 25 or 37.5 ips
-206: 7-Track RAW, 45 ips
Phase-Encode (1600 CPI)
7970E-204: 9.Track RAW Master, 25 or 37.5 ips
-206: 9-Track RAW Master, 45 ips
-208: 9-Track RAW Slave. 25 or 37.5 ips
-210: 9-Track RAW Slave, 45 ips
interface Kits (require 2 computer $1 / 0$ slots)
13181A: 9.Track RAW, 37.5 ips , NRZI
13182A; 7.Track RAW, 37.5 ips, NRZI
13183A: 9-Track RAW, 37.5 ips, PE
The following apply to any of the above Interface Kits:
Opt 001: 9-Track RAW, 25 ips, NRZI
Opt 002: 9.Track RAW, 45 ips , NRZI

Software KIts (for Add.Ons)
13200A: 9-Track NRZI (800 CPI), 8K, Non-EAU
13202A: 7.Track NRZI (800/556/200 CPI), 8K, Non-EAU
13203A: 9-Track Phase-Encoded (1600 CPI), 8K, Non-EAU
The following apply to any of the above Software Kits:
Opr 001: 8K, EAU Software
Ope 002: 16K, Non.EAU Software
Opt 003: 16K, EAU Software

Specifications*

Tape speed range: 10 to 45 ips.
Reel diameter: up to $101 / 2^{\prime \prime}(26.7 \mathrm{~cm})$.
Tape: computer grade. Width: $0.5^{\prime \prime}$. Thickness: 1.5 mils.
Tape tension: 8.5 ounces, nominal.
Tape format: IBM/ANSI compatible.
Rewind speed: 160 ips .
Start/stop travel: Read•After.Write: $0.187^{\prime \prime} \pm 0.020^{\prime \prime}$.

General specifications

Power requirements: 115 or $230(\pm 10 \%)$ VAC, 48 to 440 Hz single phase. 400 VA , maximum (on high line).
Size: $24^{\prime \prime} \mathrm{H}, 19^{\prime \prime} \mathrm{W}, 153 / 4^{\prime \prime} \mathrm{D}(610 \times 483 \times 400 \mathrm{~mm})$, Depth from mounting surface: $12^{\prime \prime}$ (305 mm).
Weight: 140 lbs , maximum ($63,5 \mathrm{~kg}$).
Operating environment (hardware)
Ambient temperature: $+32^{\circ}$ to $+131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$ Relative humidity: 20% to 80%, noncondensing.
Altitude: 10,000 feet (3048 meters).
Price:** Model 7970B-Std, $\$ 4600$. Model 7970E Std, $\$ 8100$. Model 7970B-200/13181A, 99700.
Model 7970B-204/13182A, $\$ 10,400$.
Model 7970E-204/13183A, $\$ 13,200$.

[^60]
COMPUTERS \& PERIPHERALS

GRAPHIC PLOTTERS; OPTICAL CARD READERS

7200 Series Graphic Plotters

Hewlert-Packard Graphic Plorrers offer the user an opporrunity to produce graphs of computer-generated data. They operate with terminals which communicate with a computer directly or in a time sharing environment. Simple alphanumeric commands, which can be generated by any computer in any language, are used to feed data and control the plotter.
The plotrers connect directly to most communications termi nals, and any of the newer terminals operating up to 30 characters/sec which utilize the EIA interface. Each fearure the same ease of use, paper and pen system as Hewriett-Packard analog recorders (see page 172), using standard graph paper up to $11^{\prime \prime} \times 17^{\prime \prime}$. Merric and English paper can be handled interchangeably.

Data is supplied in pairs of four-digit X and Y coordinates, so each new dara point is totally defined and nor dependent upon previous points. True vector plotters, the 7200 series systems interpolate straight lines between data points, eliminating the need for the computer to generate intermediate poins.

The plotters may be used on-line with a computer, or off. line with input directly from a paper or magnetic tape reader, a card reader such as the Model 2761B shown below, of even from the terminal keyboard. They operate in parallel with most terminals, and have the capability to silence the terminal as the plotter data is being received.

Graphic plotters are particularly useful for the graphing of functions, curve fitting, regression analysis, transfer functions, probability distribution, shear and moment diagrams, checking of numerical control machine programs, or anything else that can be graphed. BASIC routines for curve and alphanumeric generation are available to be used on major time-sharing systems.

Models are available for 10 char/s ASCII code, for 14.9 char/s Correspondence. BCD or EBCD code, and a switchable speed unit accepts up to $30 \mathrm{char} / \mathrm{s}$ from terminals using EIA interface and ASCII code. The type of terminal must be specified on order; ask your local Hewlerr-Packard Data Products Sales Office for complete specifications.
Prices
Model 7200A (for teletypes, orhers at 10 char/s) $\$ 3300$
Model 7201A (for IBM 2741, A-J 841 or Datel 30) $\$ 3300$
Model 7202A ($10,15,30$ char $/ \mathrm{s}$ switchable, EIA, ASCII)
Note: rentals begin at $\$ 200 / \mathrm{mo}$; 2 -year leases from $\$ 159 \mathrm{mo}$. OEM discounts available on purchases.

2761A, 2761B Optical Mark/Sense Card Readers

The 2761 series Oprical Mark Readers are low cost, desk-top remote data-transmission terminals which read punched and marked tabulating cards. They are designed for use with standard telephone data sets in communication networks where limited information must be gathered from many sources, or where it is desirable to use the original document as direct input to the system, rather than paper tape, magnetic tape or manual entry from a keyboard. Each unit provides the convenience of automatic card feed for up to 300 cards.
The input is a standard tabulating card, coded by marking lines through pre-printed boxes with a regular soft lead pencil. Up ro 80 columas of alpha-numeric information may be marked or punched on a single card. Marking and punching may be intermixed on the same card.

Since the tab cards can be hand marked, and are read directlv as marked, keypunch operations are bypassed. Cards can be pre-punched or pre-printed with identifiers and routine information for torn-around applications, reducing the amount of hand-entered data, and assuring correct identification of the rurn-around document. Immediate data transmission can speed the input of orders, payroll charges, inventory entries, shipments, billings and similar operating data to a central processor. The Optical Mark Reader is easy to use, and operation requires no special skills or training.
The 2761A is designed to read data directly into a computer or other data acquisition system in 12 -bit parallel form at rates

up ro $250 \mathrm{cards} / \mathrm{min}$. The 2761B generates a bit-serial ASCII code ourput from either the Hollerith punch format or the Hewlett-Packard Dial Code format. Dara rates of 10,30 or 105 char/s are available by option. Ask your local HewlettPackard Data Products Sales Office for complete specifications. Prices

Model 2761A (12-bit parallel ourput) $\$ 2750$
Modet 2761B (64-character Hollerith code) $\$ 3100$
Model 2761B (64-character Dial code) $\$ 3150$
Note: OEM discounts available.

Description

The 2070A Data Logger is designed for a wide range of portable data acquisition applications. The basic 2070A consists of a 3480 A Digital Voltmeter and a s055A Digital Recorder. The 2070 will accept any of a plug-in units including rwo units with de only, an AC/DC/ת unit and one with up to so 2-rife input channels. The 2070A has two unique options: Dara Storage and Sample-and-Hold. Data Storage allows the 2070A 10 be used at its maximum speed of 1000 readings/s with output on the self-contained printer at 10 lines/s. Up to so complete readings may be stored. Sample-and.Hold allows the 2070A to digitize changing input voltages with the elimina. tion of digitization errors.

Applications for the 2070A include taking peak readings on reperitive niave forms. This application uses Sample-and. Hold's analog output which shows where on the wave shape the sample is taking place. Data Storage may be added to digitize
low frequency wave shapes ax trigger rates up to $1000 / \mathrm{s}$. Data Storage frees the DVM from printer. Up to 1000 measurements may be made per second, yet the output may be at 10 lines $/ \mathrm{s}$. Dara Storage and Sample-and-Hold may be used for transient analysis. Preset trigger lines allow the previous 10 or 20 read . ings to be printed, plus the next 40 or 30 readings (for a total of 50 readings.) Data leading up to a transient may then be observed, plus the transient itself.

The 2070A was designed as a "turn•key" system. Switches and connectors are accessibie on the rear panel to simplify the control of both Data Storage and Sample-and -Hold options. The interconnecting cable betw'een the DVM and the printer rearranges the printed columns into an easy to read format. Each reading is identified with a 2 -digit number. The printer or the DVM may be used separately for other applications Prices begin at $\$ 3025$ and $g 0$ to $\$ 6275$. Please refer to the data sheets for complete information.

The 6940A/6941A Multiprogrammer is an inexpensive device that. depending on the particular application, can function as a bidirectional data distributor. converter, coupler, programmer, or multiplexer. It allow's a single. parallel, 16 -bit computer I/O channel to conrrol up so 240 individually addeessable and programmable, 12 -bit I/O channcis. A Muitiprogrammer system is composed of one master mainframe (69.10 A) and from zero to 15 extender mainitrames (6911A). Each mainframe will accept up to IS plug.in input or output cards, in any combination (16 units \times ls cards $=240$ channels).

The programmable outputs a vailable include resistance, voltage, current, contack closures, and logic levels. Input functions a vailable are contact closures and logic levels.

Applications

Applications for the Multiprogrammer exist wherever one to several thousand devices must be independently controlled or monitored from a single computer I/O channel or ohber siogle source of digital data. One common application area is automatic resting, where the Mulriprogrammer can be used both to provide stimuli for a device under test and to collect responses from the device. For example, the Multuprogrammer's programmable output functions can control power amplifiers, pulse generators. poner supplies, and a wide variety of other programmable instrumentation, while also acting as direct stimuli to the device under test. At the same time, the Multiprogrammer can monitor the responses (up to 2.880 contact closures or logic levels) (rom the device under test, and input them to the computer through only one I/O channel.

Other applications result from the Multiprogrammer's ability to act as a low-cost, bidirectional interface between a compurer and a wide range of devices such as strip chart recorders, electrically controlled valves. setpoint controllers. digiral panel meters, alarms. CRT displays, operator console sairches and pushbuttons, lamp display panels, analog computers, ac power switches, and $\mathrm{X} \cdot \mathrm{Y}$ recorders.

Common Specifications

Input/Output card positions: maximum of is per mainframe. Data transfer rate: 100 k word $/ \mathrm{sec}$. guaranceed minimum.
Maximum data resolutlon: 12 bits.
Dimensions: 16.75" W', 6.78" H. $21.29^{\prime \prime} \mathrm{D}$.
Power: is or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 48 to 440 Hz , approx 2 A .

Multiprogrammer, Model 6940A

Interfacing: 6940A mainframe is designed to interface with binary sources employing TMI or DTL Ingic.
Weight: 35 lbs (15.9 kg) net, 43 lbs (19.5 kg) shupping.
Price: $\$ 1500$.

Extender, Model 6941A

Weight: 33.5 lbs (15.2 kg) net, $40.3 \mathrm{lbs}(18.3 \mathrm{~kg}$) shipping.
Price: $\$ 900$.

Programmable Output Cards

Series Element Output Card, Model 69300A: allow's customer to select and load own serics-adding elements. Price, $\$ 300$.
Parallel Element Output Card, Model 69360A: allows cusiomer to select and load own parallel.adding elements. Price. $\$ 300$.
Resistance Output Cards, Models 69301A-69313A: Supplies variable resistance for programming voltage and current outpus of power supplies equipped with Option 40. Price, $\$ 345$.
Low Speed D/A Converter Card, Model 69320A: -10.2. it +10.23 V de at 0.5 mA output, 6 ms prog. speed. Price: $\$ 385$.
High Speed D/A Converter Card, Model 69321A: -10.240 to +10.235 V de at 0.9 mA output, $30 \mu 5$ prog speed. Price, $\$ 420$.
Current D/A Converter Card, Model 69370A: 0 to +20.470 mA at 0.11 V de outpue, $100 \mu \mathrm{~s}$ progeamming speed. Price, $\$ 42 \mathrm{~s}$.
Relay Reglster Card, Model 69330A: provides 12, independent, SPST, normally open contact pairs. Price, $\$ 370$.
Relay Output/Readback Card, Model 69433A: similar :o 69330 A , except has data verifications capability. Prict, S430.
TL Output Card, Model 69331A: supplies 12 buts with TTL,' DTL compatible logic levels. Price, $\$ 200$.
Breadboard Output Card, Model 69380A: allows customer to design own analng or digital ourfut circuit. Price, $\$ 79$.

Input Cards

Digital Input Card, Model 69431A: monitors 12 lines of TTL, DTL, RTL. or conract closure logic. All lines have same common (as earth ground). Price, $\$ 200$
Isolated Digital Input Card, Model 69430A: nionitors 12, inde. pendent, 12 V inpuis. All inpui lines are isolated. Price. $\$ 370$
Telephone Relay Monltor Card, Model 69432A: designed specifi. cally for monitoring status of 12 telephone relays Price. S21s.
Breadboard Input Gard, Model 69480a: allow's cuscomer to design own analog or digital input circuir. Price, 575.

Accessories

Custom Interface Card, Model 69340A: allows interiacing the 6940A with programming sources having non-standard logic level, logic sense, or termination specifications. Prise, $\$ 12 \mathrm{~s}$.
6940A Interface Kit, Model 14543A: contains hardware and software for interfacing the 6940A with any Hewlett-Packard computer. Price, \$1250.
Pocket Programmer, Model 14533B: permis manual programming of all data and control functions. Price, $\$ 97$.
Maln Input Cable Assembly, Model 14540A: connects the 6940A to the 12366 A Microcircuit Intecface I/O Card. Price, S150.
Chaining Cable Assembly, Model 14541A: connecis 6940A to 6941A, 2nd 6941A's to other 6941A's. Price, siso.
Pocket Programmer Extension Cable Assembly, Model 14534A: used with the Pocker Programmer for maximum conernience. Price, Sso.
Voltage Regulator Card, Model 69351A: required in every 6940A or 69.11A mainframe containing High Speed D/A Converter or Current D/A Cnnverter Cards. Price, \$12s.

COMPUTERS \& PERIPHERALS

One of the Many Configurations of an HP 9500 Series Automatic Test System

The HP 9500 Series Automatic Test Systems offer a highly cost-effective solution to the testing requirements of modern elecrronic equipment. Hewlett-Packard automatic test systems encompass a wide range of testing capability, from individual circuir modules and sub-assemblies to highly complex avionic systems.

The major system eiements are a controller, plus stimulus, switching, and measurement subsystems. Individual instruments comprising these systems are derermined by the specific testing requirements. The overall concepr further includes plug in hardware interfacing plus an easily-learned sofrware operating sysrem that is able to handle present-day programmable instruments plus those anricipated in the furure.

Instead of the disc controller system shown (block diagram). other standardized controller systems available are: punched tape and magneric casseite tape systems. Off-the-shelf commercially available instruments are used wherever possible in the subsystems.

Easily Learned Programming

One of the most important factors in selecting an automatic test system is availability of an easily-learned and powerfu! software system. The requirement is essential since these systems are operated by engineers and technicians, who know test. ing rather than computer programming. HP ATS BASIC software very adequately satisfies the requirements. Because there are only a tew rules to remember, it can be learned in a few hours, and be used effectively to write test programs within two or three days. Programs are typed directly into the com-
puter via the system keyboard. Each program statement is checked for errors as it is entered into the system. If an error is made, the system types out an error message, after which the statement can be immediately retyped correctly. Thus, considerable time is saved in writing programs as compared with non-interpretive compilers which require that the entire program be recompiled.

The compiler can call instrument driver subroutines (programs supplied with each computer-controlled instrument) to communicate with the stimulus, measurement, and switching subsystems. For example, to program digital voltage source (DVS) number 1 to supply 12.34 volts at 70 mA , merely type the statement:

20 DVS (1.12.34.70)
where 20 is the program statement number. To change the voltage to say 12.83 volts, type:

20 DVS ($1,12.83,70$)
This same ease of programming applies to all aspects of the Hewlett-Packard ATS BASIC software, which offers all the computational capabilities needed for automatic testing, along with instrument control and timing statements.

HP 9500 Series Automatic Test Systems Overall Concept
Programs are always executed from computer memory. In addition 10 keyboard entry, programs can be entered from punched paper rape, or called from storage on disc or cassette magnetic tape.

Special Capabilltles

The inherent fexibility and modular construction of the 9500 Series makes the overall system easily expandable to handle very large testing requirements encompassing many types of stimuli and measurements. Hewlett-Packard welcomes the opportunity to offer expert engineering assistance to solve your resting needs. Contact Hewlett-Packard Automatic Measurement Division (ATS) for a solution to your problem.

A compreheasive set of literature, including an easy-to-follow selection guide, describing the 9500 Series is available from Hewlett-Packard field sales offices.

COMPUTERS \& PERIPHERALS

COMPUTER SYSTEMS
 For Data Acquisition and Control
 9600 Series

Hewlett-Packard has for many years been an indusery leader in the development, manufacture, and supply of automatic digital data acquisition systems. For several years now this has also been true for Hewlett-Packard computer-automated data acquisition and control systems.
Hewlett-Packard employs a modular concept in configuring the wide range of data acquisition and control capability of fered. Modularity in rhe systems starts with the computer (HP 2100A) memory capacity, which is plug-in expandable from 4,096 words to 32,768 words. Input/ourput capacity of the system computer is expandable from the basic 14 channels in the mainframe to 45 channels with the addition of an I/O extender. Modularity goes beyond the computer to encompass a selection of 8 different data acquisition (analog-to-digital) subsystems. is peripheral devices. 8 different general purpose interfaces, a choice of 3 different software operating systems, and 3 different conputer programming languages. These subsystems and peripherals are fully hardware and softerase compatible, so they are readily assembled into a system that satisfies present measuring needs, and yet can be easily expanded to suit future requirements.

Applications of computerized systems

In research, development, and production applications, for example, a Hewletr-Packard computerized system: (a) co. ordinates the stimulus and measurement actions of the instruments involved in various experiments, (b) acquires and converts analog data from physical sensors to digital form, (c) corrects the data for non-linearity and offsets, and multiplies it by known factors to convert ir to meaningful scientific units, (d) calculates consequent results, (e) performs statistical analyses. and (f) logs or displays results.

Systems involving remore test sires are easily handled by tieing the sites into one unified distributed system by means of Hewletr-Packard data communications interfaces. Here a small compurer system at each remote site performs most of the data acquisition and control functions and concentrates the data prior to transmission to a central compurer, up to nearly two miles distant over simple hardruare lines. Date phone interfaces can be used for greater distances.

System concept

Major system functions of a Hewlett-Packard system for data acquisition and control are shown in the diagram. Central element of the system is an HP 2100A Digital Computer. For multiplexing and digitizing analog input signals, a choice of standard subsystems provides high-resolution (dc) measurements at rates to 40 channels/second and high-speed measurements at rates to 100,000 samples/second. Other instruments are available for ac voltage measurements, high freguency counting. de stimulus output, exc.

Interfacing with users' equipment

Many versions of bidirectional registers are available to interface digital-type user-furnished equipment to the system computer. Also available are hard-contact relay ourput registers for controlling external circuits and digitalito-analog converters for controlling analog-rype devices. These interface registers and converters are contained on single cards which plug into the Hewletr-Packard computer. The compures's large input/ output capacity allows many external devices to be monitoced and controlled, over and above the measuring instruments and peripherals comprising the basic system.

System software

Hewlett-Packard computerized data acquisition and control systems are supported by a very comprehensive catalog of sofeware. Three software operating systems-Basic Control System (BCS), Data Acquisition and Control Executive (DACE), and Real Time Execurive (RTE)-provide an operational framework for data acquisition and control in realtime. The systens are programmed in Hewletr-Packard Assembly language, FORTRAN, or ALGOL.

The BCS provides relocation and linking services. thus simplifying preparation of user-programs and their configurarion into the overall system. BCS is an interrupt-driven system that allows measurements, processing, and logging of results to take place concurrently.

The DACE is a clock-driven system designed for applications in which operation of the data acquisition system must be scheduled in real-time. Data acquisition and control programs are subdivided into "tasks" such as measurements, calculations, limit checking, logging of data, and updating of control commands. The DACE enables cucing (or deleting) of rasks at desired elapsed times. Task consrants and parameters can be examined and modified withour recompiling. Within a task, transducer readings can be converted to engineering units and linearized: sampling rates can be relared to actual values measured and changed as a signal strays beyond limits; other tasks can be initiated, depending on resules obtained in the current task

The RTE is a clock-and-intertupt-driven system providing multiprogramming, foreground-background operation with priority scheduling, interrupt handling, and program load-andgo capabilities. Under RTE control several real-time foreground programs, e.g., multiple test stations, can run concurrently with generai-purpose background programs. (Foreground and background refer to areas of core.) While data are being taken on demand, processed, and output in the foreground, the time not needed for real-time processing may be used for program development in background without interrupting the running programs.

Additional information on the 9600 Series systems is provided in a brochure, "Computer Systems for Data Acquisition and Control." The brochure, plus an easy-to-understand Selection Guide are available from Hewlett-Packard Field Sales Offices.

DISC OPERATING SYSTEM A small computing system with a lot of punch Model 2I20A

The HP 2120 minisystem offers you maximum performance for your computing dollar. It gets its power from the marriage of hardware and sofrware. It combines Hewlett-Packard's versatile 2100 A minicomputer, the fast 7900 five megabyte disc, a teletype console, paper tape reader, and its unique disc operating system that makes the whole system tick. Best of all, it won't hurt your pocketbook either. 2120 minisystems start at less than $\$ 33,000$.

The 2100 A Digital Computey is the heart of the 2120 mini . system. It has a submicrosecond memory, uses the latest in MSI/LSY technology, and is controlled by a microprogrammed read only memory. The system uses a basic 8 K of memory and can be expanded to 32 K . Standard features are direct memory access, hardxare multiply/divide, memory protect, and memory parity check, A floating point processor can be optionally added to give the system more computational power.

The 7900 Moing Head Disc has five million bytes of on-line storage. It can be used to store operating systems, compilers, programs, and program data. The systems' storage can be expanded to 47 million bytes-large enough for the most demanding applications.

The 2748 Paper Tape Reader and 2752 Teletype offer an economical way to access the 2120^{\prime} s capabilities. Other peripherals such as magnetic tape, card readers, line printers, and punches are optional.

The 2120 Disc Operating System was designed to give the small computer user the conveniences of a large system without a high overhead penalty. These are many features which you can choose to make more efficient use of your computer.

Easy System Generation

A user can configure his 2120 system ro meet a given $1 / O$ configuration. This configuration can be changed by loading memory with another executive from disc or changing the cartridge and loading it.

Mixed Job Stream

In batch mode, multiple job decks can be stacked upon one another, and executed in a load and go environment without manual intervention. FORTRAN, ALGOL, and Assembly Language programs can be intermixed in the same chain of programs. System directives, source code, and data can be integrated into a single job deck.

Disc and Core Memory Hardware Protection

System integrity is assured through bardware memory protection.

System Accounting

The 2120 Disc Operating System can be equipped with a system clock which will tell the operaror how long a particular job has taken. The system clock can be also accessed by a program.

Logical 1/O Unlt Designation

I/O programming is device independent. Programs written in FORTRAN, ALGOL. and Assembly Language specify a logical unit number. Logical unit numbers are assigned to appropriate devices at system generation time, bur can be changed by the operator prior to the execution of a program.

Automatle System Disc Management

The systern operator can add, change, and delete files from the system disc. All references to files are by name because the 2120 File Management System keeps track of all phosical locations. After any file deletion, or edit, the syscem automatically repacks the disc to eliminate any wasted space.

Extended File Manager

User data files can be written under the command of an extended file manager. Files and record sizes are specified by the user at program execution time. All input/output is buf. fered to reduce the number of physical disc reads or writes records can be accessed on a direct or sequential basis.

Large Disc Capacity

The 2120 Basic System has 5 million bytes of storage and it can expand to 47 million bytes of on-line storage. In addition, data, source statements, and programs can be stored on removable cartridges providing unlimited capacity.

Program Segmentation

User programs may be structured into a main program with subservient segments. The segments can be stored on the dise and called into memory by the main program when they are needed. The program can use a common area of core for its data.

Utilltles

Editing, debugging, and file maintenance utilities are available on the system disc, and they can be called in when needed.

The 2120 is designed to work in a variety of applications. It's a cost-effective system for today and an expandable one for tomorrow.

Computing calculator

Whatever your discipline, from physicist to financier, engineer to biochemist, there is a Hewlert-Packard Series 9800 Programmable Calculator that's right for you. The Series 9800 is the only computing calculator on the market that incorporates all the special features you'd specify, if you were design. ing a calculator for yourself. In fact. that's exactly what happens. The modular structure allows you to help design the calculator that best suits your needs! From keyboard to memory, peripherals to program packages, you can configure the Series 9800 to satisfy any situation-including a tight budget.

Simplicity of operation

Only Hewlett-Packard allow's you to "design" your own problem-solving system. With the unique modular/plug-in architecture of the Series 9800 , you specify-and pay foronly the capability you need. And if your needs change? No problem. You can expand the memory, add peripherals, or change the keyboard of your existing calculator, at any time, without costly modifications.

Custom keyboards

Only the Series 9800 gives you the opportanity to select from special keyboard plug-in blocks, so you can personalize
its problem solving capabilities to your discipline. This unique Hewlert-Packard feature vastly extends your computing power, simplifes progeamming, and reduces your compuring rime.

You have a choice of Staristics or Mathematics functions under single keystroke command. These function blocks include separate (ROM) memories so they do not draw on the main calculator memories, leaving them fully available for further problem-solving power. A third keyboard plug in option, the User-Definable Function block, allows you to custom. ize individual keys for operations uniquely important to you and your discipline.
When the user plugs in the Mathematics block, he can solve ald the log, trig, and transcendental functions normally found on an engineering slide rule. He has 28 functions available. Included is a "DO LOOP," a feature found only on large computers, which allows the user to cycle through a subroutine or function a specified number of times. Other functions include converting a number to the log to the base 10 and back, changing degrees, minutes and seconds to decimal degrees and back, and specifies angles in degrees, radians or grads. (A grad is $1 / 100$ of a right angle-a common unit-of measurement of angle, used mainly in Europe.) A user-definable key is included. It can be programmed to perform any function or it can define one program which can call orber programs.

The Staristics block is for the typical calculations used in statistical data reduction. Its primary function is to carry out the summations of variables, sum of cross products, and sums of squares needed as fundamentel quantities in a variety of commonly used statistical analyses. A VARIABLES key defines the number of vasiables to be treated, from 1 to S. A key is used to accumulate the summations of vaciables, cross products and squares. A MEAN key computes (from the collected summations) the arithmeric mean of up to three variables. Other keys include VARLANCE, REGRESSION (least squares curve fitting). MAX/MIN to collect maximum and minimum values of variables, a key to compute a slatistic, chi-squared and \log keys, both natural logs and logs to the base 10. A RANDOM key generates a sequence of psuedo-random numbers. Data can be deleted from a stacistical analysis with a new CORRECT key.

If neither the Mathematics block nor the Statistics block fulfill the specific needs of the user, he may select the new User Definable block. He may, for example, program a single key to calculate amortization. Or a Besse! function could be computed with a single keystroke. Any subroutine or function may be keyed in, then executed. Provision is made for protecting entered functions. A DELETE key is used ohen functions must be changed. New editing features art included in the User Definable block. Single program steps may be located, inserted, or deleted using the FIND, INSERT and DELETE keys.

Other function blocks allow the user to gain more peripheral control. For instance, with the ploter (ROM) blocks, the user has complete alphanumeric plotter output, axis generation, automatic function scaling, and special symbol point plotting. Titled, scaled and labeled plots can now be produced.

Printer

Exceptionally quiet, the Hewlett-Packard designed thermal printer is an option. It prints a 16 character line; each of the 16 characters is formed by a 5 by 7 dot matrix. Inexpensive heat-sensitive paper is used and loading is simple. The roll is simply dropped in; the paper threads itself automatically.

Alphanumeric printing

Labeling computer data as it is printed out is an obvious advantage. It is not necessary to interpret code numbers or abbreviated symbols. Medical data, payroll data and statistical data of all kinds can be labeled while printed out so that anyone can read the results from the tape with no danger of misinterpretation. The printout may be used directly as a report of results.

User instructions in a program may also be printed out to eliminate the need to refer to instruction manuals.

Alphanumeric characters may be printed directly from the keyboard, or automatically via programmed request. Alpha capability greatly simplifes programming and program ediring. A list of keystrokes may be printed as the keys are depressed using the new. KEY LOG key. Or a list of program steps may be printed out by pressing the LIST key. With the Alpha block in place, each step is listed by its mnemonic symbol such as CLR for CLEAR key. Errors are thus easy to spot and correct.

Easy-to-use language

All operations and logic are performed in standard mathe. matical notation; there's no unswieldy computer language to learn. From simple 10 -key adding machine arithmeric to powerful logic propositions, the Series 9800 is designed so you and your staff can be solving problems after only a few moments of instruction and orientation.

Magnetic card reader

You can store long programs of large amounts of data on handy magnetic cards for instant entry into your calculator. The "feed-through" feature of the magnetic card reader speeds program and data entry. For particularly long programs, cards may be linked for automatic feed, on command by the calculator.

Performance

Expandable memory

Memories are expandable (at any time) with plug-in memory modules. In basic configuration the Series 9800 can perform a complete regression analysis or solve a system of 10 simultaneous equations. If more memory is needed, more can be added.

Powerful programming alds

Indirect addressing and indirect arithmetic are powerful features included in the Series 9800 . With the INDIRECT key, the calculator user has an automatic way of incrementing registers. He saves hours of work in cases where he wants to perform mathematical operations on a whole series of numbers.

Register arithmetic enables the user to operate on registers without recalling their contents to the X or Y working reg. isters. Adding indirect to register arithmetic enables the user to program the machine to calculate a register number, then go to that register and operate on its contents. It might have applications, for example, where it is necessary to (1) find a tax table, then (2) get the tax from that table. The ability to usc indirect addressing and indirect arithmetic results in shorter programs and faster compuration.

Peripherals

Often the means of getting data acceptable for computation or putting the final figures into an acceptable form takes as much or more time than the calculation itself, Hewletr-Parkard offers a full-range of Series 9800 peripherals. The user can choose a Marked Card Reader, Paper Tape Reader, Digitizer, Typewriter, or X.Y Plotter.

Hewlect. Packard calculators are also included in other instrumentation systems such as multi-channel analyzer systems or data acquisition systems.

Cost

The basic Series 9800 Calculator starcs at $\$ 2975$. Lease rates are also available. A basic calculator includes a lot of computing power.

There's enough memory to solve 10 simultancous equations; a bright, LED display; full programming capability, including looping and branching, subroutines, indirect arithmetic, and symbolic addressing; built-in magnetic card reader; and a full input/output structure that allows the user to plug into Series 9800 peripherals.

Low cost components, now a vailable from Hewlett-Packard, offier exceptional performance in consumer, industrial, and other OEM equipment. With sophisticated semiconductor processing equipment, and the industry's most extensive hybrid thin-film microcircuit manulactusing facilities, Hewlett-Packard applies newiy developed technologies to component manufac. ruring, offering high performance diodes, transistors, and complete circuits-and also solid state numeric and alphanumeric readouts plus LEDs and other optoelectronic devices - in quantity at economically attractive prices.

Transistors

For RF and microwave amplifiers and oscillators, HewlettPackard stts the prite and performance standards of the transistor industry. For example, consider this: an NPN silicon transistor with typical $f_{\text {inux }}$ of 12 GHz at $\$ 19$ (in stripline pack. age). This transistor (HP 21 Series) puts out 100 mW at 4 GHz with gain typically 7.5 dB , achieved by improved processes that didn't call for reduction in geomereries, hence no compromise in power. Then there is the HP 21A: noise figure guaranteed $<3.0 \mathrm{~dB}$ at 2 GHz and $<4.5 \mathrm{~dB}$ at $4 \mathrm{GHz}(\$ 60)$. Oc consider the $\$ 19 \mathrm{HP}$ 11: it generates over 600 mW at 2 GHz with 8 dB gain using a new design geomerry that equalizes power distribution.

Hewlett-Packard transistors fill all requirements for multistage VHF-UHF amplifers: lor-noise input stage, high-gain intermediate stages, and porer output stage. Complete data sheet characterization and excelient processing uniformity make it possible to design your circuir by calculation instead of by rrial-and-error.

Herdett-Packard transistors are supplied in chip form, or in several stripline packages in either common-base or commonemitter configurations. The chips have unique moly gold contact pads that don't deteriorate under high bonding remperarures, improving yields of thin-film hybrid microcircuits.

Look to Hewlett-Packard for further advancements in micro. wave transistor performance and pricing.

Diodes

Four types of high rechnology silicon diodes are offered:
Schottky barrier (hot carrler) diodes are unexceiled for fast digital switches, clamps, and samplers, and high frequency mixers and detectors, both high level and low level. Fast re. covery ($<100 \mathrm{ps}$), low turn on voltage (as low as 340 mV at 1 mA). high breakdown (as high as 70 V), give sub-nanosecond switching, high rectification efficiency and low noise at prices that go to less than 20 in 100,000 quantities. Excellent diode-to-diode uniformity simplifies applications requiring closely matched diodes.

PIN diodes are advantageous as current-controlled resistors for RF switching, leveling, electricaily-controlled attenuation, and AGC circuits. Long carrier lifetime in some types gives low distortion at signal írequencies as low as 1 MHz ; short carrier lifetime in others permits fast RF saitching (<5 ns).

Step recovery dlodes are ideal for harmonic multipliers and fast-rise pulse generators. Abrupt termination of reverse recovery current can, depending on type, generate voltage steps up to tens of volts with transistion times appreciably shorter than 1 ns. Frequency multiplication from X2 to as high as X 100 can produce useful harmonics to 18 GHz .

IMPATT diodes are state-of the-art devices for generating microwave power-as much as 1 W at 14 GHz with 7% efficiency from a single diode. One IMPATT plus a resonator plus a de power supply equals one simple, inexpensive, solidstate microwave source.

These diodes are available in traditional glass packages, and in special packages for waveguide, coaxial, and stripline mounting. Also available: chips and beam lead packages for hybrid IC mounting.

Hybrid Thin Film Circuits

Combining Hewlet-Packard transistors and diodes with chin-film circuirs has resulted in components ideally suited to the telecommunications field, with performance/price capabilities far begond that thought possible just a few years ago. The hybrid thin-film technology couples Hewlett-Packard's experience with passive microwave components design and exotic

semiconductor devices to form products such as the recently developed 12 GHz receiver front end, all on a single 5" $\times 5$ " ground plane. A Gunn oscillator, 2 GHz IF amplifiers and a unique packaging confguration give the receiver top perfor. mance with high reliability and low cost. S-band repeaters and X-band transmitter power amplifiers for use in common carsier and dara communications sysems have also been developed offering the same advantages.

Producing a greater quantity of RF and microwave hybrid thin film circuits than any other manufacturer, Hewlett-Packard is well equipped to supply modules in large quantities for reliable and economic OEM systems.

Solid State Displays and Optoelectronics

Hervlett-Packard offers a complete line of GaAsP discrete light emitting diodes (LEDs) and numeric and alphanumeric displays. These components provide solid state reliability to visible data transmission. As status indicators and solid state displays, these compact light emitting diodes are electrically compatible with monolithic integrated circuits (typically 10 mA at 1.5 V), with a useful life greater than 100,000 hours. The visible emitters generate a brillianr red color (655 nm) at levels in the range of 100.200 fL .

Low-cost numeric displays are packaged single or clustered, with or without on-board decoder/driver electronics. The alphanumeric displays are constructed using $X \cdot Y$ addressing techniques, providing minimum power dissipation and maximum flexibility in application at a low unit cost. Small character
displays for portable instruments and calculator application are also available.

Solid state displays are offered in plastic encapsulation or hermetic packages. Designed with several unique features, these displays are ideal for conveotional indicator requirements as well as allowing many new applications in the display of information.

Discrete LED indicator lamps are designed for easy panel mounting with clips or direct PC board application. Both plascic and hermetic packages offer high brightness over a wide viewing angle with low power requirements. Hewlett-Packard ofers a wide selection of lead, lens, brighaness, and package combinations.

Hewlett-Packard PIN photodiodes are excellent light detec. rors with their exceptionally fast response (1 ns), wide spectral response (from near infra-red to volet), and wide range linearity (constanc efficiency over 6 decades of amplicude). Low dark current (as low as 150 pA at 10 V) make these derectors especially well-suited for operation at lou light levels.

Emiters and detectors are packaged in photon-coupled iso. lators that give high isolation (100 megohns, 2 pF) between inpur (emitter) and outpus (detector). Signals with frequency components from dc to 3.5 MHz can be coupled through these devices.

Write for more information

Complete detailed product literature, application informa. tion, and prices are as near as your phone. Call any HewlettPackard sales office.

Description

The method of ternperature sensing employed in the 2801A Quartz Therrometers is based on the sensitivity of the resonant frequency of a quartz crysul to temperature change.

Temperature range of the 2801 A Quartz Thermometer is -8010 $+250^{\circ} \mathrm{C}\left(-11210+482^{\circ} \mathrm{E}\right)$. The quartz thermometer is considerably more linear than a platinum resistance thermometer: $\pm .05 \%$ of span from -40 to $+250^{\circ} \mathrm{C}$ compared with a gepical figure of $\pm .55 \%$ for the same range for platinum thermometers. Linearity of the quactz thermmeneter is superior 10 that of thermocouples and thermistors, which have an exponential characteristic. The excellent sensing characteristlcs of the quartz thermometer are supplemented by the advantages of direct digital readout (no bridge balancing. or refecence to resistance or voltage-temperature tables of curres), immunity to noise and cable resistance effects, no reference juncrion, and good interchangeability berween sensing probes.

The 2801A is equipped with two sensing probes for mensuring temperature at either probe or the difference between the two. A 6 -digit visual readout and recording output with a choice of push-butcon-controlled sample times provides resolution of $0.01,0.001$ or $0.0001{ }^{\circ} \mathrm{C}$ or F . With Option 010 (100 second sample period) resolutions of $0.001,0.0001$ or $0.00001{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be obtained. Signal polarity indication is providtd. The 2801 A includes the capability for operation as a 300 kHz electronic counter.

Temperature sansing probes

Various sundard probe configurations are available for the 2802 A Quariz Thermometer. Probes from the 2850 series are furnished with the quartz thermometer.

Remote operation of probes

Each cemperature sensing probe has a quartz-crsstal which is resonant at a frequency dependent upon temperature, and is driven by a 2830A Sensor Oscillator. The oscillators are iransistorized devices enclosed in small die-cast aluminum housings. They are normally installed in the 2801 A fiush-mounted in a front panel recess. A 12. foor cable conners each probe to its assoriared sensor oscillator; this cable forms part of the tuned circuit and cannot be altered in length. Hon'ever, the sensor osciliarors may be unplugged from the instrument and connected to it by standard 75 -0hm coaxial cable up to 900 fect in length, with no loss in measurement accumacy. For grester disiances, one or two 2831 A Amplifiers may be used for a maximum of 4500 fect.

Oceanographic temperature sensor

The Model 2833B Oceanographic Temperacure Sensor Assembly for the 2801 A Quartz Thermomerer is especially' designed for use in rugged environments such as oceans, rivers, harbors and industria! Buids at pressures up to $10,000 \mathrm{psi}$. It meets all requirements for oceanographic incostigations, for remperacure profile and thermal pollution studies in rivers and hatbors, for well-logging, factory effuent studies and other dificult industrial envicoments.
The 2833 B combines the functions of a quartz crystal sensor and oscillator which are housed in a seainless sceel pressure case approximately $53 / \mathrm{g}$ inch long, with a maximum diamerer of $7 / 8$ inch. A single coaxial cable reansmits the temperature signal to, and the dc operat. ing power from the 2sula.
The 2833 connects direcily to the 2801 A through the cable prorided and gives a direce digital readou in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Operating range of the 2833 B is -40 o $130^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+248^{\circ} \mathrm{F}\right)$ when used with the 2801A Quartz Thermometer. It may be used with as much as 5000 feet of cable with no loss of accuracy or sensitivity.

Specifications, 2801A

Temperature range: -80 to $+250^{\circ} \mathrm{C}\left(-112\right.$ to $+482^{\circ} \mathrm{F}$ with Option 001).
Calibration accuracy: thermomerer-probe combination calibrated as factory to within $.02^{\circ} \mathrm{C}\left(.04^{\circ} \mathrm{F}\right)$ absolute. traceable io NBS.

Llmearity: -40 to $+250^{\circ} \mathrm{C}$: bener than $15^{\circ} \mathrm{C}\left(.27^{\circ} \mathrm{F}\right)$ refersed to best fit straight line through $0^{\circ} \mathrm{C}$: -80 to $-40^{\circ} \mathrm{C}$: better than $0.7^{\circ} \mathrm{C}\left(1.25^{\circ} \mathrm{F}\right)$ referred to same line as abovc: 0 co $+100^{\circ} \mathrm{C}$: better than $05^{\circ} \mathrm{C}\left(.09^{\mathrm{A}} \mathrm{F}\right)$ referred so best for straight line through $0^{3} \mathrm{C}$.
Stability
Short term: better than $\pm .0001^{\circ}$
Long term: zero drift less than $\pm .01^{\circ} \mathrm{C}\left(.018^{\circ} \mathrm{F}\right)$ at constant probe temperature for 30 days.
Ambient temperature effect: less than $002^{\circ} \mathrm{C}$ per ${ }^{*} \mathrm{C}$ change. Display: 2801A: 6 -digit in-line readoue :n C°, or ${ }^{\circ} \mathrm{F}$. Decimal point, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, and polarity indication included. Readous and units incation in kHz in counter mode of operation. Storage fearure holds display between readings.
Digital recorder output: 8CD, 4.2'2-1, positive.truc, for each digit, dermal point (exponenr), polarisy, and operating mode. 8.4.2.1 positive true optionally available.

External programming: sclected by comact closures or tuansistor circur: closures to ground. Measurement iniciation, probe selection ($\mathrm{T} 1, \mathrm{~T} 2$, or $\mathrm{T} 1-\mathrm{T} 2$), and resolution (.01, . 001 , or 0001°) programonable.
Counter operation: Frequency Range: 2 Hz to 300 kHz ; Resolu:ion: 10, 1, and 0.1 Hz; Sensitivity: 0.5 to 10 V rms; Input Impedance: IM, 50 pF shunt: Gate Time: $0.1,1$ and 10 sec .
Power required: $115 / 230 \mathrm{~V}=10 \%$, 50 to $60 \mathrm{~Hz}, 85 \mathrm{~W}$.
Instrument environment: ambient iemperatures from 0 to $+59^{\circ} \mathrm{C}$ $\left(+32\right.$ to $\left.+130^{\circ} \mathrm{F}\right)$, at relative humidity to 95% al $40^{\circ} \mathrm{C}$.
Weight: net, 22.3 lbs ($10,1 \mathrm{~kg}$); shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg}$).
Dimensions: $3.15 / 32^{\prime \prime} \times 16.5 / 16^{\prime \prime} \times 163 / 4^{\prime \prime}(88 \times 414 \times 425 \mathrm{~mm})$.
Price: 2801A Quartz Thermometer, including two 2830A Sensor Oscillators and two (marched) 2850 scries Tempersture Sensors, \$3250.

Specifications, HP 2831A Amplifier

Operating trequency: 28 10 $29 \lambda\left[\mathrm{~Hz}_{z}\right.$ approx.
Galn: 40 dB approx.
Power required: +12 to -20 V dc, at 8 mA approx. (ivormally supplied by HP 2801A.)
Connectors: coaxial output connector mates with HP 2801A Quartz Thermometer.
Operating conditions: same as HP 2830A Sensor Oscillator.
Dimenslons, weight, finish: same as HP 2850A Sensor Oscillaror.
Price: 2831A Amplifier, $\$ 100$.

Specifications 2833B Oceanographic Sensor

Temperature range: -40 to $-120^{\circ} \mathrm{C}\left(-11210+248^{\circ} \mathrm{F}\right)$
Response time (step change): 63.2% of final valuc in 3 sec ; 99.0% in 16 sec; 99.9% in 24 sec (fow at 2 f ps).
Price: \$900; opt. 001 (50 ft . long a-aterproof cable) : $\mathrm{N} / \mathrm{C}_{\text {i }}$ opt. 002 (armored 90 ft . Iong waterproof cable with load-bearing termina(ion): add $\$ 255$ plus $\$ 1.50 / \mathrm{fl}$. above 50 ft .

ACCESSORIES
 Cable assemblies For general purpose use

10501A Cable Assembly

$44^{\prime \prime}$ of 50Ω coaxial cable terminated on one end only with UG-88C/U BNC male connector; HP 10501A, \$8 each.

10502A Cable Assembly

$9^{\prime \prime}$ of 500 coaxial cable terminated on both ends with UG.88C/U BNC male connectors; HP 10502A, \$12 each.

11086A Cable Assembly

$24^{\prime \prime}$ of 50Ω coaxial cable terminated on both ends with UG.88C/U BNC male connectors; HP 11086A, $\$ 7$ each.

10503A Cable Assembly

4^{\prime} of 50Ω coaxial cable terminated on both ends with UG-88C/U BNC male connectors; HP 10503A, \$13 each.

11000A Cable Assembly

Dual banana plugs terminate a section of 50Ω cable, $44^{\prime \prime}$ over-all; plugs for binding posts spaced $3 / 4^{\prime \prime}$; HP $11000 \mathrm{~A}, \$ 6 \mathrm{each}$.

11001A Cable Assembly

Identical with 11000 A except dual banana plug on one end and UG-88C/U BNC male on the other; HP 11001 A , $\$ 7$ each.

11002A Test Leads

Dual banana plug to alligator clips, $5^{\prime} ; \mathrm{HP} 11002 \mathrm{~A}, \$ 8$ each.

11003A Test Leads

Dual banana plug to probe and alligator clip, 5'; HP 11003A, $\$ 10$ each.

11035A Cable Assembly

$12^{\prime \prime} 50 \Omega$ coaxial cable terminated on one end with a dual banana plug and on the other end with a UG-88C/U BNC male connector; HP 11035A, $\$ 7$ each.

11500A Cable Assembly

6^{\prime} of 50Ω coaxial cable terminated on both ends with UG-21D/U Type N male connectors; HP 11500A, $\$ 20$ each.

11501 A Cable Assembly

6^{\prime} of 50Ω coaxial cable terminated with UG-21D/U Type N male and UG.23D/U Type N female; HP 11501A, s20 each.

Typical Instrumentation Racking in a 2940 Series Cabinet

The model number 2940 identifies a series of exceptionally rugged, yet lightweight Hewlett-Packard enclosures, all of which have been carefully designed to present a clean professional appearance wherever they are used. Choices include one-, two-, and three-bay cabinets with $35-$, 56 , and 70 -inch panel openings. (35 -inch panel opening is available on one-bay cabinet only.) Usable depth of the cabinets, 27 inches, is compatible with all Hewlett-Packard computers and instruments. Optionally, solid or transparent doors can be fitted to any cabinet bay for protection of equipment. Solid doors are available in either rood-grained or enamel finish. Cabinets are equipped with eyebolts having a combined load capacity of 5600 pounds for easy handling, and also come with casters for mobility at the operating site. An efficient ventilation system holds the temperature rise inside of the cabinet to less than $15^{\circ} \mathrm{C}$ with respect to outside ambient.

All 2940 Series Cabinets are supplied fully wired in accordance with IEC electrical specifications for the power option specified at time of order. Cabinets ordered with a system are shipped with the instruments rack mounted, in.
strument support rails in place, and blank panels installed to cover unoccupied panel space. When cabinets are ordered separately (not with a system), blank panels must be ordered separately and instrument support rails are furnished as follows: 4 pairs per 35 -inch bay, 5 pairs per 56 -inch bay. 6 pairs per 70 -inch bay.

Cabinet ordering information

OAYS	HEIGH7ご,		Mar Pivt For ${ }^{8}$ 8 lor Timan Ris I $5^{\circ} \mathrm{C}$.	Powar Oulke Put 4	pOWEA CONNED. TLON TO MAIKS	WEIORT -		$\left\{\begin{array}{c} \text { Drder } \\ \text { gado } / \mathrm{B} \\ 0 \mathrm{plion} \end{array}\right.$	$\left[\begin{array}{c} \text { prlat } \\ 5 \end{array}\right.$
Oyerail	Pmal	Ovarill				Nal	Ship		
Ona	$\begin{gathered} 35 \\ 18893 \\ \hline \end{gathered}$	$\begin{aligned} & 43.25 \\ & 1093 \end{aligned}$	S00W	${ }_{6}$	HP-sugplied powar cabie and plug atad 15A al 115 VAC.	$\begin{gathered} 128 \\ (98.1) \end{gathered}$	$\begin{gathered} 230 \\ (105.4) \\ \hline \end{gathered}$	133	825
Cby	$\begin{gathered} 56 \\ (1422) \\ \hline \end{gathered}$	$\begin{array}{r} 65.25 \\ (1632) \\ \hline \end{array}$	2000 W	9	HP-suoglied powtr cable sad diug rated 20A al 113 Yac.	$\begin{gathered} 161 \\ (13,1) \end{gathered}$	$\begin{gathered} 280 \\ (122,1) \\ \hline \end{gathered}$	156	1.000
(533)	$\begin{gathered} 70 \\ (1718) \end{gathered}$	$\begin{array}{r} 78.25 \\ (1988) \\ \hline \end{array}$	2000w	11	he:sudpliso power cable sind plug isled 20A al 1 :5 VAC.	$\begin{array}{c\|} 181 \\ (82.2) \\ \hline \end{array}$	$\begin{gathered} 332 \\ (150.7) \\ \hline \end{gathered}$	190	1,050
$\begin{aligned} & \text { Two } \\ & \text { lusyi } \end{aligned}$	$\begin{gathered} 2 \times 56 \\ (2 \times 1422) \end{gathered}$	$\begin{array}{r} 64.25 \\ (1632) \\ \hline \end{array}$	2000W	8	HP-suppliza powar cabla and user. durnished plus.	$\begin{gathered} 294 \\ (133,5) \end{gathered}$	$\begin{gathered} 4,1 \\ (13,8) \end{gathered}$	256	1650
$\begin{gathered} 52.0 \\ (1063) \end{gathered}$	$\begin{gathered} 2 \times 70 \\ (2 \times 1378) \end{gathered}$	$\begin{array}{\|l\|} \hline 78.25 \\ (1988) \\ \hline \end{array}$	2000W	11	HP-supplied power cable and userfurnishea plug.	$\begin{gathered} 333 \\ (151,2) \\ \hline \end{gathered}$	$\begin{gathered} 554 \\ (253, \mathrm{~B}) \\ \hline \end{gathered}$	$3) 0$	1.850
Thas Buy	$\begin{gathered} 3 \times 58 \\ (3 \times 1522) \\ \hline \end{gathered}$	$\begin{array}{\|c} 64.25 \\ (1632) \\ \hline \end{array}$	2000W	9	Through userIurnashes sable os condult.	$\begin{array}{r} 434 \\ (197,0) \\ \hline \end{array}$	$\begin{array}{r} 5\rangle 2 \\ \langle 3051 \\ \hline \end{array}$	356	2300
$\begin{array}{r} 63.0 \\ 1600) \\ \hline \end{array}$	$\begin{gathered} 3 \times 70 \\ (3 \times 1778) \\ \hline \end{gathered}$	$\begin{gathered} 78.25 \\ (1988) \end{gathered}$	2050w	11	Through usar. Tornished cadle or conduit-	$\begin{gathered} 494 \\ (22 \angle 3) \\ \hline \end{gathered}$	$\begin{gathered} 795 \\ (301,4) \\ \hline \end{gathered}$	370	2.500

NOTES
 17W lor power box And ian $2 \operatorname{CCOW}$ in 56 - of 70 Inch bay incledes 53 W tol power box and fan.
 inch csolnet, 806550
3. Pitce includes completa elactrical system, (Order by opluan inmber fism POWER OPTIONS tade)
 - tave exlension.
7. Overall height inchudes casters but nol eyebolls

Specifying color scheme

Cabinets and cabinet accessories which have an A / B suf. fix after the model number are available in a choice of two color schemes. Suffix A models (2940A, 12674A, etc.) are textured blue with Hewlett-Packard grey trim for compatibility with most existing Hewletr-Packard instruments. Suffix B models (2940B, 12674B, etc.) are moss grey with mint green trim for compatibility with the colors of the newest Hewlett-Packard instruments.

Specifying power

Specify electrical power desired by ordering from the POWER OPTIONS table below. For example, for 35 -inch cabinet with 115 V ac electrical system, specify a 2940 A (or B) Cabinet with Options 135 and 051.

Power options

	PAIMARY POWER INPUT (60.60 H1)			
2840A Oporlan No.	115 Yac Dallon Mo. (1)	230 Vac(Europt) Opilan Ko. (2)	230 Vsc (U.5.A.) Opilon No. (B)	120/206 Vac $\$$ ghase Oplar No. (1)
135	051	050	(3)	Not available
156	052	055	(3)	Not available
170	052	055	(3)	Not avallable
256	053	056	058	(3)
270	053	056	058	(${ }^{\text {S }}$
356	054	057	(${ }^{\text {B }}$	059
370	054	057	(b)	059
(1) Internal power stips wired for 115 VaC (2) Internal power strips whed for 230 Vac (a) Internal power suips wired for 115 Vac (cenler tapped input) (2) Inlernal posver strips wired tor 120 vac (3) Avzilable on soecial order. Consult HP field Salas Offce.				

Specifying front doors

Cabinet front doors, listed in the table below, provide 2.56 inches (65 mm) from front of rack mounted instrument to inside of door to allow for knobs and other protrusions; this adds 2 inches ($50,8 \mathrm{~mm}$) to cabinet depth. All doors include a key-lock. Order by Accessory No. Specify right or left opening.

Cabinet front doors

Transparant (Grey Tint) Pamel			
Height In (mim)	Accessary No.	Net Walght Lb (kg)	Price 5
12.25 (311)	126968	6 (2,7)	180
31.5 (800)	126938	$12(5,4)$	190
56 (1422)	126778	18.5 (8.2)	200
70 (1778)	12687B	22.5 (10)	210

HP Oray or Mint Gray Panal			
$12.25(311)$	$12697 \mathrm{~A} / 8$	$5.5(2.4)$	160
$31.5(800)$	$12694 \mathrm{~A} / \mathrm{B}$	$10(4,5)$	170
$56(1422)$	$12678 \mathrm{~A} / 8$	$16(7,2)$	180
$70(1778)$	$12688 \mathrm{~A} / \mathrm{B}$	$19.5(8,8)$	190

Wood Grained Panel			
$12,25(311)$	126988	$6(2,7)$	160
$31.5(800)$	126958	$12(5,4)$	170
$56(1422)$	126868	$18.5(8,2)$	180
$70(1778)$	126898	$22.5(10)$	190

Front door option: (specify front door Accessory No. plus Option No).
Option 003: extra deep door for 56 or 70 -inch cabinet. Allows 5.56 inches (141 mm) from instrument front panel to inside of door. Adds 5 inches (127 mm) to cabinet depth.
Price: add $\$ 20$.

Specifying base extensions

A base extension is required to prevent tip-over of cabinet with a computer, magneric tape unit, or other heavy instruments that swing out for servicing. Order by Option No.
Option 016: base exension for one-bay cabinet, $\$ 50$.
Option 026: base extension for two bay cabinet, $\$ 80$.
Option 036: base extension for three-bay cabinet. $\$ 120$.

Cabinet accessories

Equipment stides: 150 lbs (68 kg) load capacity. Order by Accessory No.

Accessory No. 22692B: slide for mounting non-HewlettPackard instruments. Price: \$60.
Accessory No. 12692B-002: brackets for mounting 3.5 inch ($88,9 \mathrm{~mm}$) high Hewlett-Packard instruments. Price: \$85.
Accessory No. 12692日-003: brackets for mounting Hew-lett-Packard instruments over 3.5 inches ($88,9 \mathrm{~mm}$) high with handle recess. Price: $\$ 85$.
Storage drawers: 75 lbs (34 kg) load capacity; installed at bottom of cabinet if no other location is specified. Order by Accessory No.

Holpht		Dopth		Acoessory No.	Prioe
In.	mm	In.	mm		
3.5	89	16	406	12672A/B	\$90
5.25	133	16	406	12673A/8	

Instrument support ralls: one pair with attaching bardware. O-der Accessory No. 12679B. Price: $\$ 10$.

Wrlting surfaces: topped with white Formica. Fixed shelves are removed for shipping. Slideout shelf is installed if ordered with cabinet. Order by Accessory No.

Type of shelf	Usable area in. (mm)	Panel helght	Acoessory No.	Price
$\begin{gathered} 1-8 a y \\ \text { siide-out } \end{gathered}$	$\begin{gathered} 16 \times 16,5 \\ (406 \times 419) \end{gathered}$	$\begin{gathered} 3.5 \\ (89) \end{gathered}$	12674A	\$140
1.8sy Fixed	$\begin{gathered} 15 \times 20 \\ (38!\times 508) \end{gathered}$	$\begin{aligned} & 1.75 \\ & (44) \end{aligned}$	12675A	\$100
$\begin{aligned} & \text { 2.Bay } \\ & \text { Fixed } \end{aligned}$	$\begin{gathered} 15 \times 41 \\ (381 \times 1041) \end{gathered}$	$\begin{aligned} & 1.75 \\ & (44) \end{aligned}$	12676A	\$150

Blank panels: Hewlett-Packard grey or mint grey with atlaching serews. Order by Accessory No.

Halght in. (mm)	Aocessory No.	Prios	Helght ln. (mm)	Acoossory No.	Price
1.75 (115)	12580A/B	\$10	7 (178)	12683A/B	\$10
3.5 (89)	12681A/B		8.75 (222)	12684A/B	
5.25 (133)	12682A/B		10.5 (267)	12685A/B	

Modular enclosure systems

The Hewlett-Packard modular enclosure system provides a complete solution to instrument packaging and mounting problens. The system is in accord with EIA standard rack and panel dimensions, yet each enclosure is equally well suited to bench or held use.

Two types of instruments

Basically, instruments enclosed in the modular system fall into two classes: (I) instruments which require full EIA
rack width. These instruments mount directly in racks by means of brackets and filler strips included with the instruments. Feet and tilt stand are provided for bench use. In struments can be stacked for maximum urilization of available space. (2) instruments shich require only one-third or one-half the full module width. Adapter frames are available for mounting in standard EIA racks. Combining cases and rack adapter frames use blank panels to fill areas not used by instruments and provide convenient storage of leads, cords, etc. Model 1052A Combining Case accepts cooling kits to maintain proper ambient temperature.

Specifications

Combining cases

11046A accepts third-module instruments.
Dimensions: $191 / 4^{\prime \prime}$ wide, $83 / \mathbf{g}^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep (189×213 $\times 367 \mathrm{~mm}), \$ 150$.
1051A accepts third. or half-module instruments up to $111 / 4^{\prime \prime}$ $(286 \mathrm{~mm})$ deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep (425×185 $\times 337 \mathrm{~mm}$) ; hardware furnished for conversion to ack mount $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high. $11 / /^{\prime \prime}$ deep behind panel ($483 \times 177 \times 286 \mathrm{~mm}$).
Weight: net $11 \mathrm{lbs}(5 \mathrm{~kg})$; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: HP !051A, $\$ 135$.
1052A accepts third or half-module instruments up to $163 / 8^{3 \prime}$ (416 mm) deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (425×185 $\times 467 \mathrm{~mm}$) ; hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide. $6.31 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 177 \times 416 \mathrm{~mm}$).
Weight: net $13 \mathrm{lbs}(5,9 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8 \mathrm{~kg})$.
Price: HP $1052 \mathrm{~A}, \$ 150$.

Rack adapter frame

5060-0797 Adapter rack mounts third- and/or hallemodule instruments up to $6.3 / 32^{\prime \prime}$ high (155 mm). $\$ 25$.
5060-0808 Adapter rack mounts third. and/or hall-module instruments up to $3^{\prime \prime}$ high (75 nmm), $\$ 25$.

Control panel covers

These covers quickly convert full-widh cabinets to easily carried portable units.

Control panel covers

Part No.	ElA Pamel Helght		
	(in.)	(mm)	
$5060-0826$	$3-15 / 32$	88	$\$ 22.50$
5060.0827	$5.7 / 32$	133	$\$ 25.00$
$5060-0828^{*}$	$6-31 / 32$	177	$\$ 27.50$
5060.0829	$8-23 / 32$	222	$\$ 28.50$
5060.0830	$10-15 / 32$	266	$\$ 30.00$
$5060-0831$	$12.7 / 32$	310	$\$ 32.50$

[^61]
Joining brackets

5060-0215 Joining Brocket Kit for semi-permanently joining any two full-module instruments $111 / 4 "(286 \mathrm{~mm})$ deep belind the front panel, \$20.
5060-0216 Joining Bracket Kit for semi-permanently joining any two full-module instruments $163 / 8^{\prime \prime}(416 \mathrm{~mm})$ deep belind the front panel, $\$ 25$.

Instrument cases

11075A accepts third-module instrument $61 / 2 "$ high $8^{\prime \prime}$ deep. Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$. Price: HP $11075 A, \$ 45$.
11076A accepts third-module insrument $61 / 2^{\prime \prime}$ high. $11 "$ deep. Weight: net 3 lbs ($1,4 \mathrm{~kg}$); shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: HP [1076A, $\$ 45$.

Fieid cases

The Hewlett-Packard field cases are rugged protective ourer shells for use when instruments must be frequently transported and used away from laboratory conditions. They are molded of strong fiberglass-reinforced plastic and sealed fightly, making them cainproof under the test conditions of MIL-STD.108. Cases metting MIL.C. 4510 are available. Carrying handles fold fat when not in use. Two basic case styles are available: transit and operating. Cases are available to accommodate nearly any instrument and combination of accessories. Special size cases can also be ordered. A technical data sheet is a railable.

Transit cases

Transit cases are typically provided with foam cushions custom-formed to fit the standard Hewlett-Packard modular cabinets. This arrangement provides maximum prorection against damage from handling, dropping, or crushing. Prices: 570-\$220. .

Operating cases

Operating cases ace equipped internally with shock. mounted frames that accept combinations of any standard 19-inch rack-mounting instruments up to the maximum height of the frames. This arrangement offers the convenience of operation without removing the instrument from its carrying case. At the same time, environmental protection is afforded. Drawers and casters are available. Prices: $\$ 460$ \$685.*

[^62]
[^0]: The gas chromatograph and mass spactrometer form the most powerfll tool suallable to the sclentist for rapld, positlve and accurata analyses of unknown samples. especially when they are integrated with a computer as they are in the Hewlett-Packard GC/Mass Spec/Compuler System.

[^1]: * rit: reterred to input: rto: referred to output.

[^2]: *For exact accuracy refer to pabe deslgnated.
 tMiddrequency (50 mV - 100 V).

[^3]: * Refer to data sheet for complete specitications.

[^4]: *TC: $\pm 0.1 \%$ from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ ard $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

[^5]: *Refer to data sheet for complete specifleztions

[^6]: ＊Accuracy of converter only．Accuracy of readout device should be added to determine accuracy of measurement．

[^7]: - Reler to data sheet for complete specifications.

[^8]: * Option 004, 005, 006 are avallable oniy as factory installed options.
 * Only Options 002 and 006 availabla with 34038 .

[^9]: ** For complete specifications refer to Technical Data Sheet.

[^10]: - Refer to data sheet for comolete specifications.

[^11]: - All speciflcations refer to $25^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$.

[^12]: *Spocifications apply to 10 inch $\times 10$ inch area.

[^13]: - With 10,000 ASA film, P3s phosphor, f/1.3 rens, 1:0.5 objectio-image ratio, and pulsed flood gun fogging.

[^14]: * $A C$ coupled (all others de-codpled).

[^15]: "Polaroid" by Polarold Corp.

[^16]: (11) Pubtrshed specifications apply only when fal supaly is deliverng more than 5% of maximum rated oucput voltage ($C V$ oberation) or 5% ol maximum rated ourput curreni (CC operation), and (b) lcas is drawing more then 100 W . Restriction (D) is iffed when supply is dellueting more than 30% of maximum rated outpui voliagolCV operationi or 30% or maximum rated output current (CC operation).
 (12) For oparation writh a 50 Hz inpul (Dossible anly with Option 05), output current is lineariy deratad from 100% at $40^{\circ} \mathrm{C}$ to 80% at $50^{\circ} \mathrm{C}$.
 \diamond Operatring temperature ronge for this supgly is $0100^{\circ} \mathrm{C}$.

 * Magsured at rear termunals.

[^17]: (1) Load transient recovery for this supply is delined as follows. Time requread for output volioge recovery to within the given level of
 the nominal outpul valrage following a logd change from full load to half load ar half losd to full laad
 (2) For oderation with a 50 Hz inpul fossible only with Oovion o5l the values given in the tsble ara increased by 50%
 -- indicares that cnformation was nol available at time ol printing.
 NA indicates Not Applicable.

[^18]: (11) Published specifications apply only whem (a) supply is detivering more than 6% of maximum rated output voltage (CV aparationl or
 5% of maximum rated outout current (CC operation), and (b) load is drawing more tham loow. Restriction (b) is (ittod when supply is 5\% of maximum rated output current (CC operation), and (b) soad is drawing more than 100W. Restriction (b) is littod when supply is
 (2) For operation with a 50 Hz input (possible onity with Opition 05), outpur current is linearly derated from $100 \% 3$ a 400 C to 80% ar $50^{\circ} \mathrm{C}$.

 0 Operating temperature range for this supply is 0 to $50^{\circ} \mathrm{C}$.
 ** The outpur capacity is up to 600A at 16 V . but only 500A at 18 V .

[^19]: (11) Load transient recovery for this supply is defined os follows: Time required for ourput voltage recovery to within the given level of
 t the nominal output voltage following a load change from full loed to hall lood or half loed to full loed.
 (12) For operstion with a 50 Hz inpur (possible only with Oprion 05) the values given in the table are increased by 50%.

 * Measurad at reer terminals.
 -- indicates that informetion was not avalable at tíme of printing.
 NA indicates Not Applicable.

[^20]: [1) Load vransient recovery for this supply is defined as follows: Time requirad for outdut voltage recovery to within the given level of
 the nominal outaut valiage following a load change from fuli haod to half foad or half hoed to full load.
 (22) For ooeration with a 50 Hz ingul (Dossible only with Option 05) the values given in the table are increased by 50%.

[^21]: ((1) Published specificarions agolv onlv when (a) supolv is delivering more than 5% of maximum rated outpur volage (CV aperation) or 5% of maximum rated output current (CC operation), and (b) load is drawing more than 100w. Restricuion (b) is lifted when supply is delivering more than 30% of maximum rated output voliage \&CV opgration) or 30% of maximum rated ourpue current (CC operstion).
 (2) For oderation with a 50 Hz Indut (cossible only with Option 05), outpur current is linearly derated tram 100% at $400 \mathrm{C} 1080 \%$ at $50{ }^{\circ} \mathrm{C}$.

 0 Oparating temperature range for this supoly is 0 to $50^{\circ} \mathrm{C}$.

 - Masured at rear cerminals.

[^22]: [11) Load trapsient recovery for this supply is defined as follows: Time required for aupur vollage recoverv to within the given level of
 t the nominal output voltage following a load ehange from full load to half load or half loed to tull load
 (2) For operation with a 50 Hz indur (Dossible onlv with Option 05) the walues given in the table are increased by 50%.
 -- indicates that information was not available at time of prinifng.
 NA Indicates Not Applicable.

[^23]: (1) Loed cransient recovery for this supplv is defined as follows: Time required for output voltage racovary to whthen the givan level of the nominal outpul voltage following a load change from full load to half laad or hall load to full load.
 (2) For operation with a 50 Hz input (possible only with Option 05) the values given in the rable ard increased by 50%.

[^24]: -- indicares that information was not available at time of prinling.

[^25]: (1)) Publistred soecifications apply only whan \{al supply is delivering more than 5% of maximum rared outbut voltage (CV operationt ar 5% of maximum rated oulcut current (CC oporation). and (0) load is drawing mera than 100 W . Restriction ibl is litted when supply is
 deliverying more than 30% ol maximum ratad oulput voliage (CV operationit or 30 os ol maximum rated outout currant (CC operallon),

 \bigcirc Oderating temperature pange for inis subply is $01050^{\circ} \mathrm{C}$.

 - Meesuredar rear rorminals.

[^26]: (in) Load trensient recovery for this supply is detined as lollows Time pequired tor output voliage recoverv to within the given level of
 \dagger the nominal outpur voltage following a load change from fult load to halt load or half loed to full load.
 (2) For oparation with a 50 Hz input (possible only with Option 05) the values given ln the taole are increased by 50%.
 -- indicstes that information was nat availabia at timo of printing.
 NA indicstes Not Applicable.

[^27]: T 11 L Loed transient recovery for this supply is defined as follows: Time required for output volrege recovery to within the given level of the nominal ourput voltage following a lasd chenge from full lasd to holf laad or half load no full load
 (2) For operation with a 50 Hz input (passible only with Option O5) the values givan in the rable ars increased oy 50%.
 \triangle Programming speed for this supply is dafined as follows: Typleal time required to nonereperifivaly program from zero to within 99% of the maximum reted outaut volisage, or from the maximum rated output voltage to within 1% of that voltage above zero.

 * The output capacity is up ro 25 A at 440 V , up to 20 A at 500 V , and 18 A at 600 V .

[^28]: ${ }^{*}$ This network is a simolified representation of a complax network. The formula $Z=R X_{C} / \sqrt{R^{2}+X_{c}{ }^{2}}$ is used for frequencies up to $I M H z$ by substiluling the values given for R and C. Above I MHz. the output impedance is greater than the formula would indigate-load transient overhools are less than 20% of range selting lor a lull load change with a I μ sec. rise lime. moulput current can be modulated 100% uD lo 100 Hz : percent moduation des reases linearly to lo\% at 1000 Hz .

[^29]: - Option 008 also requíred.

[^30]: - Applicable to 7858B only.

[^31]: - For complele specifications, request 3960 Data Sheet.
 - Refer to page 199 for complete list of accessories.

[^32]: - Contents before operations: $X=s, Y=b, 2=c$
 - A is a storage register in the malinirame. Contonts: SA
 e is a storage register that can be provided in an external device. Contents: S_{E}

[^33]: * For any waveshape, trigger error is less than $=\left(\frac{0.005 \mu \mathrm{~s}}{\text { Slgnal Slope }(\mathrm{V} / \mu \mathrm{s})}\right)$
 ** Trigeer error is less than $=0.3 \%$ of one period \div periods avaraged for signals with 40 of or better signal-to-noiso ratlo.

[^34]: * =10 counts of ingut frequency. ($=1$ count displayod.)
 * For any wave shape, trigger error is less than $=\frac{0.0025}{\text { Signal slope }(V / \mu 3)}$ us

[^35]: *** Trigger error is less than $=0.3 \%$ of one perlod + perlods averaged for sig.

[^36]: - $=10$ counts of ingut írequency. ($=1$ count displayod.)
 * For any wave shape, ulgger error ls less than $=\frac{0.0025}{\operatorname{Slg} n a i ~ S l o p e(V / \mu s)}$-s

[^37]: ** Triggep error is less than $=0.3 \%$ of one perlod + deriods averaged for sig. nals with 40 dBm or betler slgnal-to-nolse ratlo and 100 mV rms amplitude.

[^38]: - Statistics of Atomic standards D. Allen, Proceedings of IEEE. Feb, 1965, p. 221.

[^39]: - I year for ballery and clock.

[^40]: -Two lower ranges of $0.0005 \mathrm{~Hz}(0 \mathrm{ption} 001)$ and 0.00005 Hz (Option C02) are avaliable on special order.

[^41]: *Refer to data sheet for complete speclfications.
 **The response above 1 MHz at 600 ? output is affected by capacitive loads

[^42]: ${ }^{2}$ This specification applies on the X .0001 to X 1 K range only.

[^43]: *Piug-in pulse/diglal system. outpul, risetime, price, and meny other parameters vary wilh plug-ins. Refer to 1900 System selection chart for mose detgils.

[^44]: Mainframes ara required for olug.in oparation. The two available are: Model L900A for high power (1915A plug.la) gulse testing and digital systoms, Price, \$850. Model 1901a for general purpose pulse testing and digital systams. Price, $\$ 490$.

 * Programming requires opllon 001 mainframes. Two verslons are available: option our plug-ins, for semi-automatic oparation and Option oos plug-las to inter
 face with computer controlled 6936S multi-programmer.

[^45]: - "Calideation Factor" and "Effective Efficiency" are ifgures of merit expressIng the ratio of the sibstituted signal measured by ine power meter to the mictowave power Incident on and aosorbed by the mount, respectively.

[^46]: ${ }^{\prime} \operatorname{ENR}(d B)=10 \log \frac{k\left(T-T_{0}\right) B}{k T_{0} \delta}$
 whare $\mathrm{kTB}=$ avallable nolse power,
 and $K T_{0} B=$ available nolse Dower with nolsa source at $290^{\circ} \mathrm{K}$.
 2 Includes factor for insertlon loss.

[^47]: Instrument model number consists of family madel number prefixed by letter of waveguida band, E.G., $\times 281 \mathrm{~B}$ spacifies X - band wavegulde to coax adapter.

[^48]: 'Auxarm tracking: $<0.3 \mathrm{~dB}$ Ior 7i60, $<0.5 \mathrm{~dB}$ for 777D.
 'Auxillary outputs typically track within 0.7 dB and 4°.
 Option O11: APC-7 OLtout, N-female input. Option 012: N-male output. N-fenate inpul.

[^49]:
 ${ }^{2}$ in irectivity is at least 40 dB ; swept-frequency tested.
 jMean coupling is the average of the maximum and mintmom coupling values in the rated frequency range.
 'Coupling varlation over fated fequency range ls not mora than $\pm 0.5 \mathrm{de}$ aboul mean coupllag (± 0.6 dB for R7520).
 sauxiliary arm swi is 1.15 (1.2 for P-, R- and R-band units).

 - Swept-frequency tested.
 aj752 Couplers operate to 5.3 GHz with reduced periormance.
 iClecular ilange adanters K-band (UG-425/U), HP 11515A, 560 each; R-band (UG-381/U), HP 11516A, $\$ 50$ each.

[^50]: For all modols-Maximum Inputr 100 mW pezx or average, $8471 \mathrm{~A}: 3 \mathrm{~V}$ rms, 4.2 V gh. Delector element: suppled.

[^51]: 'freouency pesponse characteristics (excluding basle sensitlyity) track wishin $=0.2$ dB per octave from 10 MHz to $8 \mathrm{GHz}, 0.3 \mathrm{~dB}$ from B to 12.4 GHz , and (8470 A and $8472 \mathrm{~A})=0.6$ dB Prom 12.4 to 18 GHz speclify option ool, add $\$ 20$ per unlt ($\$ 40$ por paif). (8472 A , availabla on special order,
 ica. 0 de varlation from sauare law uo 10 50 mV peak output into $>75 \mathrm{kD}$; sensifivity typically $>0,1 \mathrm{mV} / \mu \mathrm{W}$; specify 0 option 002 ; add $\$ 20$.
 and P.band units; specity option 001 ; add $\$ 20$ per unit ($\$ 40$ per pair).
 1 Matched palr of unils fity d with square law loads. Frequency response characteristics (excluding basic sensitlvity) track within =1 ob for power levels less inan approx. 0.05 mW , specify gotion $00 \mathrm{~L}_{\mathrm{i}}$ add $\$ 40$ per unit (880 per pair).
 sclicular tiange adaptors: $11515 A$ (UG-425/U) for K band, 560 eachi 115.
 clicular flange adaptors: 11515A (UG-425/U) for K-band, $\$ 60$ each; 11516A (UG.381/U) for R-band, $\$ 50$ each.

[^52]: 1/ncludes allowance for 0 to 100% relalive humidity, tomperature varlation from 13 to $33^{\circ} \mathrm{C}$, and backlash.
 $20.15,0.96$ to 1 GHz .
 $20.22,0.96$ to 1 GHz .

[^53]: - Refer to data sheet for complete specifications.

[^54]: *Refer to data sheet for complete specifications.

[^55]: -Waveforms conform to EIA Spec. RSi70.
 tAccuracy for temperatures from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.

[^56]: - Other terminations avallable on spacial order.
 * For complete speciflcatlons refer lo data sheet. See poge 376-377.

[^57]: * Refer to data sheet for completo specifications.

[^58]: "Options 100, 200, and 300 are identical to 110, 210, and 310 respectivaly except for the 8412 A which is replaced by the 8413 A .
 t The 8410 A network ansly2er, 8411A hapmonle frequency convortar, 8412A phase magnitude display, 8414A polar display, ano 11609 a cable mit are incluted in

[^59]: *Accuracy can be improved by using a sllding load to cancal coupler direc. ivily errars. This will reduce the reflection coefricient uncertainty 015 certatity is reduced to a maximum of $+45^{\circ}$.

[^60]: - For complete specifleations and a llst of accessories, request technical Dasta Sheet (79708/C or 7970E).
 ** OEM conflgurations and discounts are zyailable.

[^61]: -Aiso fits HP 1051A and 1052A.

[^62]: - Quantity discounts avarlable.

